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ABSTRACT

This project presents a next-generation risk management framework designed to proactively identify and mitigate long-
term risks in the cell therapy supply chain. This framework leverages Natural Language Processing (NLP) to interpret
large volumes of unstructured data from the media to create two data-driven scenarios. The model is trained on 13,377
news articles per country within the sponsor’s company network from 2011 to 2024, combined with structured economic
and security indicators, to forecast political risk in 2027. On the basis of the publicly available country annual risk index,
our model identifies Japan as facing the most significant increase in political risk, with its index rising from 10.8/100 in
2024 to 16.2 in 2027. Two scenarios are then generated to translate risk signals into operational impact. Through
simulation of local geopolitical disruption, Scenario A reveals that existing mitigation strategies are insufficient: market
share would decline by 20%. Building on the disruption analysis in Scenario A, Scenario B further explores the structural
vulnerabilities in the digital aspect by simulating three strategic future "worst to best" orders: a reactive, compliance-
driven path; a fragmented and vulnerable system; and a secure and connected supply chain. These simulations reflect
different levels of digital maturity, governance, and risk readiness. Scenario B demonstrates that transitioning to a fully
integrated, secure digital infrastructure could reduce inventory holding costs by up to 25%, improve service levels by
40%, and cut recovery time by more than 50%, establishing a measurable pathway to both operational efficiency and
digital resilience. Together, these scenarios emphasize the importance of proactive leadership, integrated technology,
and strategic planning to build a resilient supply chain.
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1. INTRODUCTION

1.1. Motivation

Supply chain disruptions can have life-threatening consequences in the healthcare industry. This project focuses
on the cell therapy supply chain, a sector in innovative pharmaceuticals, which is particularly susceptible to disruption
because of its highly customized processes, requirement for refrigerated logistics, and time-sensitive delivery. Recent
global events, such as the COVID-19 pandemic, geopolitical conflicts, and natural disasters, have further exposed the
vulnerabilities of global networks.

As a result, pharmaceutical companies are placing greater emphasis on discovering more robust and proactive
risk management strategies to ensure business continuity, maintain competitive advantage, and uphold regulatory
compliance. Our partner company is a multinational corporation, producing cell therapy for blood cancer treatment, with
its headquarters in New Jersey. With a sophisticated global supply chain spanning multiple continents, encompassing
state-of-the-art manufacturing facilities and a network of suppliers, the company navigates a diverse array of risks that
could disrupt its operation and mission.

These risks span a spectrum, from the rarity of pharmaceutical-grade materials to geographic instability and
natural disasters to cybersecurity threats. Despite its functionality, the company's current risk management approach has
several limitations. Firstly, the existing system is reactive; it primarily responds to disruptions after they occur, rather
than proactively identifying and mitigating potential risks. Furthermore, the manual assessment of many risk evaluation
and mitigation tasks leads to inefficiencies and potential human errors. Lastly, current static models do not adequately
account for the dynamic nature of global supply chains, innovative cell therapy supply chain characteristics, and
emerging risk factors.

To address these challenges, the company is seeking to develop a next-generation risk management system that
leverages advanced technologies. This initiative aligns with the company's strategic goals of enhancing supply chain

resilience, improving operational efficiency, and solidifying its position as an industry leader in technology.

1.2. Problem Statement

The primary objective of this project is to design and implement a comprehensive, data-driven risk management
framework that will enable the partner company to proactively identify, assess, and mitigate supply chain risks across
its global operations.

This next-generation system should provide real-time insights, artificial intelligence-driven capabilities, and
actionable recommendations to support informed decision-making at various levels of the organization. In this context,
the key questions to be addressed include

1. How can advanced analytical methods be effectively integrated to create a proactive long-term management

framework to predict risk indicators?



What methodologies and models can be developed to accurately predict and quantify potential disruptions
across different risk categories (e.g., operational, financial, geopolitical, environmental)?
How can we create a solution that offers our sponsor company actionable insights and recommendations for

risk mitigation strategies?

1.3.Scope: Project Goals and Expected Outcomes

The overarching goal of this project is to provide the partner company with a risk management framework that

enhances its ability to navigate the complexities of global supply chains in an increasingly uncertain business

environment. To achieve this, we will focus on the following key areas:

1.

Risk Identification and Assessment: Discover models that can identify potential long-term risks (3—7 years
or more) across multiple dimensions, including operational and environmental factors.

Data Integration: Develop a scenario planning model that consolidates information from various internal
and external sources as described in Table 1, including supplier data, market intelligence, and geopolitical
indicators.

Decision Support and Scenario Planning: Develop simulation tools that allow supply chain managers to
explore various "what-if" scenarios and evaluate the potential outcomes of different risk mitigation
strategies.

Integration with Existing Systems: The model is a prototype, and the company will need to test the
integration of the new model with its existing supply chain management, enterprise resource planning (ERP),

and data repository systems to facilitate data flow and decision execution.

Table 1. Internal data gathered from sponsor company

Data Classification | Subclassification Data Comment on importance
Risk management | Risks assessment and mitigation The company's approach to risk management will
plan in the next 0-3 years have a long-lasting impact. Being robust and

adaptable will support long-term risk mitigation. This

Integrated and enterprise risk insight is foundational for understanding how

management processes, schematic vulnerable the company is to different types of future

process risks.




Supply chain Overview of manufacturing and Such data is critical for risk identification as it helps

mapping and supply chain network locate bottlenecks, vulnerabilities, exposure to risks,
planning and long-term infrastructure.
Material and capacity planning Understanding the planning horizon helps in
parameters assessing flexibility and responsiveness to changes.
Supplier performance Supplier reliability and geographical risk (e.g.,

disruptions due to political or environmental reasons)

are major considerations in long-term risk planning.

The expected deliveries for this project include:
e A comprehensive risk management framework tailored to the partner company's global supply chain operations.
e A fully functional prototype of the next-generation risk management framework, including exogenous data
integration and visualization components.
o Expected set of key performance indicators (KPIs) to measure the effectiveness of the new risk management
approach.
e Recommendations for implementation, change management, and ongoing system maintenance.
o Detailed documentation of the system framework developed during the project.
Upon successful implementation, the partner company anticipates significant improvements in its ability to
identify and mitigate supply chain risks, leading to enhanced operational resilience, reduced disruptions, and improved

supply chain performance.

