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ABSTRACT 

This capstone project is sponsored by a water technology company and particularly covers its 

industrial pump rental business across the United States. With millions of dollars of annual 

spending for pump mobilization, the company looks for ways to improve the overall asset 

utilization rate. At its current practice, the company has not regularly used any statistical method 

or algorithm for demand prediction. Moreover, decisions for asset movement between branches 

are largely arranged between individual branch managers on an as-needed basis. We propose an 

improvement for the company’s asset management practice by modeling an integrated decision 

tool which involves evaluation of several machine learning algorithms for demand prediction and 

mathematical optimization for a centrally-planned asset allocation. We find that a feed-forward 

neural network (FNN) model with single hidden layer is the best performing predictor for the 

company’s intermittent product demand and the optimization model is proven to prescribe the 

most efficient asset allocation given the demand prediction from FNN model.  
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1. INTRODUCTION 

1.1 Background and Motivation 

The company sponsoring our capstone project specializes in water technology and operates 

globally. It designs and manufactures equipment as well as provides customized service 

solutions for applications in various stages of water usage cycle. During the most recent fiscal 

year, almost half of the company’s annual revenue came from its water infrastructure business 

segment alone. This segment covers the transport and treatment of water from a source for use in 

public utility and industry facilities. It also covers provision of transport solutions and equipment 

for removal of water from industrial facilities, construction sites, public infrastructure, and 

utilities in various repair, maintenance, natural disaster, and other emergency circumstances. 

Within this segment, the company is sponsoring our research project on the industrial pump 

rental business line, particularly its operations in the United States.   

The company’s equipment rental business comprises a fleet of around 6,000 units of pumps 

and 1,200 professionals across 5 regions and 47 branch locations in the United States. It 

primarily serves dewatering needs, which involves removal of water from solid material or soil, 

of the construction company, oil, gas, and mining industries as well as public utilities in 

emergency situations. As such, the majority of incoming demands require fast response, and 

potential sales will be lost if relevant equipment is not readily available. In general, the company 

sets an aggressive target to fulfil demand for a turnkey solution in such a situation. 

Each year the company spends around millions of dollars in logistic costs to mobilize its 

rental fleet among the branches in its network of service areas. The iterative distribution effort is 

aimed at primarily providing satisfactory service level to its customers as well as identifying 

rooms for improvement in the dewatering assets’ utilization rate. In a cursory analysis of the 

company’s lost sales record in the most recent year we found that, out of instances with recorded 

reasons, 9% of lost sales were related to lack of equipment availability at a branch, which 

represents 6% lost revenue. If we include lost sales due to competitive reasons, the figures 

balloon to 24% and 36% out of the total number of lost sales instances and the total amount of 

lost revenue respectively.  
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1.2 Problem Statement 

The company is looking for ways to increase utilization of its rental pump fleet in terms of 

original equipment cost (OEC) while at the same time keeping the cost of fleet mobilization as 

efficient as possible. So far, the company has utilized neither a statistical method to forecast 

demand nor a centrally optimized fleet allocation across its branches. 

We identified an improvement opportunity which would propel the company towards a more 

data-driven demand planning and asset management practice. To that end, we propose the 

development of demand forecasting through machine learning models based on historical rental 

sales data and exogenous factors. In addition, a mathematical optimization model to determine 

the most efficient asset movement in each planning period (month) is also developed. Those two 

models are integrated in the final delivery to the company in the form of a decision tool written 

in Python programming language. The tool takes in asset stock data from the most recent month 

and predicted demand for the subsequent month to produce a set of asset allocation decision. The 

methodology to develop this tool is divided into four stages: Data Preparation, Predictive 

Modeling, Optimization Modeling, and Model Integration. Our results show a superior 

prediction performance by a feed-forward neural network model and an efficient allocation 

decision prescribed by the optimization model. Therefore, it is expected that the use of this new 

tool will close the gap between the company’s current and desired future level of operational 

performance and consequently increase its competitiveness 
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2. LITERATURE REVIEW 

2.1 Industrial Equipment Rental Industry and Water Infrastructure 

The scope of this capstone project is the pump rental business of the sponsoring company in 

the United States. A recent industry analysis report (Roth, 2019) lists pump rental as a subset of 

the more general industrial equipment rental industry with a predicted annual growth of 2.3% in 

the 5-year period from 2019. Industrial pumps are among the types of equipment rented by the 

biggest market in the industry, which comprises manufacturers and other heavy industrial 

companies, followed by the construction sector and other sectors, including government and 

institutional clients. The report identifies several general economic indicators that drive demand 

in this industry: prevailing interest rates, construction spending, production level, and consumer 

spending. Oil and gas prices specifically are also identified as drivers of demand because the 

level of energy exploration and extraction activities typically involve a heightened need for 

rented industrial equipment. On top of this, a rising energy price is usually indicative of overall 

growing economic activities across different sectors.  

Another industry analysis report was published by Bluefield Research (2019) and depicts a 

recorded increasing trend of public spending in operations and maintenance of water utilities up 

to 2017 despite a decreasing trend in capital expenditure. The same report also illustrates the 

increasing number of weather-related disasters especially severe storms in recent years, to which 

the industry needs to respond. Reviews of these reports help us prioritize exogenous data to be 

collected and transformed into features in our machine learning models.   

 

2.2 Machine Learning and Mathematical Optimization 

The stochasticity of customer demand is the original and fundamental problem in supply 

chain management. As described in Introduction, the company has largely depended on the 

compartmentalized branch history when it comes to forecasting demand. In response, we propose 

utilizing a more robust data-driven method to improve forecast quality.  

Various machine learning algorithms are increasingly used for numerical business-related 

prediction in a diverse set of industries. Neural networks, a subset of machine learning 

techniques, has especially enjoyed a revival of research interest in recent decades as more 

computing capability has become available (Hardesty, 2017). One of the earliest studies on 

machine learning applications for industrial demand forecasting was reported by Carbonneau et 
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al. (2008). They compared the forecast performance of machine learning algorithms, such as 

neural network and support vector machine, with the more conventional linear regression and 

other time-series methods, using real historical demand data from the Canadian steel foundry 

industry and dummy data from a supply chain simulation. For both datasets, the study showed 

that although machine learning approaches yielded an overall slightly superior forecast 

performance, the result did not differ significantly in a statistical sense from the result of the 

conventional techniques especially linear regression. 

 In the technology sector, Islam et al. (2012) constructed time-series predictive models using 

neural network and linear regression techniques for managing the allocation of computational 

resource in cloud computing industry. They also found that neural network algorithm returned 

better forecast accuracy than linear regression, especially when it was coupled with sliding-

window technique (i.e., the training data used were a dynamic set of consecutive n data points 

prior to data point k and some prediction interval r). Meanwhile, in the energy sector, Maucec 

and Garni (2019) deployed machine learning algorithms to predict oil well production and 

highlight the importance of normalization to improve a model’s predictive performance 

especially when it involves multiple variables with notably skewed distribution.  

Additionally, considering the specific purpose and mostly emergency-related context of 

industrial pump rental market, the item level demand based on company data is noticeably 

intermittent. A conventional technique to forecast demand with such characteristics is based on 

Croston’s method (Croston, 1972), which was subsequently revised based on a proposed 

correction over the estimated demand derivation by Syntetos & Boylan (2001). We also refer to a 

study by Lolli et al. (2017) where Croston’s and Syntetos’ methods are compared against a 2-

layer neural network model for intermittent demand. Based on these works, we decided to 

approach the solution to the first part of our research problem (i.e., the predictive model) by 

exploring and comparing the forecasting performance of both conventional and machine learning 

techniques in the context of our sponsoring company’s pump rental industry segment. 

With a better-grounded demand prediction in place, we will have a clearer direction for how 

to improve the next stage of supply chain operations: distribution. As previously mentioned, the 

company’s current asset allocation decision is mostly siloed among individual branches within 

each region. Equipment is moved from one branch location to another after the actual demand 

arrives. This firefighting mode of asset movement carries with it an inherent risk of lost rental 
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sales because of the time pressure to fulfil demand as well as of lost opportunity to optimize 

transportation cost. We propose, therefore, the integration of demand forecasting with a 

mathematical optimization model to improve allocation efficiency.  

To the best of our knowledge, literature in which machine learning and optimization models 

are deployed consecutively as a unified system is not abundant. In a study by López Lázaro et al. 

(2018) both models are combined to improve the allocation of cash across automated teller 

machines (ATM) in the commercial banking industry. Asala et al. (2017) also deployed a similar 

model architecture to optimize the supply network of shale natural gas extraction. Both studies 

together cover the application of mixed linear, robust, and non-linear programming which use 

output from preceding machine learning models. Therefore, we conclude that this report can 

serve as a novel contribution to the literature on combined machine learning and mathematical 

optimization utilization, particularly in the context of industrial equipment rental industry. 
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3. METHODOLOGY 

The flowchart in Figure 3-1 is a diagrammatic representation of all the major inputs, 

processes, and outputs which form the methodology of this capstone project. This methodology 

was developed in conjunction with the stakeholders from the sponsoring company. Based on a 

series of activities that included site visits and meetings, we clarified together the problem 

statement, scope, and the objective of the project. Subsequent steps in the project can be 

classified into 4 stages: Data Preparation, Predictive Modeling, Optimization Modeling, and 

Model Integration. 
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3.1. Data Preparation 

In this section, we discuss about steps [1] to [3] in the methodology chart which concern the 

various aspects of the data that we received, collected, and used for predictive modeling purposes 

using both traditional and machine learning method. We start with the description and 

exploration of the main demand-related data that we received from the sponsoring company’s 

internal system. Afterwards, we proceed with the description of various external data that we 

inferred to possibly have discernible correlation with the fluctuation of demand based on  the 

literature review and inputs from the company’s management. Finally, we discuss the way we 

extract and prepare trainable features from both internal and external data before feeding the 

train set into each of the predictive model algorithms.      

 

3.1.1. Internal Data 

Historical transaction data were available for extraction from the company’s system and 

consolidated into a single dataset using Alteryx software. Alteryx is an analytics software 

platform used to reduce excessive time spent on data cleaning and preparation. The company 

was also able to provide us with an item code table, branch table, a project tracking report, and a 

detailed customer report. The item code table provides information about the characteristics of 

each item based on its item number, branch table specifies geographical position of each branch, 

project tracking report identified the market classification of each customer, and finally detailed 

customer report provided the billing and address information for every customer. An illustration 

of the internal data general structure can be seen in Figure 3-2. 

 

 

 

 

 

 

 

 

 

 

Transaction 

Figure 3-2 Internal Data Relationship Diagram 

spec 
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We used the field ‘Customer Number’ and ‘Item Number’, from historical transaction data, 

in a join operation with the field ‘Customer Account’, from customer report, and ‘Item Number’, 

from the item code table, to further consolidate all three tables into a single dataset. Before data 

exploration, we filtered the dataset to keep only relevant data. Out-of-scope transaction types 

which were not related to physical item rental activities, such as final sales and service, were 

excluded from the final dataset. We also eliminated negative sales and quantity values, which 

were primarily registered in the system only for credits or return transaction. As per the 

discussion with the company’s stakeholders, we further scoped down our dataset to focus on 

items under the main product family offered by the company across all of its branches. For 

machine learning modeling purpose, we split the resulting transaction data into 2 separate 

datasets. Data from the most recent year were set aside as the test set, it contains 61,578 rows or 

instances which would be used later for model evaluation. The rest of the data form 470,232 

rows or instances and were designated as the training set, which would be used during machine 

learning modeling itself.  

In order to gain a better understanding on the historical behavior of the demand we explored 

the dataset through perspective of demand value distribution, time series pattern, and 

geographical distribution. We observe first that the distribution of item demand values is heavily 

skewed to small positive integer around zero, as can be seen in Figure 3-3 where 95% of the 

values are less than or equal to 2. This pattern indicates an intermittent characteristic of the 

item’s demand overall.  

