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ABSTRACT 

Managing intermittent demand is a challenging operation in many industries since this type of demand 
is difficult to forecast. This challenge makes it hard to estimate inventory levels and thus affects service 
levels. The purpose of this study is to examine the impact of multiple levels of data aggregation on 
forecasting intermittent demand, and subsequently, on inventory control performance. In particular, we 
propose a procedure that integrates lead-time and customer heterogeneity into the forecasting using 
temporal and cross-sectional aggregation. Using data from a real-world setting and simulation, our 
analysis revealed that when high service levels were important for the company operations, the 
forecasting approach using temporal aggregation that incorporates lead-time information yielded a 
higher level of inventory efficiency in terms of both the holding cost and the realized service level. It 
appeared that when forecasts using temporal aggregation were augmented with information about 
customer behavior, their purchase patterns might be a helpful consideration for enhancing inventory 
performance. These findings allow us to provide useful recommendations for improving the current 
forecasting procedure and inventory control to the sponsor company of this project.  
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1. INTRODUCTION 

1.1 Research Motivation 

Products with intermittent demand − such as engineering spares and spare parts kept at the 

wholesaling/retailing level − are found in many industrial settings including automotive, 

aerospace, IT, and the military and may collectively account for up to 60 percent of the total 

inventory value (Johnston, Boylan, & Shale, 2003). Intermittent demand occurs when a product 

experiences several periods of zero demand interspersed by occasional non-zero demands. 

Managing such items is a challenging operation since their demand nature makes it difficult to 

forecast, and subsequently, to estimate inventory levels. As a result, organizations facing such 

demand often experience both high inventory levels and unsatisfactory service levels at the same 

time. 

 

Research on intermittent demand has emerged as a separate research stream since the proposed 

method of Croston in 1972 (Croston, 1972). Further, the growing business value generated by 

intermittent demand items such as service parts has drawn substantial attention from researchers 

(e.g., Hu, Boylan, Chen, & Labib, 2018). For example, according to a study by McKinsey & 

Company, the global value for automotive service parts business was approximately $760 billion 

in 2015 and expected to increase to $1,196 billion in 2030 (Breitschwerdt, Cornet, Kempf, 

Michor, & Schmidt, 2017). Because of their practical and economic importance, several methods 

and techniques for forecasting and inventory control of intermittent demand items have been 

incorporated into various enterprise software packages. Nevertheless, there is a lack of recently 

developed methods in commercial software (Hu et al., 2018). For instance, typical software 
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packages do not support temporal aggregation (defined in Section 2.3.1), although it may be 

helpful for decision making (Syntetos, Babai, Boylan, Kolassa, & Nikolopoulos, 2016). 

 

The general purpose of this study is to evaluate the impact of our proposed forecasting approach 

on inventory performance. This research endeavor is validated in the context of a master 

distributor of nonthreaded fasteners and specialty components located in the United States, G.L. 

Huyett. The company offers more than 150,000 stock keeping units (SKUs) and many of them 

(over 70 percent) exhibit intermittent demand, complicating forecasting and subsequently setting 

inventory levels. Further, as a master distributor that sells a variety of manufactured products 

through other distributors, G.L. Huyett is expected to maintain a very broad inventory as well as 

high service levels. 

 

1.2 Problem Statement 

In practice, demand information for a product is captured at the individual order level at a 

specific point in time. This information is then aggregated along some dimensions such as time, 

customer, or location to inform decision makers at different organizational levels; for example, 

inventory managers focus on lead time demand forecast per SKU while distribution managers 

want weekly or monthly demand forecast per customer/location. From an academic perspective, 

for a given level of aggregation required by decision-makers, it is not obvious what is the 

optimal strategy of data aggregation for input and output of forecasting (Syntetos et al., 2016). 

From the literature, there are two types of aggregation: temporal and cross-sectional. Temporal 

aggregation refers to a process in which demand recorded in higher-frequency time buckets (e.g., 

hourly, daily) is combined in lower-frequency time buckets (e.g., weekly, monthly). Meanwhile, 
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cross-sectional aggregation is a process that combines multiple time series based on the product 

family, location, or customer. Previous work has predominantly investigated these two types 

separately although their combination has been identified to yield potential benefits (e.g., 

Syntetos et al., 2016). 

 

More specifically, temporal aggregation focusing on the lead-time and cross-sectional 

aggregation focusing on customer heterogeneity have been shown separately to be effective tools 

for reducing demand intermittency and facilitating better inventory performance (e.g., Babai, Ali, 

& Nikolopoulos, 2012; Zotteri, Kalchschmidt, & Caniato, 2005). Further, recent studies on 

combining multiple ways of aggregation have confirmed an improvement in forecast 

performance (Lei, Li, & Tan, 2016; Lei, Yin, Li, & Tan, 2017; Petropoulos & Kourentzes, 2015; 

Spiliotis, Petropoulos, Kourentzes, & Assimakopoulos, 2020). Therefore, we believe that 

focusing on lead-time and customer heterogeneity has important implications for intermittent 

demand. First, temporal aggregation enables: (1) reducing the presence of zero-demand 

occurrences, which leads to better extrapolation; and (2) focusing directly on lead-time demand 

for inventory control instead of point estimates over the same period (Babai et al., 2012). 

Second, it has been proven that understanding the demand generation process may yield 

substantial benefits when demand distribution tends to be compound in nature; for example, 

customer heterogeneity could significantly influence demand patterns (Kalchschmidt, Verganti, 

& Zotteri, 2006). Hence, incorporating customer differences in terms of, for instance, purchase 

behavior when examining lead-time demand would potentially improve the performance of the 

overall system. 
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1.3 Research Question and Contribution 

Our study explores the synergy of benefits from temporal and cross-sectional aggregation. In 

particular, this study addresses the following question: Does integrating lead-time and customer 

heterogeneity help organizations improve intermittent demand forecasting and minimize 

inventory costs while maintaining a satisfactory service level? 

 

Such a combination has not been explored in the literature; thus our study contributes to the area 

of data aggregation in forecasting and inventory control. Our proposed procedure is empirically 

assessed in a real-world setting. This assessment allows us to provide useful recommendations 

for improving their current forecasting procedures and inventory control to industries/companies 

that may have the same problem. 

 

More specifically, our analysis of temporal aggregation highlights (1) the inventory efficiency of 

this forecasting approach; (2) the distinct effect of aggregation applied to the input data and the 

forecasting procedure; and (3) the heterogeneous effect of temporal aggregation on various 

forecasting methods used. It appears that when forecasts using temporal aggregation are 

augmented with information about customer behavior, their purchase patterns may be a helpful 

consideration for enhancing inventory performance; however, this evidence is relatively weak 

and exploratory in nature. 

 

The rest of this thesis is organized as follows. Section 2 reviews the literature related to our 

research. Sections 3 and 4 describe our methodology and the data used for empirical assessment, 
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respectively. We report the results of our analysis in Section 5. A discussion of the results and 

the general research project is provided in Section 6. Section 7 concludes our study.  
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2. LITERATURE REVIEW 

The purpose of this study is to examine to impact of data aggregation on intermittent demand 

forecasting for inventory control. It follows that this section reviews three research areas that are 

closely related to intermittent demand time-series forecasting methods, inventory control, and 

data aggregation. First, an understanding of different forecasting methods in the context of 

intermittent demand helps us identify those that may be useful to deploy in our research. Second, 

since the goal of our forecasting approach is to support inventory control decisions, a review of 

research on inventory control allows us to develop an appropriate framework for performance 

assessment. Lastly, previous studies of data aggregation help us elaborate on the effectiveness of 

different types of aggregation and incorporate them into our proposal. 