2. STATE OF PRACTICE

In this section, we will characterize the supply chain of cell therapy and subsequently explore the methodology
of risk management that is currently applicable to managing its complexity. We will discuss natural language processing
(NLP) and simulation-based modeling, two advanced solutions that offer opportunities to integrate with traditional

scenario planning.
2.1. Generative Biopharma for Cell Therapy

Cell therapy, a vital domain of generative biopharma, involves modifying or introducing living cells into patients
to treat diseases, particularly cancers. A prominent example is Chimeric Antigen Receptor T-cell (CAR-T) therapy,
which engineers a patient’s T cells to express specific receptors that enable the targeted elimination of cancer cells. This

7



personalized treatment has revolutionized oncology, particularly in addressing hematologic cancers (Fliesler, 2022).

Figure 1 provides a comprehensive overview of the development and mechanisms of CAR-T cell therapy.

Figure 1. Mechanisms of CAR-T (Poojary et al., 2023)
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Despite its success, CAR-T therapy faces challenges such as the difficulty of obtaining sufficient functional T
cells from patients and the high cost and time required for individualized manufacturing. To overcome these barriers,
researchers have made significant advancements. Harvard Medical School's Professor George Q. Daley has developed
a method to use induced pluripotent stem cells (iPS cells) to produce generic CAR-T cells at scale. According to Daley,
"Generic iPS cells can be converted to CAR-T cells not only more efficiently but more effectively, creating an enhanced
CAR-T cell that more faithfully resembles the gold-standard clinical-grade cells we currently use. Our strategy could
enable off-the-shelf CAR-T therapies and help more patients access these treatments." (Fliesler, 2022).

In parallel, Stanford Medicine has introduced a pioneering cell-based therapy for metastatic melanoma using
tumor-infiltrating lymphocytes harvested from patients' tumors. These lymphocytes are grown in the lab and then given
back to the patient to boost their immune system's fight against cancer cells, showing promise for better treatment of

solid tumors (Conger, 2024).

2.2. Cell Therapy Supply Chain Characteristics

The development of effective supply chain strategies is critical to ensuring that these groundbreaking treatments
are accessible to patients on a global scale. The uncertainty framework is a strategic approach used to analyze and address

the unpredictability and variability inherent in complex systems, such as supply chains for innovative products. As
8



described by Lee (2002), this framework helps organizations align their strategies with different types of supply and
demand uncertainties, enabling more resilient and adaptive decision-making. This is relevant for cell therapy products,
such as CAR-T cells, which face high demand uncertainty due to short product lifecycles, prohibitive costs, and patient-
specific needs. On the supply side, the processes are often evolving and rely on emerging technologies, low and variable
manufacturing yields, and a limited supply base.

By applying the "uncertainty framework," the challenges of CAR-T therapy's individualized production and high
costs can be mitigated through responsive supply chain strategies. For instance, advancements like off-the-shelf CAR-T
cells derived from iPSCs or tumor-infiltrating lymphocytes can shift these therapies toward more stable supply processes.
These innovations reduce reliance on patient-specific cell sourcing and enable scalable, efficient manufacturing
processes. Aligning the supply chain to meet the demand uncertainties of innovative therapies and addressing evolving
supply conditions is essential to make these life-saving treatments more accessible, affordable, and sustainable for
patients worldwide. In the next section, we will present state-of-the-practice for long-term risk management of innovative

products with a high uncertainty supply chain (Lee, 2002).

2.3. Long-term Supply Chain Risk Management

Risk management has always been under the radar of corporate and supply chain professionals. However, the
attention given to the topic has become unprecedentedly heightened as the world faces the COVID-19 pandemic, the
Ukraine-Russia war, and US-China tension. Companies struggle to strike a balance between resilience and cost as the
economy is recovering from a recent crisis. Nevertheless, the rapid advent of artificial intelligence has brought about
opportunities and novel applications for risk management methodologies to evolve.

This section begins to examine the fundamentals of a risk management framework that includes four stages: risk
identification, risk assessment, risk mitigation, and risk resilience (Emrouznejad et al., 2023). Risk identification is the
process of mapping the current supply chain design with factors or events that potentially create threats to the operation
of the company. The source of input data often relies on monitoring the news, industrial trends, or market reports. Risk
assessment involves projecting the likelihood of the risk materializing and the severity of the impact it consequently has
on the company. Common techniques in industry are Failure Modes and Effects Analysis (FMEA), Fault Tree Analysis,
and Business Impact Analysis (BIA). Next, risk mitigation entails defining and implementing preventive measures to
eliminate or reduce the identified risk. This stage often translates into a Business Continuity Plan (BCP), which cascades
throughout the organization. The effectiveness of a company’s risk management can be assessed with metrics such as
Time to Recovery (TTR) and Time to Survive (TTS). Lastly, risk resilience is a cycle of observing and assessing
vulnerabilities to continuously build capabilities and reduce susceptibility to disruptions (Revilla et al., 2023).

PESTLE is an acronym for political, economic, social, technological, legal, and environmental factors. PESTLE
provides a comprehensive lens for evaluating external risks. This framework remains a cornerstone for strategic

environmental analysis and was first introduced in Francis J. Aguilar's 1967 book Scanning the Business Environment.
9



The PESTLE framework has significantly evolved since its inception, becoming integral to strategic decision-making
across various industries. Recent advancements have enhanced its analytical depth and predictive capabilities.

At present, our sponsor company has adopted the above principles with the Integrated Risk Management (IRM)
and Enterprise Risk Management (ERM) framework. This implementation of IRM and ERM shifts away from a siloed
approach where individual functions manage their unique risks independently. Hence, IRM and ERM enable consistency
at the corporate level, enhance visibility to internal risk concentration, and coordinate optimal mitigation strategies. The
company is currently outsourcing the process of collecting information to third-party intelligence services. However,
these services tend to focus on short-term risk, typically spanning from months to within a year or two. Moreover, the
dynamic and volatile nature of risk leads to an overwhelming volume of information. As a result, such reports fail to
deliver proportional value to the company, as executives find them scattered and lacking prominent trends from which
they can extract actionable insights.

Next, we will explore analytical techniques to assist with the steps outlined in the aforementioned risk

management framework.

2.4. Natural Language Processing (NLP)

First, we look at Natural Language Processing (NLP) for risk identification, which taps into the resources of the
media. This approach is a more efficient way to extract relevant information for insightful trends.

NLP is a subfield of artificial intelligence (Al) that enables computers to interact with human language by
reading, recognizing, and interpreting texts or speech. Significant advancements have been made in the field of NLP, as
a plethora of applications have been developed, such as sentiment analysis, pattern recognition, speech recognition, and
translation. With relevant and appropriate adaptations, these tools can shape how unstructured data are collected and
analyzed to influence supply chain decision-making (Jackson et al., 2023).