 

Figure 3-3 Total Actual Demand Distribution 

We further investigate how demand behaves over a time series. As shown in Figure 3-4, 

rental demand seems to display quarterly seasonality in the form of a spike at the end of every 
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quarter. The highest demand among all months occurs in September, which is probably driven by 

the effects of hurricanes typically occurring during that time of the year (National Oceanic and 

Atmospheric Administration, 2020). Yearly, as displayed in Figure 3-5, demand seems to display 

a generally growing trend both since recorded data began. 

 

 

 

 

Geographically, total demand magnitude during the period covered in training set shows 

relatively high variability over the branches, as displayed by Figure 3-6. Some branches stood 

out with significantly higher demand than the others such as branch 1 and branch 19, followed 

by branch 15, 14, 9, 2 if we set an arbitrary threshold of total demand exceeding 10,000 items 

over the years just for exploratory discussion purpose. When we aggregate the demand by 

Figure 3-5 Total Actual Demand Distribution by Year 

Figure 3-4 Total Actual Demand Distribution by Month 
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regional clusters, as displayed in Figure 3-7, based on each branch’s designated state location, 

which comprise the South, Northeast, Southeast, West, and Midwest, we see that overall more 

demand came from the both South and Southeastern part of the country, even though Northeast 

region on its own closely trails the Southern region. 

 

 

 

3.1.2. External Data 

Table 3-1 lists down the external data we collected related to industrial activities from 

Federal Reserve Bank of St. Louis (2019), commodity futures prices from Ycharts (2019) and 

precipitation from National Centers for Environmental Information (NCEI) (2019). We collected 

Figure 3-6 Total Actual Demand Distribution by Branch 

Figure 3-7 Total Actual Demand Distribution by Region 
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these data based on the insights we discuss on Literature Review section regarding the market 

drivers of industrial equipment industry where the sponsoring company operates.  

Table 3-1 List of External Data 

External Data Aggregation Level Source 
Industrial Production Index National FRED 
Industrial Manufacturing National FRED 
Nondurable Goods National FRED 
Durable Manufacturing National FRED 
New Orders - Non-Defense National FRED 
Construction Spending - Sewage National FRED 
Manufacturing New Orders National FRED 
Mining Production Index (ex. Oil and Gas) National FRED 
Total Industry Capacity Utilization Rate National FRED 
Copper Futures National FRED 
Natural Gas Futures Prices National Ycharts 
Crude Oil Futures National Ycharts 
Single Unit Housing Starts National FRED 
ISM PMI Index National FRED 
Rig Count National Ycharts 
Capital Goods New Orders National FRED 
Precipitation State NOAA 
Precipitation Anomaly State NOAA 

 

We calculated the Pearson correlation (R-squared value) among the external data we have 

collected to investigate their potentials as exogenous features as displayed in Table 3-2. Some 

feature pairs indicate a phenomenon called multicollinearity, which occurs when a predictor 

variable is highly linearly related to one or more other predictor variables (here with a threshold 

of 0.8 R-squared value) and can lead to misleading results (Jacquillat, 2019). In order to prevent 

multicollinearity, we exclude Industrial Manufacturing index, Durable Goods Manufacturing, 

and Manufacturing New Orders from the predictive models.  
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3.1.3. Feature Engineering 

Feature engineering is the process of transforming raw input data into input variables or 

features that the predictive machine-learning algorithm can interpret numerically. We deployed 

several methods such as aggregation and logarithm transformations, which we will explain 

further in this section. Figure 3-8 illustrates the summary of feature engineering steps in this 

project before modeling begins. These steps are adapted from the machine learning project 

checklist by Géron (2019). 

 

Figure 3-8 Diagram of Feature Engineering Steps 

In ‘Aggregate’ step, we ensured consistent aggregation levels for each feature. Internal 

demand data are available based on monthly invoice, so aggregation was monthly. Exogenous 

features were mostly already aggregated on monthly basis at the state level for precipitation and 

quarterly for some end-market related variables at national level which we interpolated to a 

monthly basis. This step leads to the determination of prediction period monthly at the item and 

branch level as an appropriate level of aggregation. 

In ‘Clean’ step, we also scoped down the list of items to be included in the prediction model 

using the Pareto Principle where 20% of inputs are usually responsible for 80% of the output. In 

Exogenous Features F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18
Industrial Production Index F1 0.9 (0.6) 0.9 0.3 0.3 0.8 0.7 0.7 (0.6) 0.6 0.4 0.7 0.4 0.6 0.2 0.1 0.1
Industrial Manufacturing F2 0.9 (0.6) 0.8 0.4 0.5 0.7 0.6 0.5 (0.5) 0.5 0.3 0.8 0.4 0.4 0.2 0.1 0.1
Nondurable Goods F3 (0.6) (0.6) (0.8) (0.0) (0.2) (0.4) (0.5) 0.0 0.6 (0.1) 0.2 (0.7) (0.3) 0.0 0.1 (0.1) (0.1)
Durable_Manufacturing F4 0.9 0.8 (0.8) 0.2 0.3 0.7 0.7 0.3 (0.7) 0.4 0.1 0.8 0.4 0.4 0.1 0.1 0.1
New Orders - Non-Defense F5 0.3 0.4 (0.0) 0.2 0.1 0.4 0.1 0.4 (0.1) 0.3 0.4 0.2 (0.0) 0.3 0.3 0.0 0.1
Construction Spending - Sewage F6 0.3 0.5 (0.2) 0.3 0.1 0.2 0.4 0.1 (0.3) (0.0) (0.1) 0.5 0.1 0.0 0.0 0.1 0.1
Manufacturing New Orders F7 0.8 0.7 (0.4) 0.7 0.4 0.2 0.4 0.6 (0.3) 0.5 0.4 0.6 0.5 0.5 0.7 0.1 0.1
Mining Production Index (ex. Oil and Gas) F8 0.7 0.6 (0.5) 0.7 0.1 0.4 0.4 0.1 (0.9) 0.4 0.1 0.6 (0.1) 0.4 (0.1) 0.0 0.0
Total Industry Capacity Utilization Rate F9 0.7 0.5 0.0 0.3 0.4 0.1 0.6 0.1 0.1 0.4 0.5 0.1 0.4 0.6 0.5 0.0 0.1
Copper Futures F10 (0.6) (0.5) 0.6 (0.7) (0.1) (0.3) (0.3) (0.9) 0.1 (0.4) (0.0) (0.6) 0.2 (0.3) 0.2 (0.0) (0.1)
Natural Gas Futures Prices F11 0.6 0.5 (0.1) 0.4 0.3 (0.0) 0.5 0.4 0.4 (0.4) 0.8 0.4 0.0 0.7 0.2 0.0 0.1
Crude Oil Futures F12 0.4 0.3 0.2 0.1 0.4 (0.1) 0.4 0.1 0.5 (0.0) 0.8 0.1 (0.0) 0.5 0.4 0.0 0.0
Single Unit Housing Starts F13 0.7 0.8 (0.7) 0.8 0.2 0.5 0.6 0.6 0.1 (0.6) 0.4 0.1 0.3 0.3 0.0 0.1 0.2
ISM PMI Index F14 0.4 0.4 (0.3) 0.4 (0.0) 0.1 0.5 (0.1) 0.4 0.2 0.0 (0.0) 0.3 0.3 0.3 0.0 0.1
Rig Count F15 0.6 0.4 0.0 0.4 0.3 0.0 0.5 0.4 0.6 (0.3) 0.7 0.5 0.3 0.3 0.3 0.0 0.0
New Orders F16 0.2 0.2 0.1 0.1 0.3 0.0 0.7 (0.1) 0.5 0.2 0.2 0.4 0.0 0.3 0.3 0.0 0.1
Precipitation F17 0.1 0.1 (0.1) 0.1 0.0 0.1 0.1 0.0 0.0 (0.0) 0.0 0.0 0.1 0.0 0.0 0.0 0.6
Precipitation Anomaly F18 0.1 0.1 (0.1) 0.1 0.1 0.1 0.1 0.0 0.1 (0.1) 0.1 0.0 0.2 0.1 0.0 0.1 0.6

Table 3-2 Correlation Matrix of Potential Exogenous Features 
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this specific case, we found that during the most recent 3 years, 375 out of 3,383 items (i.e., 

around 10% of total unique items) accounted for 80% of the sales. Based on this observation, for 

the whole dataset which covers longer periods, we included 723 items in the demand model 

which make up approximately 90% of sales. Figure 3-9 illustrates the cumulative percentage of 

total sales quantity against the number of unique items for the Pareto analysis. Further 

exploration on demand magnitude also brought the total number of relevant branches included in 

the modeling to 41 branches.  

 

Machine learning algorithms cannot interpret categorical data, therefore, in step ‘decompose’ 

we transformed categorical variables into numerical variables using several encoding methods. 

Label encoding assign a unique numerical value to each class in the category. We used this 

technique in Linear Regression and Decision Tree-based models (Random Forest and XG-

Boost). For example, the regions, instead of using Northeast, Southern, West, etc., are encoded 

as 1, 2, 3,…,7  under region column. We also applied a one-hot encoding method, whereby in a 

vector of binary values (0 or 1) of fixed length and order, according to the categorical class size 

and order, a category is represented by a value of 1 while the other vector element stays 0. For 

example, a category of value 2 within a category class of [1,2,3] is encoded as [0,1,0]. One-hot 

encoding is applied in the neural networks model for categorical data Month and the breakdown 

featurization of information in the item number. 

For step ‘transform’, we implemented logarithmic transformation on the sales quantity data 

and created time series features. As shown in Figure 3-10, the distribution of sales quantity at the 

item-branch level are skewed toward the smaller values. Particularly, for linear regression, 
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random forest, and XG-boost models we did a log transformation on item-branch sales quantity. 

Logarithmic transformation helps to handle skewed data by creating a more normal distribution, 

and it also decreases the effect of outliers (see Figure 3-11) which depicts the spread of sales 

quantity after the logarithmic transformation. The range of the data is shorter, from 0 to 120 to 0 

to 14, and the distribution is more evenly distributed across the range 

 

 

      Figure 3-11 Distribution of Sales Quantity after Log. Transformation 

To identify time-series features, like trend and seasonality, we created and tested a list of 

features as shown in Table 3-3. 

Table 3-3 Time-series Features 

Time-series Features Definition 
Non_Zero_Demand_Intervals Running count of consecutive periods of demand greater than zero 

Cumulative_Zeros Running count of consecutive periods of demand greater than zero 
Avg_Sales_L3M Average sales quantity for the last 3 months 
Avg_Sales_L6M Average sales quantity for the last 6 months 
Avg_Sales_L9M Average sales quantity for the last 9 months 

Average_Sales_LTM Average sales quantity for the last 10 months 
P1Y_Month Sales quantity at the same month in the previous year 
P2Y_Month Sales quantity at the same month in the previous 2 years 

Previous_Month Sales quantity in previous month 
Previous_2Month Sales quantity in previous 2 months 
Previous_3Month Sales quantity in previous 3 months 

YoY_Change_Avg_Sales_LTM 
Ratio between average sales quantity for the last 10 months at current 
year relative to last year 

Lastly, in the ‘Scaling’ step, we map features with numerical values to different scales. For 

the K-means clustering, we normalized features with numerical values relative to their minimum 

Figure 3-10 Distribution of Sales Quantity before Log. Transformation 
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and maximum range (i.e., MinMax scaling). This estimator scales each feature individually, so 

the given range is between zero and one. In neural networks model, data are scaled for feature 

size and variations which are part of the breakdown featurization of information contained in the 

item number, and feature lat and long which represent the latitude and longitude of branches and 

are used as features instead of branch number. For all other numerical features in the neural 

networks model, the standardization or standard scaling is used. We refer to Géron (2019) for 

both of these scaling methods.  