 

2.1 Intermittent Demand Time-series Forecasting Methods 

Since our study employs time-series forecasting methods, we will focus on exploring their usage 

for intermittent demand. Note that a comprehensive review of forecasting methods for general 

time series can be found in Syntetos et al. (2016); a discussion of other methods (e.g., causal 

models) in the context of intermittent demand is beyond the scope of this study and is provided 

in Hu et al. (2018) and Nikolopoulos (2020).   

 

Intermittent demand is characterized by several periods of zero demand interspersed by 

occasional non-zero demands. It follows that conventional time-series methods such as moving 

average and simple exponential smoothing (SES) would over-estimate the mean demand if 

applied immediately after a non-zero demand incident (Croston, 1972). To resolve this issue, 

Croston (1972) separated the demand series into two components – i.e., demand sizes and inter-
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demand intervals – and used SES for each of them; the per-period forecast was derived from the 

ratio of the smoothed demand size to the inter-demand interval. Essentially, Croston (1972) 

captures the compound nature of intermittent demand distribution. This method, however, 

assumes a stationary mean model (i.e., without trend and seasonality; for extended models, see 

Altay, Rudisill, & Litteral, 2008; Bermúdez, Segura, & Vercher, 2006).  

 

In practice, Croston’s method is widely used in industry and is available in various forecasting 

software packages (Syntetos & Boylan, 2005) although it is a biased estimator (Syntetos & 

Boylan, 2001). Later works proposed different correction factors to overcome the bias associated 

with Croston’s method (Levén & Segerstedt, 2004; Syntetos & Boylan, 2005; Teunter, Syntetos, 

& Zied Babai, 2011; Teunter & Sani, 2009). Nevertheless, empirical studies have revealed 

inconsistency on which is “the best” method (Bacchetti & Saccani, 2012). 

 

When investigating the inconsistency of empirical work, Bacchetti and Saccani (2012) pointed 

out several reasons including (1) undifferentiated application of forecasting methods on items 

with heterogeneous demand patterns, and (2) inappropriate/inconsistent usage of forecast 

performance metrics. We first address the former (the latter will be discussed at the end of this 

sub-section) using the proposed three-phase forecasting process from Boylan and Syntetos 

(2010). These authors argued that before applying any methods, it is important to define the 

rules/protocols for evaluating and classifying the demand pattern (such as the level of 

intermittence). The purpose of classification is to identify the appropriate forecasting method for 

each demand category. 
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One of the first papers considering such a task is Williams (1984) in which demand classification 

was based on partitioning the variance of the demand during the lead time; each constituent part 

became a dimension for classification. Williams (1984) identified three demand categories when 

lead times were constant – smooth, slow-moving, and sporadic – based on two dimensions: (1) 

the mean number of lead times between demands (how often demand occurred); and (2) the 

lumpiness of demand – measured via a product of the former dimension and the variability of the 

non-zero demand sizes. Since then, many alternative classification schemes have emerged 

(Eaves & Kingsman, 2004; Petropoulos & Kourentzes, 2015). The following describes the three 

recent schemes that have been empirically validated (i.e., Kostenko & Hyndman, 2006; Lengu, 

Syntetos, & Babai, 2014; Syntetos, Boylan, & Croston, 2005).  

 

Syntetos et al. (2005) proposed a classification scheme (hereafter SBC) with two dimensions: the 

average inter-demand interval (p) and the squared coefficient of variation of the demand sizes 

(CV2). This outcome was derived from the comparisons of the theoretical mean square errors 

(MSEs) of three forecasting methods: (1) Croston; (2) Syntetos and Boylan Approximation 

(SBA) – a bias-adjusted version of Croston; and (3) SES. It has been shown that SBA was 

optimal for p > 1.32 and/or CV2 > 0.49; otherwise, Croston was dominant. Accordingly, the 

classification scheme consisted of four distinct demand categories – erratic, lumpy, smooth, and 

intermittent – and their recommended forecasting methods – Croston for smooth demand and 

SBA for the others. Kostenko and Hyndman (2006) elaborated the comparison between SBA and 

Croston in Syntetos et al. (2005) and suggested another scheme (hereafter KH): using SBA for 

CV2 > 2-(3/2)p and Croston otherwise. Based on this boundary, there were two demand 

categories: smooth (when Croston was better) and lumpy (when SBA was better). Using a 
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sample of more than 10,000 SKUs from three different industries, Heinecke, Syntetos, and Wang 

(2013) found that despite its simplicity, SBC did not perform as well as KH.   

 

Unlike SBC and KH, which assumed the demand arrival process as a Bernoulli one (time is a 

discrete variable), Lengu et al. (2014) assumed a Poisson process (time is a continuous variable) 

and classified demand based on the distributional properties of the customer order sizes. Note 

that the “order size” refers to the number of units in a customer order while the “demand size” 

refers to the total number of units ordered during a given period of time. There were four 

categories corresponding to four order size distributions: Geometric, Logarithmic series, Poisson, 

and Pascal. Based on their differences, Lengu et al. (2014) developed a classification scheme 

using the mode 𝑚(𝑋) and the squared coefficient of variation of the order sizes CV2(X) as 

follows:  

(A) SKUs with  𝑚(𝑋) = 1 and CV2(X) < 1 may have a Poisson-Geometric distribution;  

(B) SKUs with  𝑚(𝑋) = 1 and CV2(X)  1 may have a Poisson-Logarithmic series 

distribution;  

(C) SKUs with  𝑚(𝑋)  2 and CV2(X) < 1 may have a Poisson-Poisson distribution; and  

(D) SKUs with  𝑚(𝑋)  2 and CV2(X)  1 may have a Poisson-Pascal distribution. 

 

Despite their advantages and disadvantages, among these above schemes, SBC is widely adopted 

in the literature. Hence, this study follows this scheme due to its parsimony and comparability to 

previous work. In particular, we deploy three parametric forecasting methods – Croston, SBA, 

and SES – in our analysis when examining different types of data aggregation. Another reason 

for selecting these methods is that their effectiveness in inventory control has been proven in the 
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literature when comparing with non-parametric approaches such as bootstrapping (Syntetos, Zied 

Babai, & Gardner, 2015). 

 

Lastly, we review the usage of various forecast accuracy metrics when evaluating time-series 

forecasting methods. In general, there are two basic types of metrics: scale-dependent and scale-

independent (see Hyndman & Koehler, 2006 for further refinement). The former has its scale 

depending on the scale of the data; thus it is useful to compare different methods applied to the 

same data set. By contrast, the latter can be used to compare forecast performance across 

different data sets. Examples of the former include root mean square error (RMSE) and mean 

absolute error (MAE), and of the latter include mean absolute percent error (MAPE), mean 

absolute scaled error (MASE), and relative geometric root mean squared error (RGRMSE). It is 

important to notice that some popular measures are ill-suited for intermittent demand because 

they become infinite or undefined with zero values in the demand series; for example, the 

commonly used metric MAPE cannot be deployed because of the “division by zero” problem 

(more examples can be found in Hyndman, 2006). Among various measures, MASE has been 

highly recommended for intermittent demand because it is scale-free and less sensitive to the 

existence of trend and/or seasonality (Hyndman, 2006); RGRMSE has also been shown to be a 

robust measure in the presence of outliers (Syntetos & Boylan, 2005). Another important 

measure for our study is the RMSE. Despite its scale-dependency it is a useful measure to 

estimate demand variation (or standard deviation) for inventory control purposes. In this study, 

smoothed mean square error (MSE) has been used to estimate the variance of our forecast. 

 

 



 17 

2.2 Inventory Control for Intermittent Demand 

Forecasting is an integral part of inventory management systems (Cavalieri, Garetti, Macchi, & 

Pinto, 2008). In fact, our purpose for examining forecasting methods is to support inventory-

related decisions; therefore, these methods should be evaluated based on their consequence – 

a.k.a., inventory performance. In other words, inventory and service level measures should play 

an important role in determining the optimal forecasting procedure (Petropoulos, Wang, & 

Disney, 2019). 