Sentiment analysis is gaining popularity and is well-developed as one NLP technique. The method involves
extracting verbatims to derive opinions, emotions, and attitudes towards a particular topic. Companies increasingly
employ it to track and review customers’ ratings and remarks about their products and services (Saad & Saberi, 2017).
By using text mining with NLP, patterns and trends can emerge that might not be immediately apparent in the form of
words or databases.

Semantic search, when combined with sentiment analysis, is a powerful technique in risk identification. This
searching technique aims to retrieve information based on an understanding of context and the intent of the user’s queries,
rather than relying solely on exact keyword matching like traditional search engines do (Saad & Saberi, 2017).

While creating an NLP model from the beginning is ideal to govern the source of data used for model training,
it is data-intensive, resource-consuming, and computationally demanding. For the scope of this project, we will utilize
the readily available Application Programming Interface (API). APl is a set of functions, classes, and modules that have

been built by developers and are customizable by contextualizing our input variables. Natural Language Toolkit (NLTK),
10



a Python-based package that works with human language data, offers the ability to perform the sequencing of NLP
processing tasks shown in Figure 2. Sequencing NLP ensures that the model captures the correct order and relationships

between words, which is critical for accurately understanding, generating, or translating language.

Figure 2. Key steps in NLP (IBM, 2024)
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applications.

2.5. Simulation-based Supply Chain Risk Modeling

Simulation models address the limitations of traditional analytical models by encapsulating the nonlinearity,
unpredictability, and complexity of an interconnected supply chain. Volatile variables like unpredictable demand,
inconsistent lead times, different inventory strategies, and rare events called "black swans," as explained by Taleb (2007),
can provide valuable insights and practical advice to executives when shown through simulation models (Jackson et al.,
2023). Figure 3 illustrates how the NLP and API workflow arrives at simulation models as compared to traditional

modeling methods.

Figure 3. Traditional workflow versus NLP utilization (Jackson et al., 2023)
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2.6. Scenario Planning

Scenario planning is a strategic approach that adopts an "open systems" perspective, acknowledging the
influence of external environments—such as geopolitical events, stakeholder demands, media, natural phenomena, and
organizations’ strategic decisions. By gathering and analyzing relevant data, scenario planning develops comprehensive
sets of scenarios that depict macro environments the organization might face, enabling proactive and adaptive strategic
decision-making (Phadnis et al., 2022).

The MIT Center for Transportation and Logistics (CTL) Scenario Creation Framework provides a structured
method for planning (Figure 4) under uncertainty by distinguishing between controllable decisions and uncontrollable

external forces to enable effective preparation and contingency planning.

Figure 4. Generic scenario creation process (Phadnis et al., 2022)

Step 1: Define scope of the Step 2 Identify and compile Step 3: Identify and compile Step 4'. Estlmate impact of
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Despite the growing complexity of the cell therapy supply chain, current risk management practices remain
limited in their ability to address long-term uncertainty. The uncertainty framework highlights the need for differentiated
strategies based on supply and demand characteristics, yet its application to cell therapy is underutilized. The company
currently relies on established tools such as Integrated Risk Management (IRM) and Enterprise Risk Management
(ERM), but these are typically short-term in focus and lack the foresight needed for strategic decision-making.
Meanwhile, advanced analytical approaches such as Natural Language Processing (NLP) offer a scalable method to
extract early warning signals from unstructured media sources. Furthermore, simulation-based supply chain modeling
provides deeper insight into system-level weaknesses. However, these tools are not yet fully integrated into a structured
approach for scenario planning, which is essential for anticipating and preparing for a range of long-term futures.
Together, these gaps highlight the need for a more proactive, data-driven strategy for long-term risk identification,

scenario planning, and mitigation tailored to the unique challenges of cell therapy.

3. METHODOLOGY

In this section, we will present the development and selection of our methodology framework, which integrates

both internal and exogenous factors. Then, each step in the framework will be elaborated and discussed in detail.
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3.1. Selection of Methodology

Our methodology, shown in Figure 5 below, employs a structured scenario planning approach to tackle the long-
term risk management challenges of our sponsor company. By integrating the PESTLE framework explained in Section
2.3 with advanced tools like NLP and simulation modeling, this approach enables a thorough analysis of internal and
external factors. The goal is to generate plausible scenarios and actionable recommendations to support strategic
decision-making.

We chose this methodology for its ability to combine qualitative insights with data-driven techniques, ensuring
a comprehensive evaluation of risks. The framework provides a robust foundation for assessing chosen external factors,
while NLP and simulation modeling offer advanced capabilities for trend analysis and scenario generation. This hybrid
approach is well suited for addressing the complexity and uncertainty inherent in long-term risk management.

For instance, integrating machine learning and natural language processing (NLP) allows for the analysis of extensive
data sources, such as news articles and social media, facilitating a dynamic assessment of external factors. Additionally,
hybrid modeling approaches that combine PESTLE analysis with simulation techniques have emerged, providing a more
comprehensive understanding of complex, interconnected risks. These methodologies enable the simulation of various

scenarios, aiding in robust decision-making and strategic planning. (Fakhimi & Mustafee, 2024).

Figure 5. Scenario planning methodology framework for this project

Scenario Planning Methodology Framework
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3.2. Framework Explanation

Step 1: Define Exogenous Factors from Historical Trends and External Risk Inputs
The two key inputs at this step are the historical PESTLE risk index and historical trend data. For our sponsor
company, possible risks to be discovered and simulated include a geopolitical crisis in a facility’s location disrupting
global trade, financial instability of key suppliers, and global risk trends influencing the supply chain. Historical external
13



trends are captured through sources like the BMI Country Risk Index and structured news analyses. These driving forces

provide a comprehensive foundation for identifying and understanding critical risks and opportunities.

Step 2: Define Internal Factors from Operational and Supply Chain Inputs

After defining the scope, the first step in a scenario project involves thoroughly analyzing the partner company’s
environment to identify local factors influencing external risk decisions. For our sponsor company, this process includes
supply chain network mapping (depicted in Figure 6) to examine the structure and dependencies of their supply chain,
as well as sourcing data to assess procurement strategies. Through this analysis, we identified four single-source high-
risk suppliers that are exposed to external risks. To address scalability challenges, their next innovation “Project.C”
project, focuses on automating the current manual production processes, autonomous in replenishment and supply
planning, and expanding operations by establishing new plants in diverse regions. Finally, a comprehensive evaluation
of current risk management practices was conducted, examining internal risks in terms of their impact, likelihood,
exposure, and control measures. This thorough assessment ensures a clear understanding of local factors that shape risk
decisions.