 

3.2. Predictive Modeling 

In this stage, we enter the modeling part (step [4] to [7] in the Methodology flowchart, Figure 

3-1) of the project starting with K-means clustering which is a form of unsupervised learning. As 

an unsupervised learning algorithm, in K-means clustering there is not a dependent variable to 

predict (Géron, 2019). The aim is instead to create groups of similar data points only for 

exploratory purpose. For demand prediction, we started with using Revised Croston’s method as 

the conventional forecasting method for intermittent data. Subsequently, we used Python to 

deploy several supervised machine learning algorithms, where historical target value in the 

training data exist. The machine learning algorithms involved are: Least Square Linear 

Regression, Decision Tree Models (Random Forest and Gradient Boosting), and Feed-forward 

Neural Networks. In comparing the performance of the predictive models, we chose to use Mean 

Squared Error (MSE) which is defined as follows, 

𝑀𝑆𝐸 =
∑ ൫ 𝛿௜ − 𝛿መ௜൯

ଶ
  ௡

௜ୀଵ

𝑛
(1) 

where 𝑛 represents the total number of data points,  𝛿௜ represents actual demand, and 𝛿መ௜ 

represents the predicted demand. MSE formulation allows us to penalize large error, due to the 

squaring, while permitting small error values to avoid training set overfitting during the 

modeling. We did not include Mean Average Percentage Error (MAPE) as performance criteria 

due to the sparse actual demand values. As displayed in Figure 3-3, over 70% of data points have 

actual demand value of 0 (zero), in practice this means MAPE can only be calculated for less 

than 30% of the historical data points, which is obviously not representative of the whole 

demand pattern. For additional external reference, Géron (2019), for example, also uses MSE in 

various implementation of regression models in his work.  
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3.2.1. Revised Croston’s Method 

Based on our observation during data preparation, demand pattern seems to be intermittent. 

We therefore choose to start with Croston’s time-series forecast method for the conventional 

approach. We refer to the exposition by Silver et al. (2016b) in operationalizing the original 

Croston’s method with revision proposed by Syntetos & Boylan (2001). Forecasted demand for 

period t+1 or 𝛿መ(௧ାଵ) estimated at the end of period t is defined as follows, 

𝛿መ (௧ାଵ) =
�̂�(௧)

𝑛ො(௧)𝑐௡ො(೟)ିଵ
(2) 

where �̂�(௧) is the average demand size estimated at the end of period t, 𝑛ො(௧) is the estimated 

period interval from the most recent non-zero demand , and c is a constant we set to be equal to 

100 in this implementation. In addition,  �̂�(௧) and 𝑛ො(௧) are updated with a smoothing factor 𝛼 

where 0 ≤  𝛼 ≤ 1 each time actual non-zero demand occurs: 

�̂�(௧) = 𝛼𝛿(௧) − (1 − 𝛼)�̂�(௧ିଵ) (3) 

𝑛ො(௧) = 𝛼𝑛(௧) − (1 − 𝛼)𝑛ො(௧ିଵ) (4) 

where 𝛿 and 𝑛 is actual demand and period interval from the most recent non-zero demand.  

 

3.2.2. Least Squares Linear Regression 

An interpretable and straightforward model is the least-square linear regression. This method 

works by finding a set of coefficient values (𝐵ଵ) for the independent variable (𝑥௜) and offset 𝐵଴ 

which minimizes the square error (𝑒௜) of the actual historical values of the dependent variable 

(𝑦௜) against the prediction results, as represented in equation (5). Linear regression is used 

primarily in a situation when there is inability to access nonlinear relationships (Lee & Shin, 

2020). 

𝑦௜ =  𝐵଴ + 𝐵ଵ𝑥௜ + 𝑒௜ (5) 

 

3.2.3. Decision Tree Models (Random Forest and Gradient Boosting) 

Random Forest and Gradient Boosting are a regression and classification tree algorithms. 

Decision trees create maps of questions about predictor variables to determine the final output. 

The decision tree model in this project is built and trained using the Scikit-learn library in 

Python which uses what is called Classification and Regression Tree (CART) algorithm (Géron, 

2019). As such, the model comprises a series of nodes, each of which has a threshold value and 
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splitting binary branches, and leaves which are terminal nodes with no further branching. The 

first node is called the root node which then branches out to the subsequent depth or level with 

leaves or another branching node, which is termed child node or internal node. Figure 3-12 

illustrates the structure of a decision tree model for clarity of model representation. Naturally for 

demand prediction purpose, the model is designed to fulfil regression task  

Let us define the set of training samples {൫𝑥(௜), 𝑦(௜)൯, 𝑖 = 1, … , 𝑡} with input feature vectors 

𝑥 ∈ ℝ௡ and targets 𝑦 ∈ ℤஹ଴ (non-negative integers). We build a decision tree where at each 

node, a set of training samples 𝑆ௗ,௠ is split into 2 subsets at the subsequent depth based on the 

splitting rule [௫ೕஸఏ೏,೘] where 𝑗 ∈ {1, … , 𝑛} is an index of an element of input feature vector 𝑥 

used as predictor and 𝜃ௗ,௠ ∈ ℝ is a threshold value determined for 𝑥௝ at node 𝑚 on depth 𝑑. If 

we refer to the decision tree illustrated in Figure 3-12, at the root node for example, each training 

instance 𝑖 is moved to the leaf on the left at depth 1 for all 𝑖 where 𝑥௝
(௜)

≤ 𝜃଴,ଵ is true ( ) and to 

the child node on the right for all 𝑖 where 𝑥௝
(௜)

≤ 𝜃଴,ଵ is false ( ). Note that within and across 

depth, a different 𝑗 might be used by different nodes. The split then continues down to a certain 

depth D which contains only leaves. 

There are some notable attributes associated with the set at each 𝑛𝑜𝑑𝑒ௗ,௠ which contribute to 

the way prediction is optimized. |𝑆| represents the number of samples in the set, 𝜇 represents the 

𝑥௝ ≤ 𝜃଴,ଵ  
𝑚𝑠𝑒଴,ଵ 
ห𝑆଴,ଵห 
𝜇଴,ଵ  

 

𝑚𝑠𝑒ଵ,ଵ 
ห𝑆ଵ,ଵห 
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𝑥௝ ≤ 𝜃ଵ,ଶ 
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Figure 3-12 Decision Tree Structure Illustration 
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average value of 𝑦 (i.e., ∑
௬(೔)

|ௌ| ௬(೔)∈ௌ ) and finally 𝑀𝑆𝐸 is simply the mean square error as 

formulated in equation (1) where in this case  𝛿௜ = 𝑦(௜), 𝛿መ௜ = 𝜇, and 𝑛 = |𝑆|. For every leaf 

node, 𝜇 therefore represents the predicted value for each input instance 𝑥(௜) that traverses the tree 

and eventually ends up there. 

The CART algorithm trains the decision tree model by looking for a pair of 𝑥௝ and 𝜃 at each 

node such that the loss function 𝐽(𝑥௝ , 𝜃) is minimized. If we define notational index for the child 

nodes of a 𝑛𝑜𝑑𝑒ௗ,௠ as 𝑛𝑜𝑑𝑒ௗ,௠, which contains all instances 𝑖 where 𝑥௝
(௜)

≤ 𝜃ௗ,௠ is true, and 

𝑛𝑜𝑑𝑒ௗ,௠ for all 𝑖 where 𝑥௝
(௜)

≤ 𝜃ௗ,௠ is false, then the loss function is defined as follows, 

𝐽൫𝑥௝ , 𝜃ௗ,௠൯ =
ห𝑆ௗ,௠ห

ห𝑆ௗ,௠ ห
𝑚𝑠𝑒ௗ,௠ +

ห𝑆ௗ,௠ห

ห𝑆ௗ,௠ ห
𝑚𝑠𝑒ௗ,௠ (6) 

In general, better prediction performance is achieved through an aggregate or ensemble of 

multiple prediction models instead of just one (Géron, 2019). We therefore implement two forms 

of ensemble decision tree models in this project: Random Forests and Gradient Boosting. In 

Random Forest, 50 decision trees are initially involved in training a subset of randomly drawn 

training samples and input features which differs for each tree. The final prediction is simply the 

mean of all values predicted by the trees. During training for Random Forest, we also tune the 

following regularization hyperparameters to search for the optimal architecture within the 

specified search space: 

 Maximum number of features subset  : (3,8] 

 Maximum depth (D)   : (6,11] 

 Minimum |𝑆 | in a node before split : (5,15] 

 Minimum |𝑆 | in a leaf   : (5,15] 

 Bootstrap     : {0,1} 

Note that hyperparameter ‘bootstrap’ specifies whether random sampling of the training set is 

done with replacement when Bootstrap is True or without replacement otherwise.  

In contrast to Random Forest where multiple decision trees are trained in parallel, Gradient 

Boosting is an iterative process and does not aggregate multiple models. The trees are sequential 

models and do not complement each other. The algorithm draws from random training samples, 

uses them to fit a tree, subtracts the prediction from the original data, and creates a new tree 

(Nawar & Mouazen, 2017). The explanation for gradient boosting algorithm is as follows, 
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1 − 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑓଴(𝑥) = arg 𝑚𝑖𝑛ఒ ෍ 𝐿 

ே

௜ୀଵ

൫𝑦௜, 𝜆൯ (7) 

 For m=1 to M: 

a) For i = 1, 2…, N compute 

𝑟௜௠ = − ቎
𝜕𝐿 ቀ𝑦

𝑖
, 𝑓(𝑥𝑖)ቁ

𝜕𝑓(𝑥𝑖)
቏ (8) 

b) Fit a regression tree to the targets 𝑅௜௠ 

𝑅௜௠, 𝑗 = 1,2 … . 𝐽௠ (9) 

c) For j = 1, 2…, 𝐽௠ compute 

𝜆௝௠ = arg 𝑚𝑖𝑛ఒ ෍ 𝐿 

ே

௜ୀଵ

൫𝑦௜, 𝑓௠ିଵ(𝑥௜) +  𝜆 ൯ (10) 

 

d)  

Update 𝑓௠(𝑥) = ቌ 𝑓௠ିଵ(𝑥) +  ෍ 𝜆௝௠

௝

  ቍ . (11) 

The first line (a) of the algorithm initializes the optimal constant model, which is just single 

terminal node tree. The components of the negative gradient computed at line (b) are the 

residuals r. Learning rate 𝜆 parameterizes the spilt variables and spilt points at the terminal nodes 

in (c). At each iteration M, the algorithm solves for the optimal loss function and adds to the 

current expansion current expansion 𝑓௠ିଵ(𝑥) in (d). Standard parameters are the number of 

iterations N, the number of trees M, and the sizes of each of the trees 𝐽௠. 

  

3.2.4. Feed-forward Neural Networks 

We built a feed-forward neural networks (FNN) with a single hidden layer which is proven to 

yield superior forecast performance for intermittent demand compared to traditional method in a 

study by Lolli et al. (2017). Since demand forecasting is a regression task, we only need one 

neuron with rectified linear unit (ReLU) as the activation function at the output layer. ReLU 

function outputs any non-negative input as is and zero for the negative one. This makes sure that 
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the output of the model will always be at least zero. For visual reference, a graphical overview of 

the FNN architecture is displayed in Figure 3-13. 

 

Géron (2019) specifies typical hyperparameter architecture for regression FNN which we use 

in this model including number of neurons per hidden layer (at least 10), activation function for 

hidden unit (ReLU), loss function (MSE), as well as learning rate and regularization parameter 

which will be explained later. We also refer to the same literature for practical coding 

approaches using NumPy, Pandas, Scikit-learn, and TensorFlow-Keras libraries in Python. All 

the programming was run in a laptop with 16GB of RAM and Windows 10 Home (64-bit) 

operating system. The model’s mathematical representation, which is discussed in the following 

paragraphs, is an adaptation of FNN backpropagation explanation in the lecture notes of 

Jaakkola & Barzilay (2016) of the Massachusetts Institute of Technology (MIT). 
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Figure 3-13 Feed-Forward Neural Network Architecture 
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Let us define again this time a given set of 𝑡 training samples {൫𝑥(௜), 𝑦(௜)൯, 𝑖 = 1, … , 𝑡} with 

input vectors 𝑥 ∈ ℝ௡ and targets 𝑦 ∈ ℤஹ଴ (non-negative integers). For each input 𝑥௥௔௪
(௜)

 in the raw 

training samples, we apply a featurization function 𝜙 such that 𝜙ቀ𝑥௥௔௪
(௜)

ቁ = 𝑥(௜) = [𝑥ଵ
(௜)

, … , 𝑥௡
(௜)

] 

which corresponds to the neurons in the input layer.    