 

To obtain these measures, a simulation needs to be conducted with a defined inventory control 

policy. Typically, a periodic review policy (vis-à-vis continuous review policy) is preferred for 

intermittent demand items because of its relevance to practical situations, such as consolidating 

orders to a common supplier and convenient delivery schedule (see Sani & Kingsman, 1997 for a 

discussion of various periodic policies). For this study, we adopt the order-up-to policy (R, S) as 

the inventory replenishment policy (defined in the next paragraph) due to its simple structure and 

ease of implementation; where R and S represent the review period and the order-up-to-level, 

respectively. This policy has been widely adopted in many studies about intermittent demand 

(Babai et al., 2012; Syntetos, Babai, Dallery, & Teunter, 2009; Syntetos & Boylan, 2006; 

Syntetos, Nikolopoulos, & Boylan, 2010; Syntetos et al., 2015; Teunter, Syntetos, & Babai, 

2010). 

 

The (R, S) policy is defined as follows. At the end of every review period R, the inventory 

position is assessed such that if it is smaller than the order-up-to-level S, then a replenishment 

order will be triggered to raise the inventory position to S. For simplicity purposes, it is assumed 
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that any unsatisfied demand is backlogged and capacity for supply is infinite. The determination 

of R and S is followed by the instructions in Silver, Pyke, and Peterson (1998, p. 276); in 

particular, R is assumed to be fixed when deriving the value of S. In practice, the value of R tends 

to be predetermined by external factors such delivery schedules (though it can be selected via 

cost optimization). The value of S needs to cover the demand during the review time R and the 

lead time of a purchase delivery L with a target service level α. Given a continuous demand 

distribution during the time horizon (R+L), the order-up-to-level S is determined by Equation (1) 

 

                                                                       S = H-1(α) (1) 

 

where H-1 is the inverse cumulative distribution function of the demand during (R+L) period 

with the mean and standard deviation estimated by the forecast demand during (R+L) and the 

standard deviation of errors of forecasts over (R+L). 

 

The performance of the above policy can be evaluated via financial, operational, and service-

related metrics (Petropoulos et al., 2019). Financial metrics consider costs incurred in the system 

such as inventory holding, backlogs, and ordering. Operational metrics include order and 

inventory variance. Lastly, service-related metrics consist of cycle service level (i.e., the 

percentage of periods that end with non-negative inventory) and fill rate (i.e., the proportion of 

the demand satisfied directly from the stock). It is known in the literature that there are trade-offs 

between these metrics and previous work has adopted multiple criteria for evaluation purposes 

such as a trade-off curve between the holding cost and service level (Babai et al., 2012), or the 
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root mean square RMS that combines the order variance, holding cost, and service level into one 

single measure (Petropoulos et al., 2019). 

 

2.3 Data Aggregation 

For a given stage in a supply chain (e.g., retailing, wholesaling, or manufacturing), demand for 

products is realized at the individual order line level at a specific time. To facilitate decision 

making in an organization, this information is subsequently aggregated along important 

dimensions such as product, location, customer, and time. The basic input for forecasting is 

constructed from this selected level of data aggregation. Therefore, understanding the hierarchy 

and characteristics of data forming may reveal useful information to enhance forecasting 

outcome (Syntetos et al., 2016).  

 

Extant literature has considered two types of data aggregation: temporal and cross-sectional. 

Temporal aggregation refers to a process in which demand recorded in higher-frequency time 

buckets (e.g., hourly, daily) is combined in lower-frequency time buckets (e.g., weekly, 

monthly). Meanwhile, cross-sectional aggregation is a process that combines multiple time series 

based on the product family, location, or customer. A review of different forms of data 

aggregation is provided below. 

 

2.3.1 Temporal Aggregation 

Temporal aggregation has often been considered an effective way to eliminate zero-demand 

periods and thus improving forecasting for intermittent demand (Nikolopoulos, Syntetos, 

Boylan, Petropoulos, & Assimakopoulos, 2011; Rostami-Tabar, Babai, Syntetos, & Ducq, 2013). 
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There are two forms of temporal aggregation: non-overlapping and overlapping. The former 

divides the time horizon into consecutive non-overlapping buckets of equal length while in the 

latter equal-length buckets are constructed by dropping the oldest observation and adding the 

newest. The concern with non-overlapping aggregation is the reduced number of data points used 

for forecasting (a potential loss of information), especially for short demand histories. That said, 

the result from Nikolopoulos et al. (2011) has empirically confirmed the benefits of such an 

approach for intermittent demand series. 

   

Using a sample of monthly demand of 5,000 SKUs over 7 years of history, Nikolopoulos et al. 

(2011) proposed the aggregate-disaggregate intermittent demand (ADIDA) approach which 

consists of the following steps: (1) aggregate monthly demand into lower-frequency series (e.g., 

quarterly data); (2) apply forecasting methods (e.g., Naïve, SBA) on the new data and obtain the 

one-step ahead forecast; and (3) disaggregate the forecast into monthly forecasts using a chosen 

set of weights (e.g., equal weights). Interestingly, this approach may lead to improvements for a 

given forecasting method; thus, ADIDA may be perceived as a method self-improvement 

mechanism. A discussion of the mathematical properties of ADIDA can also be found in 

Spithourakis, Petropoulos, Nikolopoulos, and Assimakopoulos (2014). More relevant to our 

study is that Nikolopoulos et al. (2011) illustrated a promising outcome from considering an 

aggregation level equal to the lead-time plus one review period. This result has an important 

implication for inventory control purposes, particularly with the order-up-to policy. In fact, later 

work has confirmed that this aggregation level resulted in higher realized service levels and a 

higher inventory efficiency with respect to service-cost performance (Babai et al., 2012). 
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Subsequent studies have refined and/or expanded the ADIDA approach to improve forecast 

accuracy. Kourentzes, Petropoulos, and Trapero (2014) proposed the multi aggregation 

prediction algorithm (MAPA) that constructed multiple time series through temporal aggregation 

with different time bucket sizes and then leveraged the benefit of forecast combination on this 

group of time series. Petropoulos and Kourentzes (2015) further examined both method and 

temporal combinations; the former combined different forecasting methods on the same time 

series (e.g., Naïve, Croston’s, SBA, and SES) while the latter combined different time series 

generated via different aggregated frequencies. Petropoulos, Kourentzes, and Nikolopoulos 

(2016)  modified ADIDA via inverting the intermittent demand series. Last but not least, Lei et 

al. (2016) combined MAPA and the fuzzy Markov chain model and found this improved 

approach to be more stable and robust under various conditions. 

 

Nevertheless, temporal aggregation does not always perform well (Jin, Williams, Tokar, & 

Waller, 2015). Temporal aggregation is associated with a loss of information, and the statistical 

theory of information loss suggested that forecast error may increase (Amemiya & Wu, 1972; 

Marcellino, 1999). Babai et al. (2012) noted that for intermittent demand although the variance 

for demand sizes may increase, the variance for inter-demand intervals decreases with higher 

levels of temporal aggregation. Murray, Agard, and Barajas (2018a) argued that the inconclusive 

effectiveness of temporal aggregation may attribute to the way how input data was obtained in 

various studies. For example, temporal aggregation is more effective on distributor level data 

than on point-of-sale data because it reduces the bullwhip effect associated with distributor level 

data. Another example is that the chosen level of data aggregation (e.g., monthly, weekly) can 

alter the outcome. 
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2.3.2 Cross-sectional Aggregation 

In contrast to temporal aggregation, cross-sectional aggregation usually leads to a reduction in 

data variation (Babai et al., 2012). Here data is aggregated based on a specific hierarchical 

structure of the product, the location, or the customer. For example, aggregation of SKUs 

according to their product families has been widely adopted by researchers as well as 

practitioners; aggregation of demand across geographic regions or customer segments is 

common in marketing and sales. Many studies have been dedicated to identifying the optimal 

level of aggregation for forecasting (also referred to as hierarchical forecasting) – see Syntetos et 

al. (2016) for a review. Typically, hierarchical forecasting is made of two distinct processes: 

bottom-up and top-down. In the bottom-up approach, individual forecasts (e.g., SKU, store, 

customer type) are combined to produce an aggregated forecast (e.g., product family, stores in a 

region, all customer types). On the other hand, in the top-down approach, an aggregate forecast 

(that is obtained from aggregate data) is disaggregated to produce individual forecasts for each 

demand segment. In general, the literature is inconclusive as to which approach performs better 

(Syntetos et al., 2016). 