We reviewed the existing backup plans and found that the organization has a robust strategy for substituting
plants and an additional protective layer with high safety stock levels, capable of sustaining operations for up to six
months. Additionally, semi-structured interviews with participating teams provide valuable qualitative insights and
diverse perspectives. These findings collectively highlight critical factors that influence decision-making and showcase

the organization’s preparedness for potential disruptions.

Figure 6. Current supply chain network

Legend
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Step 3: Compile and Translate Driving Forces into Simulation Inputs
Driving forces are macro-level aspects of the business environment. They affect the organization through
multiple local factors. External driving forces are systematically compiled using historical indices and NLP-based trend

extraction. Our scenario planning base model will rely on external sources of the Country Risk Index and reported news.

Step 4: Build Simulation Model and NLP Integration

A focal decision is a decision about organizational action or structure within the organization’s control. To
estimate the impact of driving forces on the focal decision, we follow a structured, qualitative approach comprising three
key substeps. First, the team assesses the influence of various local factors on the focal decision. The second part of the
analysis assesses how much each driving force affects these local factors. Finally, the degree of association between
local factors and driving forces is determined.

In our analysis, we leverage natural language processing (NLP) to extract insights from news and academic
sources, enabling us to predict emerging trends. Additionally, we incorporate historical data, such as the BMI Risk Index,
as training and testing inputs to refine and validate our predictions. This combination of qualitative evaluation and data-

driven techniques ensures a comprehensive understanding of the driving forces shaping the focal decision.

Step 5: Generate Long-Term Risk Prediction Output

In the second part of our approach, we assess the uncertainty of driving forces by gathering expert predictions
through interviews, industry reports, and publications, ensuring diverse perspectives. Key insights and keywords
identified from these expert inputs are integrated into our natural language processing (NLP) model, enhancing its ability
to analyze and predict trends. Based on the degree of expert agreement, driving forces are classified as either predictable

trends or uncertainties, with plausible extreme values estimated for uncertain forces to inform scenario planning.

Step 6: Scenario Planning Based on NLP and Simulation Outputs

The scenario creation process leverages the assessed impact and uncertainty of driving forces to define scenario
axes, focusing on those with high uncertainty and high impact. Using these axes, scenarios are formed by combining
extreme values of key driving forces, ensuring plausible and diverse scenarios for strategic decision-making, which
integrate into our simulation-based approach for scenario planning. This step aligns with our model by systematically
incorporating internal and external risk factors, processed via NLP, into simulation modeling for robust scenario

generation and tailored recommendations.

Step 7: Recommendations Development and Scenario Narratives
The last step involves crafting narratives for each scenario, integrating the specified driving forces into a

cohesive future business environment, a plausible pathway from the present, and a memorable scenario name.
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For example, scenarios could include a geopolitical crisis in Japan disrupting supply chain continuity, a financial risk
impacting key suppliers, or an accelerated shift to regional manufacturing due to environmental regulations.
Additionally, leveraging NLP tools to analyze external risk trends and integrating internal factors such as organizational
risk controls and supply chain network design plans can enhance the scenario's relevance and accuracy, aligning with
our approach to provide strategic insights and actionable recommendations.

4. RESULTS AND DISCUSSION

In this section, we begin by outlining the development and interpretation of the NLP-based prediction model.
The procedure includes the integration of sentiment data extracted from news sources with structured risk indicators to
train and interpret a machine learning model. Following this, we generate two major forward-looking scenarios with
various forward-looking sub-scenarios, informed by the model’s outputs and qualitative insights gathered from
interviews with the sponsor company. These scenarios serve as the foundation for scenario planning and mitigation plan

recommendations to the sponsor company.

4.1. NLP— ML Model

The four primary processes of the NLP model are as follows: querying unstructured news data, choosing
features, developing a machine learning model, and, finally, predicting a future target variable. The following discussion
centers around the key considerations for each step, output, challenges faced during the process, and recommendations

for scale-up from the pilot.

4.1.1. Querying unstructured news data

In this step, it is essential to identify the querying tool and news sources for gathering unstructured data. The
criteria for selection are the ease of implementation and the cost of accessing the data. Ease of implementation entails
the ability to process both structured and unstructured data, speed of query, scalability infrastructure, and maintenance.
Our model requires over 10 years of data for robustness, global coverage, and, ideally, real-time updates for practicality

when scaling up. Figure 7 presents multiple options.
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Figure 7. Cost and ease of implementation between different tools (left chart) and news sources (right chart). Own work.
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After evaluating various alternatives against the criteria, Google BigQuery and Global Database of Events,
Language, and Tone (GDELT) emerge as the optimal combination for our model. GDELT offers free, real-time
translated news from media sources around the world. Furthermore, GDELT is designed and optimized to work with

Google BigQuery, hence, this combination performs efficiently and is suitable for the pilot.

Next, the query retrieves country-related news using geographical keywords like Japan, China, the Netherlands,
and India. These are derived from the sponsor company’s facility network. Our model returned a total of 13,377 news
articles per country from 2011 to 2024. This value averages 2.6 news articles per day. We find this number reasonable
and practical, considering computational running time and the need to control the risk of introducing noise to the model

by overfeeding.

4.1.2. Features and targets

This step involves processing the features as input for predicting the risk index of a targeted country. Two
features introduced into our model are news sentiment and a transformed combination of economic and security risk.

First, the news dataset retrieved in the query is processed by Hugging Face with a FinBERT model. This pre-
trained NLP combination performs deep learning-based sentiment analysis, which is superior to traditional models such
as VADER and Textblob when it comes to contextualizing risk-related content. Deep learning-based sentiment analysis
refers to the ability to comprehend attitudes and emotions through context rather than just words. Meanwhile, SpaCy
and PyTorch were also under consideration. However, these packages lacked various pre-trained models, making it
difficult for the company to implement and scale. Hence, Hugging Face is the selection for our model.

For long-term risk prediction, sentiment score is introduced as a lead feature. The lead period is selected to be 3
years, which aligns with the purpose of projecting long-term risk for strategic planning. This feature is represented as

Sentiment_lag3 in subsequent evaluation of the model.
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The second feature is the output of Principal Component Analysis (PCA) from the economic and security risk
index, represented as PCA_Risk in the model. The dataset of the country’s risk index is sourced from BMI Fitch
Solutions, which is a multinational country research firm. The risk index in this dataset ranges from 0 to 100, with lower
values indicating lower risk and vice versa. The rationale behind integrating economic and security factors in the model

is that political, economic, and security factors are often interdependent and influence one another.