In the hidden layer, the output of each of the 𝑚 neurons is calculated with 2 steps represented 

in equations (12) and (13). In equation (12) 𝑊௝,௞ represents the multiplier weight of input neuron 

𝑥௝ to hidden neuron  𝑧௞; while 𝑊଴௞ represents the bias parameter. In equation (13) the resulting 

weighted sum of 𝑛 input neurons is then passed through the ReLU function 𝑓(𝑧௞). 

𝑧௞ = ෍ 𝑥௝𝑊௝,௞ + 𝑊଴௞  

௡

௝

(12) 

𝑓(𝑧௞) = max {0, 𝑧௞} (13) 

In the output layer, the single neuron 𝑧, in turn, takes in the weighted sum of 𝑚 hidden nodes 

activation 𝑓(𝑧௞). This is  represented by equation (14), where 𝑉௞ is the weight for each hidden 

neuron 𝑘 and 𝑉଴ is the scalar bias. The value of 𝑧 is then passed through the ReLU function 

𝐹(𝑥; 𝜃, 𝜃଴) in equation (15) for the final prediction output. Moreover, 𝜃 and 𝜃଴ represent the 

trainable parameters in the model where 𝜃 = {𝑊௝,௞ , 𝑉௞} and 𝜃଴ = {𝑊଴௞ , 𝑉଴}. 

𝑧 = ෍ 𝑓(𝑧௞)𝑉௞ + 𝑉଴  

௠

௞

(14) 

𝐹(𝑥; 𝜃, 𝜃଴) = max{0, 𝑧} (15) 

The model is then trained to find a set of parameters 𝜃 such that the following average loss 

function over the training samples is minimized: 

𝐽(𝜃) =
1

𝑡
෍ 𝐿𝑜𝑠𝑠 ቀ𝑦(௜)𝐹൫𝑥(௜); 𝜃൯ቁ 

௧

௜

=
1

𝑡
෍ ൤ቀ𝑦(௜) − 𝐹൫𝑥(௜); 𝜃൯ቁ

ଶ

+
𝜆

2
‖𝜃‖ଶ൨ 

௧

௜

(16) 

Note that  
ఒ

ଶ
‖𝜃‖ଶ is the ridged regression-based regularization term added to penalize large 

weight magnitude (Géron, 2019) where 𝜆 ∈ ℝவ଴. The lost function for 𝜃଴ is similar but without 

the regularization term.  

We chose stochastic gradient descent (SGD) algorithm for loss minimization due to its faster 

computational time especially when the training set grows larger over time (Géron, 2019). We 

begin SGD by finding the partial derivatives of the loss function with respect to the parameters 
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for each of the randomly ordered training sample(𝑥(௦), 𝑦(௦)), as shown in equations for weights 

(18) - (21). Note that we use a representation of Iverson bracket where:  

⟦∙⟧ = ൜
1, 𝑖𝑓 𝑇𝑟𝑢𝑒
0, 𝑖𝑓 𝐹𝑎𝑙𝑠𝑒

(17) 

 

𝜕

𝜕𝑊௝,௞

𝐿𝑜𝑠𝑠 ቀ𝑦(௦)𝐹൫𝑥(௦); 𝜃൯ቁ = ൥
𝜕𝑧௞

(௦)

𝜕𝑊௝,௞

൩ ൥
𝜕𝑓൫𝑧௞

(௦)
൯

𝜕𝑧௞
(௦)

൩ ൥
𝜕𝑧(௦)

𝜕𝑓൫𝑧௞
(௦)

൯
൩ ቈ

𝜕𝐹൫𝑥(௦); 𝜃൯

𝜕𝑧(௦)
቉ ൤

𝜕

𝜕𝐹(𝑥(௦); 𝜃)
𝐿𝑜𝑠𝑠 ቀ𝑦(௦)𝐹൫𝑥(௦); 𝜃൯ቁ൨ (18) 

 

                                 = ൣ𝑥௝൧ቘ𝑧௞
(௦)

> 0቙[𝑉௞]൳𝑧(௦) > 0൷ൣ2(𝐹൫𝑥(𝑠); 𝜃൯ − 𝑦(𝑠))൧ + 𝜆𝑊௝,௞ (19) 

 

𝜕

𝜕𝑉௞
𝐿𝑜𝑠𝑠 ቀ𝑦(௦)𝐹൫𝑥(௦); 𝜃൯ቁ = ൥

𝜕𝑧(௦)

𝜕𝑉௞
(௦)

൩ ቈ
𝜕𝐹൫𝑥(௦); 𝜃൯

𝜕𝑧(௦)
቉ ൤

𝜕

𝜕𝐹(𝑥(௦); 𝜃)
𝐿𝑜𝑠𝑠 ቀ𝑦(௦)𝐹൫𝑥(௦); 𝜃൯ቁ൨ (20) 

 

                               = ቂ𝑓ቀ𝑧𝑘
(𝑠)

ቁቃ ൳𝑧(௦) > 0൷ൣ2(𝐹൫𝑥(𝑠); 𝜃൯ − 𝑦(𝑠))൧ + 𝜆𝑉௞ (21) 

 

Each parameter is then updated with the opposite “direction” of the derived gradient, with 𝜂 ∈

ℝவ଴ representing the learning rate, as represented in equation (22) and (23). 

                        𝑊𝑗,𝑘 ← 𝑊𝑗,𝑘 − 𝜂(ൣ𝑥௝൧ቘ𝑧௞
(௦)

> 0቙[𝑉௞]൳𝑧(௦) > 0൷ൣ2(𝐹൫𝑥(𝑠); 𝜃൯ − 𝑦(𝑠))൧ + 𝜆𝑊௝,௞) (22) 

 

                        𝑉𝑘 ← 𝑉𝑘 − 𝜂 ቀቂ𝑓ቀ𝑧𝑘
(𝑠)

ቁቃ ൳𝑧(௦) > 0൷ൣ2(𝐹൫𝑥(𝑠); 𝜃൯ − 𝑦(𝑠))൧ + 𝜆𝑉௞ቁ (23) 

Based on the model formulation, we also applied grid search approach using Scikit-learn with 

5-fold cross validation to tune the following hyperparameters in a search for a more optimum 

architecture:  

 Number of hidden neurons  : {10,11,12} 

 Learning rate (𝜂)   : {0.1, 0.01, 0.001} 

 Regularization parameter (𝜆) : {0.01, 0.001, 0.0001} 

Finally, we analyzed feature importance of the resulting model using connection weight 

method as is operationalized in a study by Olden & Jackson (2002) and showed to be more 

accurate and explanatory than the more widely used Garson’s method (Olden et al., 2004). In the 
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connection weight approach, the importance of each feature 𝑗 or 𝐼𝑥௝  is simply represented as 

follows: 

𝐼𝑥௝ = ෍ 𝑊௝,௞𝑉௞

௠

௞ୀଵ

(24) 

 

3.3. Mathematical Optimization Modeling 

This stage covers steps [8a] and [8b] in the methodology flowchart where we develop a 

solution to optimize the second problem of this capstone project which concerns the company’s 

asset movement. Despite their numbering, the steps in this stage were performed in parallel with 

the Predictive Modeling stage because the structure of predictive model output had been defined 

at the conclusion of the Data Preparation stage. For building and running the model, we used a 

commercial optimization solver engine Gurobi Optimizer version 9.0.0 build v9.0.0rc2 on 

Python 3 interface and web-based Jupyter Notebook platform.  The solver was run in the same 

computer hardware that we used for modeling FNN.  

The following sub sections contain several mathematical formulations written in the 

following notational style and convention. We use uppercase Latin letters to denote major 

elements of the objective function and lowercase ones for parameters and the decision variable. 

Latin letters written in subscript represent categorical indices or class, while we place the 

chronological time period index inside brackets in superscript. We use Greek letters to denote 

any external input parameters that affect the value of parameters in the optimization model. The 

main and recurring symbols are as follow: 

 𝑡: time period index (month); t ∈ {t, t + 1, … , n} 

 𝑘: item index; k ∈ {0,1, … , K};  K = 723 

 𝑖: origin branch index; 𝑖 ∈ {0,1, … , I}; I = 47, including dummy origin 𝑖 = 0 

 𝑗: destination branch index; 𝑗 ∈ {1, … , J}; J = 46 

Based on this convention,  𝑥௞௜௝
(௧)  denotes the number of pumps type 𝑘 moved from branch 𝑖 to 

branch 𝑘, at time period 𝑡; and represents the decision variables in our mathematical 

optimization model.  
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3.3.1. Objective Function 

As with any optimization model, we started with [8a] Objective Function Formulation. Given 

the context of this stage, the objective function is defined as the total cost incurred in the 

allocation of pumps among the company’s branches within a planning period. Expert consensus 

has identified the types of costs which are relevant for inventory management problem as unit 

variable cost, inventory carrying cost, ordering or setup cost, and stockout cost (Silver et al., 

2016a). Within the scope of optimization model in this project, transportation cost is the most 

relevant variable cost. We therefore define the objective function of our optimization model as 

follows: 

min ෍ ෍ ෍ ෍ 𝑐௞௜௝
(௧)

 𝑥௞௜௝
(௧)

௝௜௞௧

(25) 

where 𝑐௞௜௝
(௧)  is the variable transportation cost for each pump item 𝑘 transported from branch 𝑖 to 

branch 𝑘 at time period 𝑡. Transportation cost of item from dummy origin branch 0 to any 

destination branch will be artificially set to be always the most expensive of all origins to make 

the model utilize supply from the branch only as the last resort. Although intuitively we use 

values in dollar term for this parameter, based on data availability and the company’s preference 

to compare year-to-year allocation performance from a purely operational efficiency perspective, 

it was decided to use distance (miles) between branches as the variable transportation cost. We 

collected estimate latitude (𝐿𝐴𝑇) and longitude (𝐿𝑂𝑁) in radian for each branch location and 

calculated the approximate distance of each pair of branch (𝐷௜௝) in miles using the great-circle 

distance formula: 

𝐷௜௝ = 3959 arccos (sin 𝐿𝐴𝑇௜ sin 𝐿𝐴𝑇௝ + cos 𝐿𝐴𝑇௜ cos 𝐿𝐴𝑇௝cos (𝐿𝑂𝑁௜ − 𝐿𝑂𝑁௝)) (26) 

  

3.3.2. Constraints 

The constraints are defined as follows, 

𝑠௞଴
(௧)

= max ቌ0, ෍ ෍ 𝑑௞௝
(௧)

௜

− 𝑠௞௜
(௧)

௝

ቍ , ∀ 𝑖 > 0, 𝑘, 𝑡 (27) 

෍ 𝑥௞௜௝
(௧)

௜

≥ 𝑑௞௝
(௧)

, ∀ 𝑘, 𝑗, 𝑡 (28) 
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෍ 𝑥௞௜௝
(௧)

௝

≤ 𝑠௞௜
(௧)

, ∀ 𝑘, 𝑖, 𝑡 (29) 

෍ 𝑥௞௜௝
(௧)

௞

≤ 𝑙௜௝
(௧)

, ∀ 𝑖, 𝑗, 𝑡 (30) 

𝑥௞௜௝
(௧)

∈ ℤஹ଴, ∀ 𝑖, 𝑗, 𝑡 (31) 

Constraint (27) specifies an artificial item supply quantity assigned to dummy origin branch 

0 in the case of total item net demand exceeding total item net supply, where the value is the 

difference between the two. This enables the model to be always computationally feasible as 

well as allowing the stockout distribution to be interpreted by looking at all items transported 

from dummy origin branch 0 in the result. 