 

For intermittent demand, Viswanathan, Widiarta, and Piplani (2008) found contingent conditions 

for when to use bottom-up or top-down approach to forecast the aggregate data series. More 

specifically, when the variability of the inter-demand intervals of the sub-aggregate time series is 

low, the bottom-up approach is better using Croston’s method. On the other hand, under a high 

variability of inter-demand intervals and demand sizes and a high number of sub-aggregate 

series, the top-down approach outperforms. This implies the important role of the demand 

generation process in determining the level of aggregation (Zotteri et al., 2005). In fact, it has 
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been shown that understanding the demand generation process may yield substantial benefits 

when demand distribution tends to be compound in nature. For example, customer heterogeneity 

could significantly influence demand patterns (Kalchschmidt et al., 2006); or the degree of 

difference among products (or locations) that form the individual forecasts could impact the 

accuracy of the aggregate forecast (Zotteri et al., 2005).  

 

Because of our focus on customer heterogeneity, we will look further into this kind of 

aggregation. In a simulation study, Bartezzaghi, Verganti, & Zotteri (1999) illustrated that 

intermittent demand patterns emerged due to various structural characteristics of the market such 

as (1) low number of customers in the market, (2) high heterogeneity of customers, (3) low 

frequency of customer requests, (4) high variety of customer requests, and (5) high correlation 

between customer requests. In a case study, Kalchschmidt et al. (2006) examined three industrial 

contexts where heterogeneity in customers resulted in heterogeneity in the demand generation 

process. First, in the spare parts case, heterogeneity occurred due to varying customer size. 

Second, in the retail case, it occurred because of varying customer reactions to environmental 

conditions such as promotions and weather. Lastly, in the fresh food case, customers differed in 

terms of their sizes as well as their reactions to promotional activities. The authors then 

concluded that it would not be optimal to manage demand at an aggregate level when such 

heterogeneity existed. Instead, one should cluster the demand according to the source of 

heterogeneity and use appropriate forecasting method for each cluster base on its demand nature. 

 

The challenge of following Kalchschmidt et al. (2006)’s recommendation is there is no definite 

way to uncover customer heterogeneity. That said, one can rely on the segmentation variables 
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suggested by the marketing literature such as demographics, geography, and behavior (e.g., 

Foedermayr & Diamantopoulos, 2008; Kotler & Keller, 2011) to identify the source of 

heterogeneity. This effort is certainly constrained by the availability of customer information in 

the company’s internal systems as well as the cost of obtaining information from external 

sources. Fortunately, most companies store customer transactional data comprised of customers’ 

location and order/delivered quantity time series at the minimum. More importantly, recent 

developments in data mining have allowed effective solutions to create sub-groups of customers 

with similar behavior patterns (Murray, Agard, & Barajas, 2017) thereby enhancing demand 

prediction under the conditions of noisy and intermittent data (Murray, Agard, & Barajas, 2018a; 

2018b). 

 

Murray et al. (2017) proposed a behavioral segmentation approach under the condition of limited 

customer information. Their clustering method identified behavior patterns in historical noisy 

delivery data using the distance between multiple transaction time series. This proposed method 

was tested on both synthetic and real-world data. Subsequently, it was compared with the 

traditional method − i.e., clustering using the distance between multiple variables reflecting the 

statistical features of the demand such as median, kurtosis, sum, or purchase frequency. 

Relatively speaking, under hierarchical clustering, the proposed method (which uses dynamic 

time warping to derive distance) generated sub-groups with a better indication of behavior 

pattern regarding delivered quantity such as increasing, decreasing, behavior change, or stable. 

 

Another form of data aggregation that we have observed in the literature is the combination of 

temporal and cross-sectional aggregation. While the literature predominantly considered these 
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two types separately, their combination has been identified to yield potential benefits in recent 

studies (Kourentzes & Athanasopoulos, 2019; Lei et al., 2017; Spiliotis et al., 2020; Yagli, Yang, 

& Srinivasan, 2019). Lei et al. (2017) explored the effectiveness of combining MAPA and a 

product hierarchical structure consisting of item level demand and group level demand. Using a 

real dataset, they showed that the forecast generated would yield a smaller error (relative to SES 

and hierarchical forecasting methods) as well as a better inventory performance. The other works 

found an improvement in forecast accuracy when combining temporal aggregation with different 

types of product/geography hierarchy (Kourentzes & Athanasopoulos, 2019; Spiliotis et al., 

2020; Yagli et al., 2019). Our study also considers the combination of temporal and cross-

sectional aggregation; we, however, focus on the customer hierarchical structure and attempt to 

form customer groups endogenously according to the degree of similarity of demand patterns. 

 

In summary, drawing on the literature of intermittent demand, this study examines various 

forecasting methods (e.g., SES, Croston, SBA) in the context of combined temporal and cross-

sectional data aggregation with an emphasis on lead-time (plus one review period) and customer 

heterogeneity. Our proposed forecasting procedure will be evaluated through the inventory 

performance of an order-up-to policy. 
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3. METHODOLOGY 

To explore the impact of different levels of data aggregation on demand forecasting, we used a 

six-step process (see Figure 1). The first three steps aimed to collect and organize data into 

appropriate forms for forecasting. We then implemented a three-stage process to forecast and 

evaluate our forecasting procedure in steps 4 and 5. In the last step, we compared the inventory 

performance of our proposed procedure.  

 

 

Figure 1. Methodology steps 

Throughout this process, both quantitative and qualitative analyses were performed. The 

qualitative analysis included site visits and interviews with company employees to understand 

market structure, forces influencing demand patterns, and current practices of demand 

forecasting and inventory control; this allowed us to identify quantitative data to be collected and 

validate/justify analysis outcome. The process is described in the following sub-sections with a 

focus on the quantitative analysis. 

1. Data collection

2. Data preparation

3. Data analysis

4. Demand forecasting

5. Inventory control

6. Performance assessment
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3.1 Data Collection 

The collection of data was directed through a series of meetings with the sponsor company. 

These meetings allowed us to form a historical picture of how inventory management activities 

had been performed and identify relevant data for the project from existing information systems. 

Data collected for this study should include demand time series, lead-time, unit cost, and 

customer information. 

 

3.2 Data Preparation 

The collected data was aggregated and/or re-formatted for further analysis. Various approaches 

were applied to identify and handle missing data and outliers. Next, demand was aggregated into 

weekly and monthly time buckets. Finally, these demand time series were split into two parts: 

the training set and the test set. 

 

3.3 Data Analysis 

The purpose of this step is to understand the main characteristics of the data prepared in the 

previous step. Descriptive statistics of demand, lead-time, and unit cost were calculated. We also 

categorized demand patterns based on the SBC classification framework (see Section 2.1 for a 

detailed description). 