4.1.3. Machine learning model for prediction

In this step, the machine learning model is trained to map the 3-year lead news sentiment and the economic-
security risk index to the political risk index. The prediction from the model in Figure 8 reveals shifts in political risk
across Japan, China, the Netherlands, and India. Notably, Japan experiences the most substantial increase, with its index
rising from 10.8 in 2024 to 15.4 under the Random Forest model and 16.2 under the Linear Model. In contrast, other
countries show less pronounced changes. The random forest and linear models provide complementary insights, with

both indicating Japan's risk increase as the most significant among the countries studied.

Figure 8. Prediction and change in risk index identified by our model (Simulation ran in February 2025)
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The SHAP (Shapley additive explanations) in Figure 9 highlights the role of both PCA_Risk and Sentiment_lag3
in shaping the prediction of political risk. While PCA_Risk shows a broader and more dominant influence, the impact
of Sentiment_lag3 reveals a consistent and meaningful pattern. Specifically, negative or pessimistic tones in news
coverage over the past three years are associated with higher predicted political risk. This suggests that the model is
sensitive to long-term sentiment trends. Although the overall contribution of sentiment is smaller than PCA_Risk, it is
clear directionally that a sustained negative tone in geopolitical news increases the model’s forecast for political
instability. This aligns with our hypothesis that sentiment extracted from news can serve as a forward-looking signal for

emerging political risk.

Figure 9. SHAP value of the two features on the model (Simulation ran in February 2025)
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4.1.4. Prediction of risk index in the next 3 years

The word cloud output in Figure 10 illustrates the sentiment-driven keywords extracted from news data, which
form the basis for forecasting potential risks for Japan in 2027. On the positive sentiment side, dominant terms such as
government, president, and business reflect frequent mentions of institutional actors and national affairs. Terms like
United, Korea, and South suggest regional or international associations. In contrast, negative sentiment features terms
such as terrorist, militant, assailant, and foreign, along with Ukrainian, pointing to themes of conflict and insecurity.
Notably, some terms appear in both clouds, underscoring that sentiment classification is context-dependent and

influenced by tone, proximity to other keywords, and narrative framing within each article.

Figure 10. Keywords which influenced risk prediction in Japan (Simulation ran in February 2025)
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4.1.5. Monitoring of daily risk at facility locations

Further utilizing the capabilities of NLP, we modify the query to dynamically assess which facility locations are
disrupted or available as backup options. By analyzing daily updates linked to each facility's geographic location, we
can detect signals of disruption such as port closures, labor strikes, natural disasters, or political unrest. Facilities
exceeding a predefined risk threshold, which are assumed for demonstration purposes in Figure 11, are classified as
disrupted, while those below the threshold remain operational. This reactive capability complements proactive de-risking
strategies, such as supply network redesign and inventory reallocation, by providing timely, location-specific risk
visibility (Sdenz & Revilla, 2014).

Figure 11. Print out of daily risk monitoring query (Simulation ran in March 2025)

Updated Facility Risk Levels:

Facility ID Location Risk Score Operational Status
0 Facility 1 Location 1 0.000000 Running
1 Facility 2 Location 2 0.000000 Running
2 Facility 3 Location 3 0.000000 Running
3 Facility 4 Location 4 0.000000 Running
4 Facility 5 Location 5 0.000000 Running
5 Japan Japan 9.653462 Disrupted

Facility Japan (in Japan) is disrupted
Suggested Alternative: Facility 2 in Location 2

4.2. Scenario Generation

Following the identified limitations in current risk management practice, the next section introduces two main
forward-looking scenarios designed to inform strategic planning, which include several sub-scenarios and what-if
simulations. These scenarios address both external and internal sources of uncertainty within the cell therapy supply
chain. Scenario A simulates a potential disruption in Japan, based on political risk signals derived from NLP-ML analysis
of unstructured news data. Scenario B explores the key capabilities required to have smart supply chain digitization,
derived from the sponsor company’s future vision regarding process automation, and reflects technology shifts in the
organization. Together, these scenarios offer insights to support long-term resilience and decision-making at the

enterprise level.

4.2.1. Scenario A: Japan Supply Chain Disruption Driven by Political Risk Model Output

This scenario integrates the output of the NLP-based political risk model, which forecasts Japan as the country
most likely to experience elevated political instability out of the countries within the sponsor’s company network in
2027. To evaluate the operational and financial implications of this signal, a simulation was developed to assess the

impact of a Japan-specific disruption on the sponsor company’s global manufacturing network.
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A.1. Simulation Design Methodology

As proposed in our Scenario Planning Methodology Framework, the simulation model serves as a key
mechanism to translate exogenous risk signals and internal factors into operational impact. A discrete-time simulation is
developed in Python to represent the impact of a site-specific disruption over a 12-month horizon. The model
incorporates site-level constraints such as production capacity, inventory buffers, staffing availability, and financial

outcomes.

Disruption modeling
The simulation assumes a full operational shutdown at the Japan plant between months 6 and 8, simulating a
severe political event that halts manufacturing and exports. The shock is localized to Japan but triggers

redistribution and response across the entire network.

Time to Survive (TTS) and Time to Recover (TTR)

The simulation adopts Time to Survive (TTS) and Time to Recover (TTR) metrics from Simchi-Levi et al. (2014,
2015). TTSis defined as the number of months a facility can continue operating without resupply or reallocation.
TTR represents the number of months required to restore full operational capacity after a disruption ends. These

two parameters structure the cascading logic of shutdown and recovery across the supply network.

Redistribution logic and assumptions
During the crisis, Japan’s unmet production is redistributed proportionally across other plants, based on available
capacity. Redistribution is constrained by each plant’s TTS, staffing levels, and throughput ceilings. Recovery

ramps up linearly beginning in month 9 and is plant-specific based on TTR.

Performance metrics

The simulation tracks monthly Key Performance Indicators for:
1. Staff utilization over time

Fulfilled Capacity Over Time

Unmet demand and redistribution limit

Fill rate (percentage of customer demand fulfilled)

Revenue (volume x margin)

Market share (relative customer retention)

Inventory levels (site-specific depletion and rebuild)

© N o g~ w DN

Per-unit cost (crisis escalation and normalization)
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Model implementation
The simulation is built using NumPy, matplotlib, and folium and applies custom algorithms for patient
redistribution, inventory drawdown, capacity constraints, and KPI output. The output illustrates how scenario

planning integrates within the broader framework to translate risk signals into actionable strategic insights.