Constraint (28) restricts the number of certain pump k allocated to each destination branch j 

to be at least equal to the net demand 𝑑௞௝
(௧) which is calculated at the beginning of period t 

according to the following step: 

𝑑௞௝
(௧)

= maxቀ0, 𝛿መ௞௝
(௧)

− 𝜉௞௝
(௧ିଵ)

ቁ (32) 

𝛿መ௞௝
(௧)represents the predicted demand for a period while 𝜉௞௝

(௧ିଵ) denotes the level of stock as 

recorded at the end of the preceding period. In effect, the formula returns 0 if predicted demand 

is lower than the recorded stock since it means that there is no need to transport any additional 

item to that branch. The predicted demand parameter comes from the output of predictive model 

while the item stock level parameter comes from the actual stock record which is updated at the 

end of each planning period.   

Constraint (29), on the other hand, restricts the number of item which is sent out of an origin 

branch to be no more than the net supply parameter 𝑠௞௜
(௧). As with net demand, this parameter is 

also calculated using external input parameters, as follows:  

𝑠௞௜
(௧)

= maxቀ0, 𝜉௞௝
(௧ିଵ)

− 𝛿መ௞௝
(௧)

ቁ , ∀ 𝑖 > 0 (33) 

which means that an item is allowed to be transported out of a branch only when the predicted 

demand is lower than the recorded stock level. 

Constraint (30) enforces a limit on the number of transported items on each lane (𝑙௜௝
(௧)

). 

Finally, constraint (31) requires the decision variable to be non-negative integer.  
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3.4. Model Integration 

After the predictive models were evaluated and the best performing one is selected, it was 

then integrated with the MILP model as a unified decision tool (step [9] and [10] in the 

methodology flowchart). As both models were developed using the same Python programming 

language, they can be easily integrated in one platform which, for simplicity and codes 

accessibility, takes form of a Jupyter notebook. Figure 3-14 illustrates the working diagram of 

how the integrated decision tool operates. The selected prediction model will automatically feed 

demand prediction result to the MILP model, with a possibility of intervention for manual 

adjustment if deemed appropriate. The subsequent MILP model takes in additional data as 

parameters to run the optimization iterations which consist of Lane Capacity, Transportation 

Cost, and Item Stock per Branch. The final output of the whole tool is a table prescribing the 

most efficient asset allocation under the given parameters. Consistent with the forecast period in 

the predictive model, we design this tool to be used in a monthly basis. We attach a more 

technical user guide to run and maintain this tool in Appendix A.  
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Figure 3-14 Working Diagram of Integrated Decision Tool 
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4. RESULTS AND DISCUSSION 

In this section we discuss the results of predictive and mathematical optimization models as 

discussed in Methodology. 

4.1. Clustering 

Each item was categorized into one four categories for a total of 639 items based on year 

over year change in sales, percentage of sales by industry, and percentage of sales in each region. 

We determined clustering attributes from conversations with executives at the Company. 

Demand profiles are segregated based on geography and industry application. We included 

changes in sales for the past three years to improve the identification of trends in the forecasting 

algorithms. To determine the number of clusters, we used the elbow method (Kuraria et al., 

2018) with result displayed in Figure 4-1. Within-Cluster-Sum-of Squares (WCSS) increases 

with the number of clusters; however, the rate at which WCSS's increases drops after a certain 

number of clusters. By selecting the number of clusters linked to the elbow point, the groups are 

more compact and meaningful. Using this approach, we decided on four clusters. Table 4-1 

shows the results of the clustering. Each geographic region influences a cluster. For example, 

Cluster 2 consists of the majority of items with sales in the West Region, while Cluster 3 consists 

of the Northeast Region. We incorporated clusters as a feature in the initial forecasting 

algorithms of decision tree-based models; however, in the final model, we excluded clusters due 

to their insignificance as they were ranked in the bottom quartile among all features. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4-1 Clustering Elbow Method Result 
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Table 4-1 Clustering Result 

Attributes Cluster 1 Cluster 2 Cluster 3 Cluster 4 
Number of Items 158  46  192  240  

Changes in Sales: Year 1-2 2,300,788  (255,568) 1,281,701  1,866,857  
Changes in Sales: Year 2-3 2,694,295  2,559  2,843,932  2,269,887  
Changes in Sales: Year 3-4 23,132  222,329  1,292,079  2,315,172  
% of sales in Construction 40% 42% 40% 43% 

% of sales in Industry 1 9% 4% 7% 7% 
% of sales in Industry 2 16% 12% 6% 16% 
% of sales in Industry 3 14% 16% 17% 19% 
% of sales in Industry 4 16% 15% 19% 8% 

% of sales in Other Industries 5% 10% 10% 6% 
% of sales in Region I 5% 3% 5% 13% 
% of sales in Region II 8% 4% 71% 14% 
% of sales in Region III 10% 6% 10% 54% 
% of sales in Region IV 73% 3% 8% 13% 
% of sales in Region V 4% 85% 5% 6% 

 

4.2. Predictive Model 

In this section we present the summary of performance comparisons of all the predictive 

models that have been built followed by a more detailed discussion on the best performing model 

and its integration with the mathematical optimization model.  

  

4.2.1. Models Evaluation and Selection 

As mentioned in Methodology, we used mean square error (MSE) on both the train set and 

test set as the primary method for evaluating the performance of the four predictive models. The 

summary of the MSE result is displayed in Table 4-2. Neural Networks and XG-Boost models 

yield visibly superior performance than the rest of the algorithms.  

Table 4-2 Mean Squared Error of Predictive Models 

Model 
Trainset 

MSE 
Testset 
MSE 

Feed-forward Neural Network 0.56 0.45 
XG-Boost 0.49 0.50 

Revised Croston's 1.22 1.15 
Random Forest 1.97 1.42 

Linear Regression 2.14 1.55 
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During our evaluation of the models, we also considered other factors such as ease of 

implementation, interpretability, and computation time. Although computation time increases for 

more complex algorithms, like the FNN model, we believe the gap in the performance of the 

model outweighs all other factors. In Figure 4-2, we analyzed the results in more detail, giving 

extra attention to the two best-performing algorithms to determine the most suitable model for 

the company. The FNN model excels at predicting spikes in demand, while the other model's 

predictions are much smoother. This phenomenon, along with its overall MSE score, makes the 

FNN the best model for the Company. In Introduction, we discuss about the lost sales related to 

the lack of equipment available at each branch. To prevent lost sales, the Company will be better 

suited to use the FNN model, because the model will better account for demand irregularities. In 

the next section, we will provide detailed results of the FNN model. 

 

 

4.2.2. Feed-forward Neural Network (FNN) 

FNN hyperparameters tuning was performed to find the combination of number of hidden 

neurons, λ, and η which yields the lowest MSE score. Given the search space of 3×3×3=27 

combinations, 5-fold cross validation, and maximum iterations of 50 epochs over the training set, 

the hyperparameters tuning and parameters training together ended up taking a computation time 

of about 48.8 hour. The best model returns a mean validation MSE of 0.56 with 10 neurons in 

the hidden layer, η=1e-3, and λ=1e-4. Figure 4-3 displays the mean validation MSE over the 

different combinations of tested parameters with the red marker signifying the best result. A 

more detailed set of records per combination can be seen in Appendix B. 

Figure 4-2 Predictive Model Comparison 
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When the best model is evaluated using the test dataset, which will be discussed later in this 

section, it returns an even lower MSE of 0.45. This low test MSE indicates an effective use of 

regularization term during training. Given the sufficiently low MSE value and the 

computationally expensive process of hyperparameter tuning, model training can be run in a 

yearly basis to keep the model up to date with a more strategic long-term change that might 

happen in demand behavior. 

We use the connection weight approach as explained in the methodology section to interpret 

how each input feature contributes to the output of the FNN model. The connection weight is the 

summed product of input-to-hidden and hidden-to-output weights for each input feature. For 

brevity, Figure 4-4 and Figure 4-5 display features with absolute connection weight values of at 

least one which together represent 45% of total input features (30 out of 66) and 81% of the total 

sum of absolute connection weight values. Detailed tables containing all the connection weights, 

weights, and biases of the FNN model can be seen in Appendix C and D. For clarity of 

discussion, each of the feature mentioned in the following paragraphs will be written in a 

different font style. 

 

 

 

Figure 4-3 Mean Validation MSE of Different Hyperparameters Combination 
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It is important to note that weights and connection weights in an FNN, as with many other 

forecast or predictive models, should not be interpreted as magnitude of causal relationship 

between feature input and output. They are, however, can be used to interpret how predicted 

demand is extrapolated from the interaction of feature inputs in the model. Among the prominent 

features represented in the FNN connection weights charts above, only three of them are 

exogenous features, namely Precipitation and Copper which correlate positively with 

output, and Oil which correlates negatively. Given the nature of the products involved in the 

business segment, which are water pumps, it is reasonable to see that more precipitation in a 

given period and place is mapped to more product demand, probably for flood-related emergency 

Figure 4-5 FNN Positive Feature Connection Weights 

Figure 4-4 FNN Negative Feature Connection Weights 
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or cautionary purposes. Futures price index for Copper, a mineral which is mostly used in 

building construction (U.S. Geological Survey, 2020), is also reasonably mapped to more 

demand in line with our discussions and site visits with the company’s stakeholders where 

construction sector was understood to be one of the most recurrent customers of their business. 

The rest of the features with prominent connection weights are either time-series or 

endogenous features and it is why we utilize only these features in the operational-predictive 

model to be delivered to the company. Furthermore, because of the practical convenience and 

reliability of interpolating time-series features as opposed to exogenous feature forecast. Of those 

with positive connection weights, it is notable that months at every quarter-end (Month3, 

Month6, Month9, and Month12) are present which is consistent with the seasonality spikes 

that we observed during initial data exploration. Elements of demand trend are translated into the 

model by Average_Sales_L3M, Average_Sales_L9M, and demand quantity on 

Previous_Month, while Cumulative_Zeros implies the intermittent nature of the 

demand. Lastly, we find it reasonable to see higher Avg_Sales_Price occurring 

concurrently with higher demand. This correlation happens possibly due to the classic supply-

demand interaction with price and/or more involvement of equipment which are newer or has 

more features (therefore have higher prices) to fulfil customer demand as the cheaper alternatives 

has been rented out. However, interpreting it in the opposite direction(i.e., increasing 

Avg_Sales_Price can be one of the policy levers to drive demand up) is obviously 

misleading and therefore this feature should not be used for predictive purposes. 

Among features with negative connection weights, we also see time-series elements which 

are represented, in order of magnitude, by Month1, Month7, Month10, Month11, Month8, 

Month4, Previous_3_Month and Month5. This indicates that the model maps lower 

demand to those particular months. The features lat and long respectively represent the 

latitude and longitude of the company’s branches. Negative weight for latitude and longitude 

features of the branch means the model maps more demand quantity to branches on the more 

southerly and westerly geographical coordinates, as confirmed by the observation in Figure 3-7 

during data preparation. The rest of the features with negative connection weight are endogenous 

specification of the product. 

The true performance of the model is evaluated using the test dataset which is excluded from 

the dataset used for training the FNN model. A multi-perspective analysis of the model’s 
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prediction versus actual values, therefore, helps us to dissect how reliable the model is in 

extrapolating demand quantity based on a set of yet unseen data features. In order to emulate the 

real-life implementation of this model, we round up each prediction value to its nearest integer. 

As expected, the resulting prediction values yield slightly higher overall MSE of 0.47 and RMSE 

of 0.68 compared to MSE of 0.45 from raw unrounded prediction values. We start looking at the 

overall prediction result by month as displayed in Figure 4-6 and by branch in figure 4-7.  From 

monthly demand perspective, test set seems to largely conform with the quarterly seasonality of 

the preceding years’ data in the training set. That is why the model is able to predict the general 

monthly fluctuation pattern although it consistently underestimates the demand.  

 

 

Figure 4-7 FNN Model Prediction Evaluation by Branch 

Figure 4-6 FNN Model Prediction Evaluation by Month 
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Notable exceptions occur in March where the prediction exceeds actual value and in January 

where the gap between the prediction and actual value is the most prominent. From this 

observation we can infer that there are uncaptured factors and circumstances at, or leading up, to 

each of those two months in the test set period which caused demand to behave in a more 

pronounced anomaly relative to its historical behaviors. Such errors can always be expected from 

any predictive exercises and should function as a guidance in adjusting decisions made based on 

prediction data.  