 

3.4 Demand Forecasting 

Having examined the characteristics of our dataset, we are ready to apply various forecasting 

methods. This section describes the three time-series forecasting methods used for different 

levels of data aggregation in our study.  
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3.4.1 Time-series Forecasting Methods 

There are three methods considered in this study including SES, Croston, and SBA. As discussed 

in the literature review, SBA is a bias-adjusted modification of Croston’s method and it has been 

shown to outperform this estimator both theoretically and empirically in many situations 

(Syntetos & Boylan, 2005). Given the non-intermittent nature of the demand for some demand 

series, especially the aggregate series, we decided to include SES. 

 

With SES, the estimate of the demand level Ft made at the end of period t-1 for the demand in 

period t is as follows: 

 Ft = Ft-1 + α(Dt-1 – Ft-1) (2) 

where Dt-1 is the actual demand in period t-1 and α is the smoothing constant, 0 ≤ α ≤ 1. 

 

With Croston’s method, the forecast is derived by: 

 𝐹 =  (3) 

where 

 𝑇 =  𝑇 +  𝛽(𝑇 −  𝑇 )  (4) 

and   

 𝑍 =  𝑍 +  𝛾(𝑍 −  𝑍 ) (5) 

being the estimates of the inter-demand interval and demand size, respectively; β and γ are 

smoothing constants, 0 ≤ β, γ ≤ 1. These estimates are updated at the end of periods with demand 

occurrence; if no demand occurs, they remain the same – i.e., 𝑇 =  𝑇  and 𝑍 =  𝑍 . Note 

that when demand occurs every period, Croston’s method is identical to SES. 
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With SBA, the forecast is given by: 

 𝐹 = 1 −  (6) 

 

Following the literature (e.g., Syntetos et al., 2009) we estimated the variance of the forecast 

error using the smoothed mean square error (MSE) given by: 

 MSEt = δ(Dt-1 – Ft-1)2 + (1-δ)MSEt-1     (7) 

where MSEt is the estimated mean square error made at the end of period t-1; δ is the smoothing 

constant, 0 ≤ δ ≤ 1.  

 

In practice, the value of (α, β, γ) tends to be small and is set to 0.05; the value of δ is fixed to 

0.25. These values are recommended by the literature as well as by many practitioners for 

intermittent demand (Syntetos, Babai, Davies, & Stephenson, 2010).  

 

3.4.2 Data Aggregation 

Our aggregation approach was built on existing work on temporal aggregation (Babai et al., 

2012) and cross-sectional aggregation (Kalchschmidt et al., 2006; Zotteri et al., 2005). In 

particular, there were three stages to evaluate the effect of data aggregation. 

 

In the first stage, we developed a baseline using SES, Croston, and SBA for each demand series 

that was arranged by fixed time buckets (weekly and monthly); this is a traditional forecasting 

approach without temporal aggregation. Next, using the same forecasting methods (i.e., SES, 

Croston, and SBA), we applied the ADIDA approach with an aggregation level equal to the lead 

time plus one review period (L+R) to forecast weekly and monthly demand (Babai et al., 2012). 
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More specifically, the forecast was derived from the following steps: (1) original data (monthly 

demand) was aggregated into a new series with (L+R)-month time bucket; (2) a specific 

forecasting method (for example, SES) was applied on the derived new series to generate the 

one-period ahead forecast; (3) this forecast was then broken down into equally weighted monthly 

forecasts; (4) the generated monthly forecast was the demand forecast of the original data.  

 

In the last stage, customer heterogeneity was considered. Selected forecasting methods were 

applied on separate customer groups and the final forecast for a particular SKU was the sum of 

the group forecasts. Adopted from Kalchschmidt et al. (2006), Figure 2 illustrates the cross-

sectional aggregation based on customer heterogeneity. In summary, our three-stage approach 

allowed us to evaluate the impact of temporal aggregation (relative to the baseline) and the 

subsequent impact of the combination of two levels of aggregation. 

 

 

Figure 2. Cross-sectional aggregation based on customer heterogeneity. Reprinted from 

“Forecasting Demand from Heterogeneous Customers,” by M. Kalchschmidt, R. Verganti, and 

G. Zotteri, 2006, International Journal of Operations & Production Management, 26(6), p. 635. 

Copyright by the Emerald Group Publishing Limited.  
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3.5 Inventory Control  

In this section, we describe how to empirically assess the performance of our proposed 

forecasting procedure via the up-to-level policy (S, R) in conjunction with three possible 

estimators and two levels of data aggregation. In particular, the demand history from the training 

set was used to initialize the estimates of the level and variance of demand. To evaluate the 

inventory control performance, a simulation was run on the test set (the remaining demand 

history) with initial inventory position, initial customer backorder quantity, and initial pending 

orders from suppliers set to zero.  

 

Our simulation model was a periodic review system that used the forecast obtained from our 

proposed forecasting procedure to estimate the average demand during lead time plus one review 

period (L+R) as well as the future demand variance (i.e., the MSE). For a given probability 

distribution of demand during (L+R) and a target cycle service level (CSL), the order-up-to-level 

S was computed as the inverse of the cumulative distribution function of demand over (L+R) and 

would be updated every review period during the test period. The review period R was set at 1. 

 

There were three target CSLs considered in our simulation: 90, 95, and 99 percent. Analogous to 

Babai et al. (2012), our reason for choosing such high levels is due to the fact that the sponsor 

company is a master distributor and has to maintain high service levels to its distributors (or 

other types of customers); lower service levels are not usual or recommended. Figure 3 illustrates 

our simulation flow chart.  
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3.6 Performance Assessment 

Different model settings used in the simulation were compared through two measures: inventory 

holding cost incurred and realized CSL. Following Babai et al. (2012), we constructed the 

efficiency curve from these two measures to evaluate the inventory performance of a given 

combination of time bucket and forecasting method. 

 

Our total inventory-related cost included the inventory holding cost and the backlog cost. The 

sponsor company had been calculating and tracking the inventory holding rate h for a number of 

years and found that h tended to be relatively stable and was fluctuated around 21 percent per 

Start 

Model setting 
* Time bucket 
* Forecasting method 
* Target cycle service level 
 

 

End 
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 Completed all model 
settings? 

N 

Results collection  
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initializing or updating 

Purchase order arrival 
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Reached the end of  
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Figure 3. Simulation flow chart. Adapted from do Rego & de Mesquita (2015, p. 8) 

and Law (2015, p. 50). 
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year. For the backlog cost, we calculated the backordering charge b via a ratio h/b = 10% from 

previous work (Syntetos et al., 2010). The realized CSL was calculated from the probability of 

non-negative inventory-on-hand. All metrics were calculated using the following formulas over 

the test period (a thorough discussion on inventory performance can be found in Petropoulos et 

al., 2019). 

 The inventory holding cost: HC = hE[max(IOHt ,0)]   (8) 

where IOHt is the inventory-on-hand at the end of period t (IOHt <0 indicates a backlog) 

and E[.] is the expectation operator. 

 The backlog cost: BC = bE[max(−IOHt ,0)]   (9) 

where the backordering charge b = 10*h = 2.1. 

 The total cost: TC = HC + BC    (10) 

 The realized CSL: s = Probability {IOHt  ≥  0} (11) 

 

In summary, our methodology allowed us to address our research question and evaluate our 

proposed forecasting procedure. The next sections present our data and results after 

implementing the steps elaborated here. 
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4. DATA 

In this section, we describe the collected data at the sponsor company – G.L. Huyett. Data 

preparation and analysis follow steps 2 and 3 in the methodology (Section 3).  

 

After a series of meetings between the research team and the executives at G.L. Huyett, data 

collection for a three-year time horizon was deemed appropriate (October 2016 − September 

2019). As a wholesale business, the company’s product assortment was modified over time 

based on customer demand dynamics; this time frame would allow us to include a considerate 

number of SKUs with stable demand. Here an SKU is defined as a distinct product item stored at 

a specific location/warehouse. The following describes key attributes of the collected dataset: 

 Customer orders included the quantity ordered from customers at a specific time. 