A.2. Simulation Results and Scenario Narrative

Staff Utilization Over Time

Figure 12 illustrates staff utilization across all production sites over a 12-month horizon. During the baseline
stability period (months 0-5), all sites operated near steady-state utilization, around 90-95% of their available staffing
capacity. Staff loading was balanced across locations under normal operational conditions, indicating efficient but not
excessive resource usage.

During the crisis phase (months 6-8), Japan’s staffing utilization dropped sharply to 0%, simulating a modeled
full-site operational shutdown, such as could occur due to a natural disaster or geopolitical event. In response, other
facilities exhibited increased staff utilization, surging up to 120-130% of their nominal staffing levels. This temporary
surge reflects efforts to stretch operational capacity through overtime, resource reallocation, and intensified operations.

As recovery commenced in months 9-12, staffing levels at all sites gradually returned to baseline. Japan
reactivated its workforce around month 9, and U.S. sites correspondingly normalized their staffing levels, reversing the
crisis-driven surge.

This pattern underscores staff availability and represents a strategic constraint in personalized cell therapy
manufacturing. Unlike automated industries, where production can scale rapidly, scaling operations dependent on skilled

human operators require extended recruitment and retraining time, introducing systemic vulnerability during disruptions.

Figure 12. Staff utilization over time
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Figure 13 presents fulfilled production capacity, measured in patients served per month, across the same 12-
month timeline. Under normal conditions (months 0-5), all sites maintained stable production outputs, with Japan
contributing significantly to overall system throughput.

Following the disruption (months 6-8), Japan’s production collapsed to zero, mirroring its staffing loss. Other
sites were partially compensated for by increasing their fulfilled capacities; however, the overall system experienced a
noticeable dip in total patient treatments fulfilled per month. Despite local surges, the global capacity shortfall could not
be fully recovered during the crisis period.

In the recovery phase (months 9-12), Japan gradually resumed operations, restoring part of the lost system
capacity. As Japan's output increased, other sites correspondingly reduced their temporarily elevated fulfilled capacities
and returned to pre-crisis levels.

This fulfilled capacity trajectory illustrates the systemic rigidity of the manufacturing network under labor
dependency. Capacity recovery lagged the crisis due to the time needed for operator ramp-up, and site-to-site flexibility

was constrained by physical infrastructure limits and regulatory requirements.

Figure 13. Fulfilled Capacity Over Time
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The simulation results, displayed in Figure 14, highlight the escalation of unmet patient demand following the
disruption of the Japan facility. During the pre-disruption phase (months 0-5), unmet demand remained effectively at
zero, indicating the system’s capability to meet all patient needs under stable conditions. However, starting in month 6,
unmet demand volumes began to rise sharply, peaking at approximately 620 unserved patients by month 8. Although
redistribution efforts partially mitigated the shortfall, alternative sites lacked sufficient surge capacity to fully absorb the
disrupted volume. Recovery commenced in month 9, and unmet demand returned to near-zero levels by month 10. The
temporary failure to meet patient needs underscores the operational vulnerability in manual, labor-intensive production

environments where scaling during crises is highly constrained.
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Figure 14. Total unmet demand during disruption period
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Fill Rate Dynamics

As shown in Figure 15, the fill rate across the Japan market experienced significant but partial degradation
following the disruption. During the months 0-5, the fill rate remained consistently around 100%, confirming stable
fulfillment performance. After the operational disruption in month 6, fill rates dropped to approximately 80%, where
they remained suppressed through month 8. A gradual recovery began thereafter, with fill rates reaching approximately
90% by month 9 and eventually returning to full 100% levels by month 10. This partial and delayed recovery highlights
the limited resilience of the current operational model, where even moderate disruptions result in multi-month service

degradation despite redistribution attempts.

Figure 15. Fill rate over 12-month period in Japan
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Revenue Impact

Revenue performance, depicted in Figure 16, closely mirrored the observed fill rate dynamics. Prior to the crisis,
monthly revenues hovered around 19,600 USD. Following the disruption in month 6, revenue sharply contracted to
approximately 16,000 USD, maintaining this depressing level through months 7 and 8. Revenue recovery initiated in
month 9, aligning with the improvement in operational output, and was fully restored to baseline levels by month 10.
Although recovery was ultimately achieved within the 12-month window, the multi-month loss in revenue reflects both
the immediate financial impact of operational disruptions and the lagged recovery trajectory even after capacity

restoration efforts began.
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Figure 16. Monthly revenue trend in Japan
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Market Share Recovery

Strategic impacts of the disruption are shown in Figure 17, which tracks market share performance. Prior to the
disruption, market share within Japan and the broader Asia-Pacific region was stable at approximately 100%. The loss
of service capability following month 6 triggered a rapid decline in market share to approximately 80%, where it
stagnated through months 7 and 8. A gradual recovery process began in month 9, with full restoration of pre-crisis market
share by month 10. While the market share recovery was ultimately successful, the vulnerability to competitive
displacement during temporary service gaps remains a critical strategic concern for the company’s long-term market

positioning.

Figure 17. Market share loss and partial recovery
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Inventory depletion and recovery
Figure 18 displays the inventory levels across all manufacturing plants throughout the disruption period.
Prior to the disruption, inventory levels remained stable across all sites, with Japan maintaining the highest reserve.
Following the operational shutdown in Japan in month 6, its inventory depleted sharply, reaching a near-
complete exhaustion by month 8. Simultaneously, inventory levels at Libertyville and Summit sites declined

significantly due to increased redistribution demands, reflecting the stress placed on alternative nodes.
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Although restocking efforts commenced around month 9, recovery was uneven across sites and remained site-dependent
through month 12. This behavior highlights that static inventory buffers offer only short-term protection; under sustained

disruption and redistribution pressure, they are rapidly exhausted without dynamic replenishment strategies.