We also observe a tendency of error (RMSE) values to increase with higher demand values, 

as can be seen in the seasonal peak months of March, June, and September. The same behavior is 

also displayed in the prediction evaluation by branch, where error values largely follow the 

corresponding branch’s demand level. Upon further investigation, we indeed found that for 

higher actual demand values there is a clear trend of increasing prediction error as can be seen in 

Figure 4-8. However, if we look at the distribution of actual demand values, 95% of them range 

from 0-2 where errors are still less than 1 and close to the global RMSE. Even if we exclude zero 

values from actual demand, a still very high proportion (80%) of the prediction yield error of less 

than 1. This increasing prediction error over larger demand quantity is expected due to the 

distribution of the training dataset where values of range 0-2 dominate the actual demand values 

(see Figure 3-3), giving the algorithm significantly more learning iterations around that range 

compared to larger values. 

 

 

 

 

Figure 4-8 Actual Demand Distribution and RMSE 
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4.3. Optimization Model 

As depicted in Figure 3-14, the mathematical model to optimize pump allocation takes in the 

resulting demand prediction from the FNN model as well as stock, lane capacity, and variable 

transportation cost as a set of input of a linear program and prescribes a set of transportation 

decisions as the final output for each month. If we represent the model, just like Gurobi does 

behind the scene, as a matrix, then it has 1,529,868 columns and 70,078 rows. The matrix 

columns represent all the decision variables 𝑥௞௜௝ of the model, where we have a total of 723 

items 𝑘, origin branch 𝑖 = 0 has 46 possible lanes to all destination branches 𝑗, and each origin 

branch 𝑖 ≠ 0 has 45 possible lanes to all destination branches 𝑗 ≠ 𝑖 so 𝑛൫𝑥௞௜௝൯ =

723 × ൫46 + (46 × 45)൯. The rows, on the other hand, represent all the constraints which are 

explicitly specified in the program, i.e., demand constraint (21) and supply constraint (22) 

respectively for 47 × 723 = 33,981 possible combination of branches and items, as well as lane 

capacity constraint (23) for 46 + (46 × 45) = 2116 lanes. 

In order to evaluate the optimization model, we took the prediction result from the test 

dataset particularly the most recent month. We neither had access to a historical data at any 

period nor were we able to construct reliable assumption from the sporadic information in the 

available dataset related to stock position. For the sake of testing the logic of the model, we 

decided to generate random number using Excel for each predicted item demand 𝛿መ௞௝ to serve as 

hypothetical item stock position 𝜉௞௝ at the end of the preceding month. The model took less than 

3 minutes processing times before yielding results as depicted relationally in Figure 4-9. The 

main result table solution prescribes all the necessary item movement among origin and 

destination branches with their respective quantity, and variable cost. Table net_demand stores 

the stock and predicted demand input data which are used in the calculation of net demand and 

net supply as formulated in equation (26) and (27) respectively.  

Figure 4-9 Diagram of Optimization Model Outputs 
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Due to the granularity of data in solution table and the same logic applied to all items and 

lanes, it is already insightful to evaluate how the model optimizes allocation in the item level 

based on several isolated samples. Let us take a look at the case of item number 1. In Table 4-3 

we can see that as branch 9, 45, and 24 hold the stock of item 1 at the end of the preceding 

period, they have no predicted demand for the current period so each of them has net supply 

capability at the level of their respective stock. On the other hand, branch 19 holds only 1 item 

but has predicted demand of 11, so it needs another 10 as net demand in order to anticipate the 

realization of the prediction. In Table 4-3 net_demand, dummy branch 0 records the total stock 

and predicted demand of each item and only yields net supply capabilities whenever total 

predicted demand exceeds total stock as per equation (20).  

Table 4-3 Net Demand and Supply for Item Number 1 

branch item_number stock pred_demand net_demand net_supply 
9 1 9 0 0 9 

45 1 8 0 0 8 
24 1 4 0 0 4 
21 1 0 0 0 0 
19 1 1 11 10 0 
0 1 22 11 0 0 

 

With the information from Table 4-3, the model  then needs to answer where the 10 units of 

net demand for branch 19 should come from among the branches with net supply i.e., 9, 45, or 

24. From Table 4-4, we can see that branch 45 is the one with the lowest variable cost of 169.74 

followed by 24 and 9.  

Table 4-4 Transportation Cost Between Branch 45, 24, 9 and 19 

origin destination cost 
45 19 169.736015 
24 19 495.2624156 
9 19 697.0576059 

 

With the net supply and demand capability specified in Table 4-3 and Transportation Cost in 

Table 4-4, the model returns a set of allocation decisions for item 1 as displayed in Table 4-5. 

We can see that the model maximizes the allocation from the branch with the lowest 

transportation cost to 19, which is 45, at 8 units which is the whole net supply capability of the 
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origin-branch. Thereafter, since the net demand for branch 19 is 10, the remaining 2 units are 

then prescribed to be sourced from the next lowest-cost branch 24. The column cost in table 4-5 

denotes the total variable cost for the prescribed transportation, for example between branch 24 

and 19, the cost is 495.26 × 2 = 990.52. 

Table 4-5 Prescribed Allocation Decision for Item Number 1 

item_number origin destination qty cost 
1 24 19 2 990.52 
1 45 19 8 1357.92 

 

Another sample from the simulated result shows us how the model deals with the possibility 

of aggregate stock out, in other words total recorded stock of an item across the US is lower than 

total predicted demand. We take an item number 2, with the net demand situation as displayed in 

Table 4-6. There are only 4 stock of this item in branch 28, and demand is predicted to be 5. The 

model then assigns the net supply capability of the extra needed item to dummy branch 0 to 

satisfy the mathematical constraint of the model. Dummy branch 0 can only have net supply 

when total demand exceeds total recorded stock for a particular item. As expected, the prescribed 

allocation shown in Table 4-7 specifies a hypothetical transport from branch 0 to 28 to fulfil the 

demand. In practical implementation, the company can refer to items assigned to this dummy 

branch as a guidance to determine which items need replenishment or addition to the operational 

stock due to tendency of demand growth. From the simulation, only about 2% of the total pump 

movement need to be allocated from this dummy branch.  

Table 4-6 Net Demand and Supply for Item Number 2 

branch item_number stock pred_demand net_demand net_supply 
28 2 4 5 1 0 
0 2 4 5 0 1 

 

Table 4-7 Prescribed Allocation Decision for Item Number 2 

item_number origin destination qty cost 
2 0 28 1 9999 

 

Based on the observation of these item samples, we conclude that the optimization model 

successfully fulfils its role to prescribe efficient allocation decision with reliable decision logic. 
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5. CONCLUSION 

At the start of our research project, we learned about the company through discussions with 

senior management and site visits to several branch locations. We formulated our problem 

statement with the help of the stakeholders from the sponsoring company. The goal of our 

project was to increase asset utilization while at the same time, efficiently mobilizing their 

equipment. This led us to research the industrial equipment rental and water infrastructure 

industries as well as machine learning and mathematical optimization techniques. We proposed a 

methodology comparing four machine learning algorithms for forecasting demand, selecting the 

best algorithm, and feeding the predicted demand into a mathematical optimization model as an 

integrated decision tool for the company to manage its asset allocation. During the initial data 

preparation phase, we observed intermittent demand nature of the products and based on that 

observation we created several time-series features to be trained in the predictive models. After 

building and testing each predictive model, we chose the FNN model based on its overall 

predictive performance. The final step of our project was to incorporate the predictions of the 

FNN model to the optimization model to produce asset movement prescription.  

Before the implementation of this project there has been no regular use of a sophisticated 

forecasting or optimization model at the Company. Most of the decisions made were reactionary 

and based on intuition. The FNN model that we developed objectively provides the company 

with a more data-driven prediction of their demand. On top of that, the optimization model 

utilizes both the demand prediction from FNN and stock position update from the company’s 

current system to allocate pump assets in the most efficient way in terms of transportation miles. 

The simultaneous implementation of both models will bring the company in the direction where 

asset utilization increases and mobilization cost decreases. An integrated decision tool of both 

predictive and prescriptive optimization model is the main delivery of this project and the 

technical user guide is available in Appendix A for the company’s reference.  

Our models were developed within a certain boundary based on what we had access to 

during the research. The forecast models rely on historical sales and do not capture lost sales. 

The Company should consider lost sales from out-of-stocks situation into demand prediction 

model whenever such data are available in a consistent basis. Based on data availability and 

agreement with company leaders, demand prediction is aggregated in monthly basis in our 

models. In reality, there might be service areas and outlier circumstances where inventory need 
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to be reallocated weekly in the network. Selecting the appropriate aggregation level is an 

assessment of the tradeoff in forecast error and agility.  Shifting to a weekly forecast will allow 

for rapid changes in asset allocations but diminish the forecast accuracy. Customer base and 

weather have influence on the sporadic nature of the business. Forecasting for rainfall, natural 

disasters, and local government spending is challenging. We included these factors in trying to 

infer strong predictive potential but based on the modeling result and practical reasons we do not 

include these exogenous features in the final prediction model in the integrated tool. In this 

project, we focus on the main pump product, but other product items will also benefit more from 

better demand planning and should be considered for future extension of this research project.   

During conversations with leaders at the company, the stable growth prospects and high 

margin nature of the industry has caused the consolidation of several regional competitors. The 

attractive market also attracts the entry of strong national players with strength in technological 

innovation. These nuances in the competitive landscape are not captured in the model and can 

potentially affect future demand. As evidenced by the feature importance analysis in Section 4 

Result and Discussion, there is also a strong indication for relationship between sales price and 

demand which due to the scope of this project was not explored deeply. These two areas, 

competition and pricing, might as well serve as interesting areas of future research to mine 

additional insight on how the industry’s market dynamics affect demand behavior and how it can 

be defined in the predictive model.  
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APPENDIX A – DECISION TOOL USER GUIDE 

 

I. Software and System Requirement 

The decision tool was written in Python 3.7 programming language and structurally designed 

to be run most comfortably using Jupyter Notebook (“Notebook”)  web application. The Python 

codes run in a computer with either Mac or Windows operating system, has Microsoft Excel or 

other application which is able to read a .csv file, and an internet browser.  

The first software that needs to be installed is Anaconda, we used Anaconda Individual for the 

development of the decision tool but you can also use Team or Enterprise edition if you wish. 

Download the appropriate Anaconda installer with Python 3.7 version for your OS from this page 

https://www.anaconda.com/distribution/. Visit https://docs.anaconda.com/anaconda/ for 

installation guide, user guide, and other references. 

To preprocess the data from the company’s system, Alteryx, an extract-transform-load (ETL) 

software tool was also used. The user can download and subscribe to the software at 

https://www.alteryx.com/platform. 

For optimization, we used Gurobi optimizer software in Python interface. Gurobi optimizer 

can be downloaded from this site https://www.gurobi.com/downloads/gurobi-optimizer-eula/. For 

commercial use, the company will need to invest in license fee for the product.   

Once Anaconda is installed in your computer, search for Anaconda Navigator, open it, and go 

to tab Environments > base(root) and in the right most section of the window click the scroll down 

Figure A-1 Anaconda Navigator Environments Tab Screenshot 
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bar and choose All. On the search box, type to find these libraries: tensorflow, keras, scikit-learn, 

and gurobi in the list and click the check box for each library till it displays a downward arrow. 

After all three libraries are checked, click Apply to download and install them in your Anaconda 

environment. Although it should be a default setting, you might also want to check if pandas and 

numpy libraries have already had checked box in the list, in which case they are already callable 

for use in Python codes.  

Once installations are finished, go to Home tab find Jupyter Notebook in the scroll down area. 

Click the Install button for the Notebook or Launch button when it has already been installed. 

Jupyter Notebook is a web application so it will open and run in a web browser so manually open 

your web browser if it does not automatically open upon clicking the launch button for the 

notebook in Anaconda Navigator.  

When Jupyter Notebook opens in the web browser, you will see the navigation page which 

contains the directory of your computer drives. Go to the directory where you store the decision 

tool package folder named MODEL. 