 SKU-specific characteristics included lead-times, average unit costs, and suppliers.  

 Customer profile included main industry code, supply chain’s role, and organization type. 

 

4.1 Data Preparation 

The following discusses how we derived product (or SKU) demand, lead-time, and unit cost for 

our final sample of 5,368 SKUs. From customer orders, the quantity ordered for each SKU was 

aggregated into weekly and monthly time buckets. Demand data was split into two parts: the 

training set including records of the first two years and the test set including the remaining one 

year. According to Hyndman and Athanasopoulos (2018), a typical size of the test set is about 20 

percent of the total sample. Further, previous studies on intermittent demand utilized a higher 

percentage ranging from 29 percent (Babai et al., 2012; Nikolopoulos et al., 2011) to 42 percent 

(do Rego & de Mesquita, 2015). Hence, we believe our chosen 33 percent (one out of three 

years) is appropriate.  
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The supplier base in the provided dataset was very large with thousands of suppliers inside and 

outside of the U.S. Each may supply multiple SKUs; however, the majority of them provided one 

SKU. A supplier could be a primary supplier for one SKU and non-primary for another. For 

simplicity, we focused on SKUs with a single supplier and assigned the lead-time for each SKU 

based on the average of the four recent purchase orders. The unit cost for each SKU was 

calculated from the average laid-in cost – i.e., the total cost incurred by the company to place the 

product in inventory including the cost to purchase one unit at source plus varying cost factors 

such as freight, processing fees, and tariffs.  

After defining the scope of the data, we started to filter the demand time series to ensure that the 

considered SKUs had relatively stable demand as well as had necessary data for performance 

assessment (Babai et al., 2012; Bacchetti, Plebani, Saccani, & Syntetos, 2013; do Rego & de 

Mesquita, 2015). More specifically, the following conditions were used: 

 SKUs existed at least three months in the company’s product portfolio.  

 SKUs had sufficient demand signals, i.e., having at least two non-zero demands to 

perform forecasting tasks. 

 SKUs had appropriate lead-times that allowed the initialization of demand interval 

forecasts under temporal aggregation. We followed the guideline in Babai et al. (2012) 

which imposed a maximum length of lead-time plus one review period; this maximum 

was equal to one-third of the length of the training period. For example, with monthly 

demand, a training set of 24 periods, and a review period of 1 month, the maximum 

length of lead-time allowed was 7 (= 24/3 – 1).  
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 An assumption of the probability distribution of the demand was needed to calculate the 

order-up-to-level S. Similar to Babai et al. (2012), we assumed demand was negative 

binomially distributed (NBD). 

 

4.2 Data Analysis 

Descriptive statistics of the demand, lead-time, and unit cost are provided in Tables 1, 2, and 3. 

Tables 1 and 2 present the distributional features across all SKUs including the minimum, 25th 

percentile, median, 75th percentile, and the maximum of the demand series constituents − i.e., 

demand size, inter-demand interval, and demand per period; these statistics were rounded to the 

third decimal place. A summary of lead-time and unit cost is provided in Table 3. This lead-time 

information was used to derive the lead-time in weeks and months in later analysis. Figure 4 

illustrates the distribution of the lead-time in days with a long tail; many SKUs had a lead-time 

less than 30 calendar days. 

 

Table 1. Descriptive statistics of monthly demand 

 Inter-demand 
interval (months) 

Demand size  
(units) 

Demand per period 
(units/month) 

Mean S.D Mean S.D. Mean S.D. 

Minimum 1.232   0.869   549.199  12,196.709   40.287   851.087  

25th Percentile 1.650   1.348   1,224.073  13,937.620   234.309   2,089.018  

Median 2.359   1.924   1,968.259  15,154.000   576.717   3,715.519  

75th Percentile 3.526   2.663   3,450.329  20,619.788   1,502.836   8,641.003  

Maximum 6.634   4.173   9,862.010  41,977.435   9,862.010   1,977.435  
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Table 2. Descriptive statistics of weekly demand 

 Inter-demand 
interval (weeks) 

Demand size 
(units) 

Demand per period 
(units/week) 

Mean S.D Mean S.D. Mean S.D. 

Minimum  2.463   4.222   442.068  12,075.767  0.000 0.000 

25th Percentile  5.132   6.290   891.471  13,409.822   4.827   65.165  

Median  8.668   8.723   1,434.098  14,616.279   27.490   332.545  

75the Percentile  13.979   11.881   2,537.871  19,299.008   167.062   1,431.308  

Maximum  28.986   18.368   8,634.183  37,949.151   8,634.183  37,949.151  

 

Table 3. Descriptive statistics of lead-time and unit cost 

 Lead-time (days) Unit cost ($/unit) 

Minimum 3.000  0.002  

25th Percentile 16.000  0.033  

Median 26.000  0.101  

75the Percentile 43.000  0.289  

Maximum 150.000  37.844  

 

 

Figure 4. Lead-time distribution 
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Finally, we categorized demand patterns based on the average inter-demand interval (p) and the 

squared coefficient of variation of the demand size (CV2) – a commonly used framework in the 

literature developed by Syntetos et al. (2005). Table 4 reports the number of SKUs (and 

corresponding percentage) in each category. It shows that when the time bucket is shorter, the 

lumpiness of our demand series increases; in other words, it is harder to predict future demand. 

 

Table 4. SKU demand classification according to Syntetos et al. (2005) 

Demand category 
Monthly demand Weekly demand 

Count Percent Count Percent 

Lumpy (p > 1.32; CV2 > 0.49) 3,050 57.8% 4,117 76.7% 

Erratic (p ≤ 1.32; CV2 > 0.49) 964 18.0% 129 2.4% 

Intermittent (p > 1.32; CV2 ≤ 0.49) 1,160 21.6% 1,117 20.8% 

Smooth (p ≤ 1.32; CV2 ≤ 0.49) 194 3.6% 5 0.1% 
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5. RESULTS 

To evaluate the impact of different types of data aggregation on demand forecasting for 

inventory control, we first discuss the results from temporal aggregation using lead-time 

information and then examine the impact of customer heterogeneity on these results. In both 

cases, the performance is reported using the metrics defined in Section 3.6. We conducted all 

analyses in RStudio – an integrated development environment for R programming language for 

statistical computing and graphics; to perform our forecasting task, we used the tsintermittent 

package (Kourentzes & Petropoulos, 2014). 

 

5.1 Temporal Aggregation 

As described in Section 3.4.2, this section presents the comparison between the baseline (i.e., the 

traditional forecasting approach without temporal aggregation) in Table 5 and the ADIDA 

aggregation approach in Table 6. Three forecasting methods – Croston, SBA, and SES – have 

been applied for both approaches with weekly and monthly time buckets. To distinguish the two, 

we denoted the methods under the ADIDA approach as (ADIDA, Croston), (ADIDA, SBA), and 

(ADIDA, SES). To facilitate cost comparison, we converted all inventory-related costs to 

monthly values (one month is equivalent to four weeks). 

 

For both Tables 5 and 6, the first three columns describe the model setting in our simulation (see 

Figure 3). With two time buckets, three forecasting methods, and three target CSLs, we 

conducted 18 simulation runs (=2*3*3) on each SKU for each approach. For every run, we 

calculated the inventory holding cost (Equation 8), the backlog cost (Equation 9), the total cost 

(Equation 10), and the realized CSL (Equation 11). There are 5,368 SKUs in our sample; thus 
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the value reported in the last four columns is the average value across all the SKUs. Note that 

when the time bucket is “week” all the average costs (per SKU) were multiplied by four in order 

to convert weekly costs to monthly costs.  