Figure 18. Inventory trajectories by site

Inventory Levels Over Time with Corrected TTS & TTR Recovery

1200

1000

800

Inventery Units

600

—— Facility 1 Staff Utilization
Facility 2 Staff Utilization
— Facility 3 Staff Utilization
— Facility 4 staff Utilization
—— Facility 5 Staff Utilization
—— Disrupted Facility Staff Utilization

0 2 4 6 8 10 12

Cost volatility

Figure 19 illustrates the escalation of per-unit shipment costs during the disruption period. Baseline costs
remained stable at approximately 2,000 USD per shipment during normal operations. Beginning in month 6, coinciding
with the Japan facility shutdown, costs surged sharply to around 3,000 USD per shipment, representing a 50% increase.
This spike was driven by expedited logistics requirements, emergency sourcing from alternative suppliers, and labor
overtime necessary to maintain production. Post-crisis, cost normalization occurred gradually over a four-month period,
reflecting the system’s delayed ability to stabilize operations and renegotiate sourcing and logistics under standard terms.
The pronounced cost volatility emphasizes that operational disruptions not only impact service performance but also

materially erode profit margins during recovery phases.
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Figure 19. Cost per unit (USD) across simulation horizon

Cost Increase and Gradual Recovery During Disruption

—&— Cost per Shipment (USD)

28007

2600

Cost (USD)

2400+

22001

2000 1 L & o L d *

A.3. Summary of Scenario A Findings

The simulation provides a structured and quantitative assessment of the sponsor company's vulnerability to

localized disruptions at high-risk production sites. Despite proactive redistribution efforts and available inventory

buffers, the network demonstrated an inability to fully sustain service levels, demand fulfillment, or revenue

protection during the crisis window. Key findings include:

e Plants with shorter time-to-shutdown (TTS) depleted inventory reserves within weeks following the disruption
onset.

o Redistribution strategies partially mitigated the supply shortfall but failed to fully compensate for the Japan
facility’s production loss.

o Fill rate and revenue exhibited significant declines, with a gradual but delayed post-crisis recovery.

¢ Inventory buffers initially protected service continuity but collapsed under extended redistribution stress.

e Market share erosion closely tracked the periods of peak disruption and service degradation.

e Per-unit shipment costs escalated sharply during the crisis response and required several months post-crisis to
normalize.

Overall, the simulation results illustrate that pre-existing contingency plans, while beneficial, are insufficient
without integrated early risk detection mechanisms and adaptive network reconfiguration capabilities. This reinforces
the strategic imperative for predictive political risk monitoring, expanded geographic redundancy across operational
nodes, and automated decision-making tools capable of translating early risk forecasts into proactive supply chain

actions.
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4.2.2. Scenario B: Smart Supply Chain Digitization— Three-Layered Architecture with Four Key Capabilities

Scenario B explores the long-term digital futures of the sponsor company’s supply chain, focusing on how
different levels of technology adoption and governance shape operational resilience. These scenarios were developed
through structured interviews with the company’s automation, purchasing, strategic sourcing leaders, and risk
management team, who outlined current capabilities, ongoing ERP migrations, and future-state aspirations. Building on
these insights, we constructed three differentiated scenarios: Bl illustrates a fragmented and vulnerable future with
minimal digital advancement, B2 reflects a reactive, compliance-driven pathway with partial progress, and B3 represents
the autonomous, fully integrated, and secure digital supply chain. Each scenario is evaluated across core dimensions
such as analytics maturity, inventory efficiency, service levels, and strategic risk exposure. Together, they provide a
decision-making lens to prioritize technology investments and organizational readiness in the face of accelerating

external disruptions.

Figure 20. Smart Supply Chain Digitization (Adapted from Simchi- Levi, 2025)

Smart Digitization: Three Layer with Four Key Capabilities

Layer 3 < Autonomous Intelligence for Supply Chain Planning >
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Layer 1 < Data Platform that enables Aggregation, Normalization, and Visualization >

Building on Simchi-Levi’s Smart Supply Chain Digitization model, Figure 20 (Simchi-Levi, 2025), this study
structures the digital transformation roadmap into a three-layered architecture. The framework systematically advances

from foundational data security to predictive planning to autonomous decision-making.

1. Data Platform Layer
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The foundational Data Platform Layer consolidates operational information through ERP integration, data
aggregation, normalization, and secure real-time visualization. This layer makes sure that reliable data moves smoothly
between supply chain functions, which is essential for planning and automating decisions later.

2. Smart Planning Layer

Building on the integrated data foundation, the Smart Planning Layer activates intelligent planning capabilities.
It includes creating a single, clear picture of unified demand that captures total demand, using supply chain segmentation
strategies, putting smart S&OP (Sales and Operations Planning) into action, enabling smart execution, and building
resilience into the system. These capabilities transform static supply chains into dynamic, event-driven systems capable

of adaptive responses to internal and external disruptions.

3. Autonomous Intelligence Layer
At the highest level, the Autonomous Intelligence Layer integrates large language models (LLMs), customized
machine learning models, and agent-based Al systems to support autonomous decision-making. LLMs and NLP
techniques continuously monitor external signals (e.g., geopolitical, supplier, and macroeconomic data), while tailored
ML algorithms optimize planning and forecasting. Agentic systems coordinate execution workflows and scenario

planning without requiring manual intervention, enabling real-time, adaptive supply chain responses.

Scenario B1: Fractured and Vulnerable Supply Chain (Base approach to Outlook to 2030)

By 2030, the organization fails to achieve meaningful digital transformation across its supply chain systems.
Fragmentation persists, with three disconnected ERP platforms operating independently, preventing real-time data
aggregation, normalization, or visualization. No comprehensive migration to the cloud-based SAP S/4HANA is
completed, and cybersecurity measures are minimal and reactive. Data inconsistencies across platforms are frequent,
manual interventions dominate operational workflows, and system vulnerabilities expose the organization to significant
cyber risks (SAP, 2023; Deloitte, 2021).

Planning functions remain highly manual and fragmented. A single, unified view of demand is absent, and
supply chain segmentation strategies are not implemented. S&OP processes are conducted through spreadsheet-based
methods, with reliance on email threads and informal communications for coordination. Exception management is ad
hoc, and execution processes are reactive rather than predictive or dynamic. No formal mechanisms exist to update
planning parameters based on real-time events or changing supply conditions (Simchi-Levi and Timmermans, 2023).

Autonomous intelligence is absent. No NLP-based external risk sensing systems are deployed, and no Al-driven
scenario generation capabilities are in place. Risk identification relies solely on external resources, periodic manual
reviews, and anecdotal supplier feedback. The lack of Al adoption limits the organization's ability to anticipate

disruptions, model future operational risks, or adjust strategies dynamically.
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The organization operates at the descriptive analytic maturity level. Historical data is collected but is used
primarily for backward-looking reporting, with little integration into forward-looking planning models. Predictive
analytics capabilities are absent, and decision-making remains slow, fragmented, and vulnerable to errors.