 

II. File Structure 

All the necessary input and output files in .csv as well as the decision tool’s code skeleton itself 

are contained and structured in a folder we name MODEL. You should not relocate, rename, or 

delete any of the pre-existing folders and files inside if you want the tool to work properly. 

Figure A-2 Anaconda Navigator Home Tab Screenshot 
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Although you can add new files anywhere inside the MODEL folder, we highly recommend that 

you store any of them outside the folder to maintain data structure integrity of the tool.  

The MODEL folder structure is as follows: 

MODEL 

 Model.ipynb 

 Readme.txt 

 input: branch.csv, lane.csv, stock.csv 

  output: net_demand.csv, solution.csv 

 prediction: prediction.csv 

training: bias_hidden.csv, bias_output.csv, dataset.csv, evaluation.csv, fnn.h5,  

grid_cv_results.csv, weight_hidden.csv, weight_input.csv, scope.csv 

 Alteryx: Wflow_1.yxmd, Wflow_2.yxmd, Wflow_Consolidated.yxdb, Wflow_2.bak 

 forecast (input each month): forecast input.xlsx 

 historical sales (input each month): contains historical sales data 

 

 

Figure A-3 Jupyter Notebook Navigation Page Screenshot 
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Model.ipynb  is the python notebook object containing the codes for running the decision tool.  

In subfolder  ‘input’, branch.csv contains the latitude and  longitude of each branch, lane.csv  

contains all possible lanes between branches along with the latitude and longitude of each origin 

and destination branch as well as variable transportation cost and capacity of each lane, and 

stock.csv contains the stock position of each item number at each branch at the end of the most 

recent month.  The subfolder ‘output’ contains the main output of the whole decision tool which 

is solution.csv where item movement quantity, origin, destination, and cost are prescribed.  

Subfolder ‘prediction’ on the other hand contains the output of the predictive model 

demand.csv where the predicted demand of each item for each branch is stored. As depicted by the 

tool’s working diagram in Figure 3-9 in the main body of the project’s report, you can manually 

adjust the predicted demand values in demand.csv to incorporate  business judgment as necessary 

before the data are fed into the optimization model. The subfolder training contains the main feed-

forward neural networks (FNN) model fnn.h5, the historical data dataset.csv used for both 

forecasting and FNN training purpose, the structural parameters of current FNN (bias_hidden.csv, 

bias_output.csv, weight_hidden.csv, weight_input.csv), the summary result of the latest FNN 

training session in grid_cv_results.csv, and scope,csv which contains the exhaustive list of Item 

Numbers and Branches which are included in the model.  

Subfolders ‘Alteryx’, ‘forecast (input each month)’, and ‘historical sales (input each month)’ 

contain all the files and workflow template needed for pre-processing data retrieved from the 

company’s system into dataset.csv. Pre-processing is needed to summarize sales quantity at item 

and branch level as well as generating all the time series features.  

 

III. Data Pre-processing 

At the end of every month, user should extract the most recent month’s actual sales history 

(e.g., November of the test set period if we refer to the data involved in this project) from the 

company’s database system and save it in subfolder ‘historical sales (input each month)’. 

After the most recent month’s actual sales data is saved to the folder, open the Alteryx 

workflow titled Wflow_1. Upload the new actual sales file using the Input Data tool and join the 

month to the existing Union tool. Afterwards, run the workflow. The output will be titled 

Wflow_Consolidated.  
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Next, open the forecast input file in  subfolder ‘forecast (input each month)’. This file will also 

need to be updated every month to create new data rows for the forecast month. By default the file 

already contains all pairs of branch and item as defined in the scope of predictive models. User 

needs to update the ‘Date’, ‘Month’, and ‘Year’ field in the file according to the target forecast 

period. The Date field should be written in the format “mm_yyyy” as shown in the example in the 

file. Save the file. 

 

IV. Implementation 

Python implementation is performed only after Data Pre-processing is done. Open Model.ipynb 

from the Jupyter Notebook’s Navigation Page to access the skeleton code of the decision tool . It 

should look like the screenshot in Figure A-7.  

 

 

 

 

 

 

 

 

 

 

 

 

 

A Jupyter Notebook has greyed out sections where codes are written which are called cells and 

as explicitly hinted in the Notebook, you should put your cursor inside a cell and press shift and 

center to run the code lines in a cell. The message In [ ]on the left side of each cell indicates 

the sequence order of that cell’s implementation. For example, In [2] means that the cell has 

been implemented right after the cell with In [1]besides it. There are 4 sections of code 

execution in the Notebook and in each sections, code lines are partitioned by numbered comment 

Figure A-7 Decision Tool's Code Skeleton in Jupyter Notebook Screenshot 
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lines which looks like this: #1.1 Import Libraries to help you and future developers 

understand the steps that are taken when the codes are run. The 4 sections are as follows: 

 

I. Library Import and Transformation Pipeline 

This section is the prerequisite for all the other sections. Make sure all cells under this section 

have been implemented before running any other section.  

II. Monthly Forecasting 

Run this section only if section I has been implemented. Specify the  month and year of the 

forecast period in part 2.1 Specify Forecasting Period and then run the rest of 

the codes in the section. This section outputs demand.csv in folder prediction, which you can 

inspect and adjust manually whenever necessary before running the next code section. This 

section should be run in a monthly basis at the end of the most recent month before the forecast 

month. Make sure that all the necessary updates on the data stored in folder ‘input’ have been 

deployed before forecasting.  

III. Allocation Optimization 

Run this section only if section I and section II have been implemented. This section produces 

the final output of the whole model solution.csv which is accessible from the subfolder 

‘output’. 

IV. FNN Training  

Run this section only if section I has been implemented. This section is the most 

computationally expensive of the whole model since it involves training the whole dataset 

through multiple epochs, cross validation, and combination of FNN hyperparameters (number 

of hidden neurons, learning rate, and l2 regularization) to ensure robust predictive capability. 

With the hardware specification we used during development, it took almost 48 hours in total 

to run the training so prepare in advance and make sure the machine is connected to power 

source the whole time. When the codes are run, you can still use other applications in the 

computer but you have to keep the browser displaying the Notebook open. Run the training at 

the beginning of each year and enter the preceding year as the test year in part #4.1 

Specify Dataset Year to be split out of the main dataset as Test 

Set. The default search space for each hyperparameters is specified in part #4.2 Specify 

search space for hyperparameters but you have the option of narrowing it down 
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to fewer ranges to save computation time if you see that the operational model still returns 

satisfactory forecast accuracy. Afterwards, run the codes in rest of the section to get the new 

model fnn.h5 which is stored in subfolder ‘training’ along with the FNN model parameter 

specifications as discussed in File Structure earlier.  
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APPENDIX B – FNN HYPERPARAMETER TUNING CROSS-VALIDATION RESULT 

computation 
time (s) 

hyperparameters combination 
test_score1 train_score1 

split0 split1 split2 split3 split4 mean rank split0 split1 split2 split3 split4 mean 

8,972 {'l2': 0.0001, 'lr': 0.001, 'neurons': 10} -0.53 -0.52 -0.54 -0.60 -0.62 -0.56 1 -0.56 -0.55 -0.56 -0.52 -0.55 -0.55 

6,921 {'l2': 0.0001, 'lr': 0.001, 'neurons': 12} -0.54 -0.53 -0.53 -0.62 -0.61 -0.56 2 -0.54 -0.56 -0.54 -0.54 -0.53 -0.54 

7,869 {'l2': 0.0001, 'lr': 0.001, 'neurons': 11} -0.53 -0.55 -0.53 -0.61 -0.62 -0.57 3 -0.55 -0.58 -0.54 -0.53 -0.54 -0.55 

8,775 {'l2': 0.001, 'lr': 0.001, 'neurons': 12} -0.58 -0.56 -0.57 -0.66 -0.64 -0.60 4 -0.60 -0.59 -0.59 -0.58 -0.57 -0.59 

3,739 {'l2': 0.0001, 'lr': 0.01, 'neurons': 11} -0.58 -0.54 -0.60 -0.65 -0.65 -0.61 5 -0.62 -0.59 -0.63 -0.58 -0.56 -0.59 

7,100 {'l2': 0.001, 'lr': 0.001, 'neurons': 11} -0.59 -0.60 -0.57 -0.65 -0.64 -0.61 6 -0.62 -0.64 -0.60 -0.57 -0.57 -0.60 

2,488 {'l2': 0.0001, 'lr': 0.01, 'neurons': 12} -0.59 -0.62 -0.58 -0.69 -0.64 -0.62 7 -0.61 -0.65 -0.61 -0.61 -0.58 -0.61 

30,904 {'l2': 0.0001, 'lr': 0.01, 'neurons': 10} -0.60 -0.59 -0.62 -0.67 -0.65 -0.63 8 -0.65 -0.62 -0.61 -0.59 -0.58 -0.61 

2,898 {'l2': 0.001, 'lr': 0.01, 'neurons': 11} -0.64 -0.63 -0.66 -0.83 -0.70 -0.69 9 -0.69 -0.67 -0.70 -0.73 -0.63 -0.68 

3,071 {'l2': 0.001, 'lr': 0.01, 'neurons': 10} -0.70 -0.65 -0.71 -0.76 -0.71 -0.71 10 -0.73 -0.69 -0.74 -0.67 -0.65 -0.70 

3,293 {'l2': 0.001, 'lr': 0.01, 'neurons': 12} -0.62 -0.64 -0.63 -1.02 -0.72 -0.72 11 -0.70 -0.69 -0.67 -0.93 -0.64 -0.72 

10,025 {'l2': 0.01, 'lr': 0.001, 'neurons': 10} -0.69 -0.72 -0.72 -0.82 -0.81 -0.75 12 -0.77 -0.75 -0.75 -0.72 -0.74 -0.74 

8,287 {'l2': 0.01, 'lr': 0.001, 'neurons': 11} -0.69 -0.71 -0.72 -0.82 -0.82 -0.75 13 -0.77 -0.75 -0.75 -0.72 -0.75 -0.75 

10,849 {'l2': 0.01, 'lr': 0.001, 'neurons': 12} -0.69 -0.72 -0.73 -0.84 -0.81 -0.76 14 -0.77 -0.76 -0.76 -0.74 -0.73 -0.75 

3,168 {'l2': 0.01, 'lr': 0.01, 'neurons': 12} -0.72 -0.77 -0.81 -0.85 -0.83 -0.80 15 -0.82 -0.81 -0.84 -0.75 -0.74 -0.79 

2,268 {'l2': 0.01, 'lr': 0.01, 'neurons': 10} -0.83 -0.74 -0.80 -0.91 -0.85 -0.83 16 -0.92 -0.78 -0.84 -0.81 -0.76 -0.82 

3,011 {'l2': 0.01, 'lr': 0.01, 'neurons': 11} -0.71 -0.85 -0.78 -0.98 -0.85 -0.84 17 -0.81 -0.90 -0.81 -0.87 -0.76 -0.83 

8,147 {'l2': 0.001, 'lr': 0.001, 'neurons': 10} -0.59 -3.13 -0.58 -0.68 -0.64 -1.12 18 -0.64 -3.14 -0.59 -0.59 -0.57 -1.11 

5,061 {'l2': 0.0001, 'lr': 0.1, 'neurons': 10} -1.29 -1.47 -1.99 -1.56 -3.25 -1.91 19 -1.49 -1.50 -1.93 -1.46 -3.10 -1.90 

2,395 {'l2': 0.001, 'lr': 0.1, 'neurons': 12} -1.60 -2.02 -1.51 -1.62 -3.25 -2.00 20 -1.84 -2.04 -1.50 -1.52 -3.10 -2.00 

2,581 {'l2': 0.001, 'lr': 0.1, 'neurons': 10} -2.84 -3.12 -1.57 -2.22 -1.69 -2.29 21 -3.20 -3.13 -1.58 -2.11 -1.57 -2.32 

13,324 {'l2': 0.0001, 'lr': 0.1, 'neurons': 12} -2.84 -3.12 -3.25 -1.56 -3.25 -2.81 22 -3.20 -3.13 -3.10 -1.45 -3.10 -2.80 