 

Table 5. Inventory performance of the baseline 

Time 
bucket 

Forecasting 
method 

Target 
CSL 
(%) 

Monthly 
holding cost 

($) 

Monthly 
backlog cost 

($) 

Total monthly 
cost 
($) 

Realized 
CSL 
(%) 

Week Croston 90%  2.92   7.15  10.07 80.36% 

95%  4.84   5.88  10.72 85.00% 

99%  13.23   4.39  17.62 90.14% 

SBA 90%  2.84   7.23  10.07 80.06% 

95%  4.75   5.93  10.68 84.83% 

99%  13.15   4.41  17.56 90.09% 

SES 90%  4.21   6.03  10.24 83.88% 

95%  7.11   5.17  12.28 87.50% 

99%  15.98   4.27  20.25 90.31% 

Month Croston 90%  4.06   14.27  18.33 70.34% 

95%  6.06   12.21  18.27 75.87% 

99%  12.76   10.00  22.76 81.97% 

SBA 90%  3.95   14.40  18.35 69.97% 

95%  5.93   12.29  18.22 75.64% 

99%  12.67   10.02  22.69 81.93% 

SES 90%  3.78   13.47  17.25 72.45% 

95%  6.07   11.46  17.53 77.82% 

99%  13.19   9.76  22.95 82.33% 
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Table 6. Inventory performance of temporal aggregation 

Time 
bucket 

Forecasting 
method 

Target 
CSL 
(%) 

Monthly 
holding cost 

($) 

Monthly 
backlog cost 

($) 

Total monthly 
cost 
($) 

Realized 
CSL 
(%) 

Week (ADIDA, 

Croston) 

90%  3.10   7.04  10.14 80.72% 

95%  4.92   5.82  10.74 85.29% 

99%  13.16   4.28  17.44 90.38% 

(ADIDA, 

SBA) 

90%  3.02   7.13  10.15 80.45% 

95%  4.82   5.88  10.70 85.11% 

99%  13.06   4.30  17.36 90.33% 

(ADIDA, 

SES) 

90%  3.75   6.17  9.92 83.47% 

95%  5.90   5.05  10.95 87.60% 

99%  14.72   3.90  18.62 91.13% 

Month (ADIDA, 

Croston) 

90%  4.15   14.20  18.35 70.34% 

95%  6.05   12.14  18.19 76.02% 

99%  12.87   9.88  22.75 82.13% 

(ADIDA, 

SBA) 

90%  4.03   14.33  18.36 70.01% 

95%  5.93   12.23  18.16 75.78% 

99%  12.77   9.90  22.67 82.09% 

(ADIDA, 

SES) 

90%  4.89   13.12  18.01 73.70% 

95%  6.95   11.35  18.30 78.51% 

99%  13.68   9.70  23.38 82.78% 

 

First, all the methods resulted in lower realized CSLs relative to the target CSLs. This outcome 

was expected due to (i) our assumptions on the initial simulation conditions and (ii) the lumpy 

nature of the dataset (Babai et al., 2012; Petropoulos et al., 2019). To better understand the 

impact of initial simulation conditions, we followed do Rego and de Mesquita (2015) and 

considered a warm-up period. The purpose of adding this period was to mitigate the impact of 

zero initial inventory, backlog, and pending purchase orders; no inventory performance 
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indicators would be computed during this period. Analogous to do Rego and de Mesquita (2015), 

we included a half-year warm-up period; hence, our test period in this scenario was half of a 

year. Under this new condition, the realized CSLs were improved (see Tables 7 and 8). 

Nevertheless, the insight from our analysis is qualitatively unchanged between with and without 

a warm-up period.   

 

Table 7. Inventory performance of the baseline with a warm-up period 

Time 
bucket 

Forecasting 
method 

Target 
CSL 
(%) 

Monthly 
holding cost 

($) 

Monthly 
backlog cost 

($) 

Total monthly 
cost 
(%) 

Realized 
CSL 
(%) 

Week Croston 90%  3.75   5.96   9.71  85.33% 

95%  6.43   4.26   10.69  91.16% 

99%  18.58   2.19   20.77  97.09% 

SBA 90%  3.65   6.06   9.71  85.01% 

95%  6.30   4.33   10.63  90.97% 

99%  18.46   2.22   20.68  97.05% 

SES 90%  5.74   4.14   9.88  90.10% 

95%  9.98   3.03   13.01  94.58% 

99%  23.08   1.86   24.94  97.56% 

Month Croston 90%  5.62   9.00   14.62  81.59% 

95%  8.42   6.06   14.48  88.82% 

99%  18.07   2.78   20.85  96.47% 

SBA 90%  5.46   9.19   14.65  81.09% 

95%  8.25   6.18   14.43  88.52% 

99%  17.95   2.81   20.76  96.40% 

SES 90%  5.31   7.78   13.09  84.54% 

95%  8.55   4.86   13.41  91.46% 

99%  18.83   2.40   21.23  96.94% 
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Table 8. Inventory performance of temporal aggregation with a warm-up period 

Time 
bucket 

Forecasting 
method 

Target 
CSL 
(%) 

Monthly 
holding cost 

($) 

Monthly 
backlog cost 

($) 

Total monthly 
cost 
($) 

Realized 
CSL 
(%) 

Week (ADIDA, 

Croston) 

90%  3.98   5.74   9.72  85.71% 

95%  6.52   4.16   10.68  91.45% 

99%  18.45   2.05   20.50  97.37% 

(ADIDA, 

SBA) 

90%  3.87   5.85   9.72  85.40% 

95%  6.39   4.23   10.62  91.23% 

99%  18.31   2.07   20.38  97.33% 

(ADIDA, 

SES) 

90%  4.76   4.53   9.29  88.92% 

95%  7.77   3.04   10.81  94.06% 

99%  20.63   1.47   22.10  98.08% 

Month (ADIDA, 

Croston) 

90%  5.88   8.69   14.57  81.86% 

95%  8.56   5.85   14.41  89.11% 

99%  18.33   2.54   20.87  96.71% 

(ADIDA, 

SBA) 

90%  5.71   8.87   14.58  81.47% 

95%  8.38   5.97   14.35  88.78% 

99%  18.19   2.56   20.75  96.67% 

(ADIDA, 

SES) 

90%  6.82   7.18   14.00  85.93% 

95%  9.71   4.72   14.43  91.94% 

99%  19.36   2.32   21.68  97.40% 

 

Second, our result clearly shows the basic trade-off among different inventory performance 

metrics. As seen in all tables, for a given time bucket and forecasting method, as monthly 

holding cost went up, monthly backlog cost went down, and the realized CSL went up. In other 

words, when the company carried a higher level of inventory, the amount of backlog was 

smaller, and the service level was higher. As noted in Section 3.6, to compare inventory 

performance, we constructed the efficiency curves from the monthly holding cost and the 

realized CSL. These curves depicted the realized CSL as a function of the inventory holding cost 

(see Figure 5). For a given level of the holding cost, the curve that was further from the x-axis 
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indicated more efficiency. It follows that forecasting using a weekly time bucket generally 

yielded a higher efficiency relative to the monthly time bucket (as shown in Figures 5 and 6).  

  

  

  

Figure 5. Efficiency curves for weekly and monthly time buckets 
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Figure 6. Efficiency curves for weekly and monthly time buckets with a warm-up period 
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Due to its relatively consistent dominance, a weekly time bucket was used in our later analysis. 

When comparing the baseline with the ADIDA temporal aggregation approach, the impact of the 

latter was contingent on the forecasting method used, especially between Croston/SBA and SES. 

In terms of realized CSL, while the ADIDA approach increased the service level under 

Croston/SBA, that impact was only observed at higher levels of the target CSL under SES (see 

Tables 5 and 6). In terms of efficiency, the ADIDA approach had a stronger positive impact on 

SES than on Croston/SBA (see Figure 7); further, higher efficiency was observed at higher levels 

of the target CSL. 
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Figure 7. Efficiency curves for the baseline and temporal aggregation 

 

 

 

 



 48 

Lastly, a comparison across forecasting methods under the baseline and temporal aggregation is 

illustrated in Figure 8. The efficiency curves of two methods − Croston and SBA − were almost 

identical. The SES, however, outperformed the Croston/SBA for a certain range of the service 

levels under the baseline and became more efficient under temporal aggregation. 

 

 

Figure 8. Efficiency curves for forecasting methods under the baseline and temporal aggregation 
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5.2 Cross-sectional Aggregation 

Our goal in this section is to explore a possible source of customer heterogeneity that may help 

improve the performance discussed in Section 5.1. Given the available customer information 

from the company’s information system, we identified 621 SKUs purchased from these 

customers. Each customer was characterized by its organization type (such as headquarters and 

branch), industry type (such as automotive, fasteners, and aerospace), and supply chain role 

(such as original equipment manufacturer, wholesaler, and retailer). Three hundred and fourteen 

SKUs (51 percent) were purchased by a single customer; many of these SKUs were customized 

parts. The remaining 307 SKUs were each purchased by a range of 2 to 11 customers. 

 

We focused on SKUs that had more than one customer and did not achieve good inventory 

performance in Section 5.1. In particular, we selected SKUs with a realized CSL less than or 

equal to 80 percent. Our purpose is to explore if customer heterogeneity could be a source to 

improve inventory performance after considering temporal aggregation. There were 27 SKUs 

that met our criteria; such a small sample made it impossible to conduct any data mining 

techniques. Therefore, our approach here is exploratory in nature.  

 

First, we plotted all the weekly demand series of every customer purchasing a specific SKU and 

explored their patterns. There were 14 SKUs (approximately 52 percent) sharing a similar 

pattern, in which one customer purchased more regularly than the others. Figure 9 illustrates the 

identified patterns from an SKU in our sample with 7 customers; Customer 3 tended to purchase 

more regularly than the other 6 customers. Next, we forecasted the demand of the relatively 

regular customer using the SES with the ADIDA temporal aggregation approach and 95 percent 
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target CSL, and then compared its inventory performance (realized CSL) with the performance 

of the whole SKU demand series. We found that the realized CSL of the forecasting on regular 

customer series was at least the same or better than the performance of the SKU demand series, 

with an increase of as high as 29.63 percent on the realized CSL (see SKU number 1 in Table 9). 

Finally, we examined the characteristics of these customers; the descriptive characteristics, 

however, did not provide any indicators to distinguish regular customers at the SKU level.  
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Figure 9. An illustration of customer purchase patterns of an SKU 
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Table 9. The inventory performance of forecasting on regular customer demand  

SKU 

number 

Realized CSL of the regular 

customer demand series (1) 

Realized CSL of the 

SKU (2) 

Difference (1-2) 

1 94.44% 64.81% 29.63% 

2 85.19% 68.52% 16.67% 

3 88.89% 72.22% 16.67% 

4 85.19% 72.22% 12.96% 

5 83.33% 70.37% 12.96% 

6 77.78% 72.22% 5.56% 

7 74.07% 72.22% 1.85% 

8 77.78% 77.78% 0.00% 

9 79.63% 79.63% 0.00% 

10 70.37% 70.37% 0.00% 

11 62.96% 62.96% 0.00% 

12 77.78% 77.78% 0.00% 

13 77.78% 77.78% 0.00% 

14 72.22% 72.22% 0.00% 
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6. DISCUSSION 

6.1 Result Implications 

Our results may yield important implications for the forecasting practices at the sponsor 

company as well as the literature on data aggregation. The following discusses our key findings. 

 

First, the dominant performance of a weekly time bucket relative to a monthly time bucket 

showed the sensitivity of the input data composition to the forecasting approach. On the one 

hand, a longer time bucket may reduce the intermittence level of the series; on the other hand, it 

may lose helpful demand signal information. Depending on the nature of the dataset, the 

interaction of these two forces manifests differently. In the context of the study, our finding 

might have an important implication for current practices at the sponsor company when setting 

its forecasting update frequency. A more frequent update (such as weekly instead of monthly) 

might help increase the overall inventory efficiency even though the demand patterns become 

lumpier (as shown in Table 4). With automation, a higher update frequency is implementable. It 

is important to note that when the target CSL was very high (such as 99 percent), the distinction 

between weekly and monthly became less obvious (see Figure 6). 

 

Second, it showed that temporal aggregation could be an effective tool to increase inventory 

performance, especially at higher levels of the target CSL. Although this result is consistent with 

Babai et al. (2012), our finding further contrasts the effect of temporal aggregation in 

constructing input data (as discussed in the above paragraph) with its effect in forecasting future 

demand. With our data, the former was not as helpful as the latter. This outcome is particularly 

useful for small and medium-sized enterprises operating at high service levels, such as the 
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sponsor company of this project. In fact, temporal aggregation based on lead-time (plus one 

review period) is intuitive for practitioners dealing with placing orders for intermittent demand 

items. This behavior was manifested in the inventory classification framework that the sponsor 

company has been using for several years. Hence, it would be relatively easy for practitioners to 

adopt this new approach. 

 

Third, our result on the comparison across forecasting methods is different from the framework 

developed by Syntetos et al. (2005) in which the SES method was dominated by Croston/SBA 

under the traditional approach without temporal aggregation (i.e., the baseline in our study). Note 

that the recommendation from Syntetos et al. (2005) was based on the comparison of a measure 

of the forecast error (i.e., MSE) while our study used the inventory efficiency curve. Therefore, 

our finding is applicable to a specific purpose of demand forecasting – i.e., to support inventory 

management. More importantly, it implies a heterogeneous effect of temporal aggregation on 

forecasting methods. 

 

Lastly, we explored the customer descriptive characteristics and their purchase behavior to 

improve forecasting performance. Our result seems to indicate that taking into account the 

purchase behavior of distinct types of customers could help improve the forecast; however, this 

evidence was relatively weak and exploratory in nature. Further, the customer descriptive 

information was incomplete and not helpful to address customer heterogeneity at the SKU level.  
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6.2 Limitation and Future Research 

The results of this study have been developed using certain assumptions that are worth 

considering. First, we assumed constant lead-time and negative binomially distributed demand. 

Second, we imposed commonly used values of the smooth parameters in our estimates of future 

demand and forecast variance. Third, there were no lost sales and unfulfilled demand was 

backordered. Some of these assumptions were indeed relevant at the sponsor company (such as 

constant lead-time and backlog practice); however, they certainly limited the generalization of 

our results. Future research could consider relaxing these assumptions. 

 

Another limitation of our work is our collected data. The demand sample was relatively short in 

duration and thus many SKUs were excluded due to insufficient demand signals for analysis. 

Our data on customer characteristics was incomplete. Future research at the sponsor company 

should consider a longer time horizon in the demand sample. 
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7. CONCLUSION 

The purpose of our study has been to examine the inventory efficiency of integrating lead-time 

and customer heterogeneity into forecasting using temporal and cross-sectional aggregation. 

Three time-series forecasting methods – Croston, SBA, and SES – have been deployed when 

investigating the inventory performance of these types of aggregation. Our analysis of temporal 

aggregation that incorporates lead-time information highlighted the favorable inventory 

performance of such an approach. When augmented with customer purchase behavior over time, 

the forecasting procedure appeared to enhance the performance. All in all, our work has 

demonstrated the potential benefits of considering different types of data aggregation when 

forecasting for inventory control.  

 

Data aggregation can strengthen or attenuate different structural features of a time series, 

including systematic and random components. Hence, it can be a helpful tool to better 

understand the data generation process. We hope our study will spark further interest into this 

stream of research. 
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