2,797 {'l2': 0.001, 'lr': 0.1, 'neurons': 11} -2.84 -3.12 -3.25 -1.72 -3.25 -2.84 23 -3.20 -3.13 -3.10 -1.62 -3.10 -2.83 

12,055 {'l2': 0.0001, 'lr': 0.1, 'neurons': 11} -2.84 -3.12 -3.25 -1.86 -3.25 -2.87 24 -3.20 -3.13 -3.10 -1.77 -3.10 -2.86 

1,935 {'l2': 0.01, 'lr': 0.1, 'neurons': 10} -1.99 -3.12 -3.25 -3.19 -3.25 -2.96 25 -2.23 -3.13 -3.10 -3.12 -3.10 -2.94 

1,918 {'l2': 0.01, 'lr': 0.1, 'neurons': 11} -2.84 -3.12 -3.25 -3.19 -3.25 -3.13 26 -3.20 -3.13 -3.10 -3.12 -3.10 -3.13 

1,720 {'l2': 0.01, 'lr': 0.1, 'neurons': 12} -2.84 -3.12 -3.25 -3.19 -3.25 -3.13 26 -3.20 -3.13 -3.10 -3.12 -3.10 -3.13 

175,570               

1rounded to 2 decimal places
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APPENDIX C – FNN WEIGHTS 

 

Index 
Connection 

Weight1 
(𝑰𝒙𝒋) 

Hidden-Output Weight1 (𝑽𝒌) -2.10 0.66 -0.95 0.04 -0.12 2.50 1.71 0.90 0.75 -0.11 

Input Feature (𝒙𝒋) 
Input-Hidden Weight1  (𝑾𝒋,𝒌) 

0 1 2 3 4 5 6 7 8 9 
0 -7.88 Month1 0.22 -0.67 0.25 -0.18 -0.19 -1.53 -1.36 -0.85 0.24 -0.10 
1 0.53 Month2 0.02 0.00 0.22 -0.05 0.26 0.06 0.29 0.07 0.10 -0.25 
2 5.95 Month3 -0.05 0.10 -0.05 -0.14 -0.16 1.27 1.07 0.61 0.16 -0.25 
3 -1.19 Month4 -0.01 0.11 0.29 0.23 0.19 -0.33 -0.09 -0.12 0.12 -0.07 
4 -1.03 Month5 -0.04 -0.07 0.10 -0.12 0.14 -0.25 -0.22 -0.02 0.09 0.08 
5 2.11 Month6 -0.05 0.06 -0.15 -0.18 -0.19 0.32 0.45 0.19 0.12 0.07 
6 -3.02 Month7 0.04 0.11 0.16 0.00 0.10 -0.64 -0.55 -0.19 -0.16 0.10 
7  -1.28 Month8 -0.02 -0.16 0.07 0.13 -0.18 -0.34 -0.24 -0.14 0.28 -0.09 
8 1.91 Month9 0.03 0.07 -0.03 -0.13 -0.26 0.24 0.48 0.32 0.20 -0.15 
9 -2.78 Month10 -0.10 -0.02 0.02 0.24 0.17 -0.73 -0.48 -0.39 0.09 0.04 

10 -2.12 Month11 0.04 -0.12 0.21 0.21 0.18 -0.55 -0.26 -0.16 0.30 0.00 
11 2.06 Month12 0.01 0.07 0.03 -0.17 0.05 0.39 0.48 0.32 -0.02 0.03 
12 -0.98 Non_Zero_Demand_Intervals 0.00 0.02 0.01 0.21 -0.12 -0.32 -0.04 0.03 -0.22 0.10 
13 5.50 Cumulative_Zeros -0.01 0.20 -0.06 0.15 -0.08 1.28 1.00 0.52 -0.11 0.02 
14 2.68 Avg_Sales_L3M -0.05 0.11 -0.17 0.01 0.09 0.41 0.40 0.69 0.06 0.16 
15 0.82 Avg_Sales_L6M 0.03 0.16 0.00 -0.06 -0.12 0.25 0.09 0.09 -0.16 -0.23 
16 1.79 Avg_Sales_L9M 0.02 0.16 0.09 -0.21 -0.06 0.47 0.28 0.10 0.12 0.08 
17 -0.64 Average_Sales_LTM -0.11 0.17 -0.15 -0.17 -0.24 -0.29 -0.11 -0.02 -0.30 -0.04 
18 3.52 Avg_Sales_Price -2.71 1.40 1.83 0.22 -0.20 -0.88 -0.02 0.07 0.97 -0.36 
19 0.50 P1Y_Month 0.03 0.22 0.05 0.03 0.12 0.21 0.02 0.02 -0.10 0.06 
20 -0.01 P2Y_Month -0.01 0.13 -0.02 -0.13 0.03 -0.02 -0.01 0.00 -0.11 -0.09 
21 4.86 Previous_Month 0.03 -0.16 0.08 -0.05 -0.07 1.28 0.67 0.64 0.22 -0.18 
22 -0.54 Previous_2Month 0.05 -0.03 0.03 -0.05 0.08 -0.25 0.13 0.01 0.01 -0.09 
23 -1.19 Previous_3Month 0.02 0.18 0.05 0.08 -0.15 -0.28 -0.10 -0.21 -0.23 0.14 
24 -0.05 YoY_Change_Avg_Sales_LTM -0.02 0.00 0.00 0.20 0.17 -0.03 -0.02 0.01 -0.01 -0.16 
25 0.46 Construction_Spending_Sewage -0.04 0.08 0.03 0.00 -0.06 0.02 0.17 0.06 -0.06 0.02 
26 0.04 Manf_New_Orders 0.02 -0.10 -0.01 -0.01 -0.18 0.02 -0.02 -0.03 0.13 -0.08 
27 -0.12 Mining 0.18 0.17 0.06 0.01 0.01 0.15 -0.03 0.13 -0.29 -0.10 
28 1.04 Copper -0.01 0.09 0.05 -0.04 0.16 0.33 0.12 0.08 -0.08 0.07 
29 0.37 Natural_Gas 0.02 -0.08 0.04 -0.08 0.01 0.17 0.00 -0.04 0.14 -0.16 
30 -1.00 Oil -0.07 -0.03 -0.04 0.24 0.08 -0.40 -0.07 -0.03 -0.03 0.05 
31 0.32 Housing -0.03 -0.09 0.00 -0.18 -0.05 0.12 0.00 0.00 0.05 0.11 
32 0.25 ISM_PMI 0.00 -0.06 -0.01 0.18 -0.02 0.06 0.02 0.04 0.08 0.06 
33 1.09 Precipitation 0.00 0.11 0.00 -0.18 -0.06 0.40 0.06 0.02 -0.11 0.23 
34 -0.93 Precip-Anomaly 0.01 0.08 0.00 0.05 0.03 -0.34 -0.04 -0.01 -0.07 -0.12 
35 0.85 Industrial Manufacturing -0.16 0.01 -0.02 -0.19 0.04 0.21 0.03 -0.07 -0.01 0.12 
36 -1.57 type1 0.02 0.05 0.13 0.13 -0.21 -0.44 -0.25 -0.05 0.13 -0.10 
37 -0.74 type2 0.14 0.09 0.03 -0.02 0.18 0.05 -0.24 -0.06 -0.15 0.12 
38 -0.56 type3 -0.05 -0.02 0.01 -0.18 -0.07 -0.15 -0.06 -0.26 0.11 0.19 
39 -0.86 type4 -0.08 0.21 0.05 0.09 0.15 -0.36 -0.06 -0.24 0.17 0.14 
40 -1.72 type5 0.10 -0.09 -0.01 -0.10 0.24 -0.41 -0.20 -0.17 0.12 -0.22 
41 -0.84 type6 0.00 0.05 0.07 -0.12 -0.04 -0.20 -0.20 0.06 -0.05 -0.25 
42 -0.36 type7 0.02 -0.11 -0.04 0.07 0.06 -0.05 -0.08 0.02 0.01 0.15 
43 -0.62 type8 0.31 0.04 -0.08 0.13 0.22 0.14 -0.11 -0.25 0.00 -0.24 
44 -0.46 type9 -0.10 -0.19 -0.16 -0.07 -0.06 -0.07 -0.21 -0.22 -0.03 -0.25 
45 0.02 type10 -0.02 -0.16 -0.24 -0.21 0.21 -0.17 0.21 0.12 -0.18 0.00 
46 -0.83 type11 -0.11 0.04 -0.03 0.04 0.01 -0.34 -0.16 -0.05 0.07 -0.07 
47 -1.90 size 0.41 -0.09 -0.51 0.00 0.03 -0.52 -0.07 -0.05 0.01 -0.15 
48 -2.51 driver1 -0.08 -0.13 -0.08 -0.19 -0.08 -0.79 -0.36 -0.18 0.06 -0.21 
49 -1.60 driver2 -0.03 -0.02 0.16 -0.06 -0.06 -0.34 -0.36 -0.15 0.11 -0.09 
50 -0.69 driver3 0.06 -0.16 -0.07 -0.18 0.12 -0.11 -0.05 -0.20 0.05 0.06 
51 -0.77 driver4 0.24 0.09 0.00 -0.04 0.04 -0.09 -0.01 -0.13 0.04 -0.17 
52 -1.66 driver5 0.17 0.20 0.17 -0.17 -0.09 -0.39 -0.01 -0.22 -0.06 0.17 
53 -3.64 material1 -0.06 0.06 0.07 0.03 -0.25 -1.15 -0.56 -0.02 0.07 -0.12 
54 -0.52 material2 0.06 -0.05 -0.03 -0.26 0.23 -0.10 -0.05 0.06 -0.07 0.23 
55 -0.25 material3 -0.14 -0.11 -0.09 -0.12 -0.25 -0.20 -0.04 0.18 -0.24 0.00 
56 -0.83 material4 0.20 -0.01 -0.03 -0.26 0.01 -0.20 0.08 -0.21 0.21 0.18 
57 -0.02 material5 -0.03 0.09 0.20 0.22 0.12 -0.06 -0.02 0.13 0.21 0.13 
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Index 
Connection 

Weight1 
(𝑰𝒙𝒋) 

Hidden-Output Weight1 (𝑽𝒌) -2.10 0.66 -0.95 0.04 -0.12 2.50 1.71 0.90 0.75 -0.11 

Input Feature (𝒙𝒋) 
Input-Hidden Weight1  (𝑾𝒋,𝒌) 

0 1 2 3 4 5 6 7 8 9 
58 -0.45 material6 0.06 0.23 0.17 -0.11 -0.17 -0.21 0.25 -0.15 -0.15 -0.07 
59 -0.70 material7 0.11 0.06 -0.22 0.01 -0.19 -0.20 -0.37 0.18 0.27 -0.21 
60 -5.16 spec1 -0.05 0.31 0.06 -0.35 -0.19 -1.48 -0.86 -0.50 0.28 -0.03 
61 0.07 spec2 -0.14 0.14 0.18 -0.02 0.21 -0.11 0.04 0.03 0.10 0.05 
62 -0.89 spec3 0.07 0.22 0.00 -0.22 0.11 -0.40 0.08 0.17 -0.16 0.20 
63 -0.59 variations 0.15 0.15 0.08 0.05 -0.07 -0.19 0.00 0.08 0.15 0.26 
64 -3.32 lat 0.02 0.16 -0.07 -0.12 -0.14 -0.89 -0.59 -0.19 -0.06 -0.01 
65 -2.68 long -0.06 -0.03 0.06 -0.14 -0.13 -0.92 -0.28 -0.15 0.25 0.03 

1Rounded to 2 decimal places. 
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APPENDIX D – FNN BIAS 

 

Hidden 

Neuron 
Bias1 (𝑾𝟎𝒌) 

 

Output Neuron 

Bias1 (𝑽𝟎) 

0 -0.14 0.07 

1 0.28 
 

2 -0.13 
 

3 -0.08 
 

4 -0.03 
 

5 -1.69 
 

6 -1.18 
 

7 -0.49 
 

8 0.44 
 

9 0.00 
 

1Rounded to 2 decimal places. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