Operational outcomes deteriorate. Inventory levels remain elevated, as static buffer policies are maintained to
hedge against planning uncertainty, tying up working capital and limiting supply chain responsiveness. Service levels
fluctuate inconsistently across regions due to visibility gaps, limited capacity, supplier failures, and planning
inaccuracies. The Project.C initiative is unable to scale beyond limited pilot phases, as end-to-end automation and digital
integration prerequisites are unmet, stalling production expansion for personalized therapies.

Strategic vulnerabilities intensify. Without integrated digital platforms or embedded cybersecurity protocols, the
organization remains exposed to regulatory non-compliance risks, supplier fraud, and cyberattacks. Fragmented
governance and lack of cross-functional alignment inhibit corrective actions, entrenching inefficiencies and increasing
operational fragility over time. Competitive disadvantage widens as digitally mature rivals achieve market growth, faster

innovation, higher agility, and stronger customer trust.

Scenario B2: Reactive, Compliance-Driven Future (Middle approach to Outlook to 2030)

By 2030, the organization achieves partial progress toward digital transformation, driven primarily by external
regulatory requirements rather than internal strategic initiatives. Two of the three legacy ERP systems are partially
integrated under on-premises SAP S/AHANA, but persistent gaps in system consolidation, master data governance, and
cybersecurity architecture remain. While we have improved data aggregation and visualization compared to the baseline,
we have not fully normalized or secured across all operational domains. Cybersecurity protocols are implemented
selectively to meet audit requirements but are not embedded systematically into planning and execution processes (SAP,
2023; Deloitte, 2021).

At the planning level, partial smart capabilities are operational. Isolated product categories achieve unified
demand visibility, while regions apply segmentation strategies inconsistently. Smart S&OP processes are piloted within
select business units, but manual overrides and exception handling continue to dominate enterprise-wide planning
activities. Real-time event monitoring and dynamic execution agility are introduced in limited functions but are not
standardized across the organization (Simchi-Levi and Timmermans, 2023).

Autonomous intelligence is adopted experimentally. NLP-based external risk sensing tools are piloted in
supplier risk management and limited forecasting applications, but these systems are siloed and not fully integrated into
core planning workflows. Scenario generation remains manual, relying on periodic reviews rather than continuous Al-
driven adaptations. The absence of a unified governance framework for Al adoption limits scalability and organizational

learning from pilot implementations.
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The organization operates at the predictive analytic maturity level. Data-driven forecasting models and supplier
analytics are utilized within specific functional areas but are not connected to end-to-end supply chain planning.
Predictive insights are generated, but decision execution remains delayed by manual interventions and fragmented
systems.

Operational outcomes reflect a hybrid state. Inventory levels are moderately optimized through predictive
demand sensing in piloted segments, but company-wide buffers remain elevated to compensate for planning
uncertainties. Service levels improve modestly, primarily in regions where pilot projects succeed, but systemic agility
remains constrained. The Project.C initiative progresses but faces delays in scaling due to incomplete system integration,
isolated automation islands, and uneven data quality across manufacturing and supply nodes.

Strategic risks persist. Despite achieving basic cybersecurity and planning automation standards to meet
compliance audits, fragmented governance and inconsistent planning discipline continue to expose systemic
vulnerabilities. Without comprehensive data platform consolidation and enterprise-wide Al integration, the organization

remains vulnerable to regulatory shifts, cyberattacks, and competitive disruptions.

Scenario B3: A Secure and Connected Future (Best approach to Outlook to 2030)

By 2030, the organization completes a full migration to SAP S/4HANA, consolidating fragmented ERP systems
into a unified, secure data platform. Migration utilizes all core features of S/AHANA, including real-time analytics,
cloud-native deployment, and advanced modules for planning, warehouse management, and transportation orchestration.
This platform is extended via the SAP Business Technology Platform (BTP), enabling modular integration of loT data,
machine learning models, and API-based extensions. Aggregation, normalization, and visualization processes are fully
automated, ensuring consistent, real-time operational visibility across supply chain domains. Cybersecurity protocols
aligned with ISO 27001 and the NIST Cybersecurity Framework are embedded into infrastructure, including anomaly
detection, encryption standards, and role-based access control (SAP, 2023; IBM, 2023).

On this foundation, intelligent planning capabilities are fully operational. A single, unified view of demand
enables synchronized planning across products, regions, and functions. Supply chain segmentation strategies are
dynamically applied and regularly recalibrated. Smart S&OP processes are continuously updated based on real-time
inputs. Exception management is handled autonomously, with minimal need for manual overrides. Predictive models
monitor demand shifts, supply disruptions, and capacity constraints, allowing planners to operate with event-driven
precision.

At the autonomous intelligence level, a full Al stack is embedded across planning and execution. Generative Al
models support scenario simulation and narrative synthesis; customized machine learning models provide high-
resolution forecasting, segmentation, and anomaly detection; and agent-based Al systems autonomously coordinate
planning decisions and execution tasks. NLP tools continuously monitor external data streams—news, regulatory

updates, and supplier signals—to detect emerging risks. Agentic Al enables system-wide adjustments based on this
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intelligence without requiring manual recalibration. These combined capabilities support real-time scenario generation,
self-adjusting strategy recommendations, and workflow automation.

The organization operates at an autonomous analytics maturity level, characterized by real-time learning,
adaptive decision-making, and decentralized execution. Predictive demand sensing replaces static inventory rules,
reducing inventory costs by 15-30% and improving service levels by 20-40%. Inventory buffers are dynamically
allocated based on projected demand volatility and supply risk exposure, not historical averages. Strategic planning
cycles shift from quarterly reviews to continuous, Al-driven optimization loops.

Operational risks, including cyber threats, demand shocks, and supplier volatility, are mitigated proactively
through system-wide monitoring and autonomous response mechanisms. The Project.C personalized therapy initiative
achieves full scalability, driven by modular manufacturing systems, digital process control, and end-to-end integration.
Batch traceability, quality monitoring, and scheduling are executed by Al agents with real-time feedback loops.

The company demonstrates structural resilience, operational agility, and strategic foresight. It is positioned not
just to withstand disruption but to thrive in uncertainty. By embedding autonomous Al capabilities across its supply

chain, the organization unlocks a step-change in responsiveness, efficiency, and innovation.

4.2.4. Scenario Evaluation and Comparative Analysis

To systematically assess the strategic implications of the three scenarios, a structured evaluation is conducted
across six core dimensions in Table 2. These dimensions are based on the Smart Supply Chain Digitization framework
and include data platform activation, smart planning activation, autonomous intelligence activation, analytics maturity
level, operational outcomes, and strategic risks. This structured comparison provides a consistent lens to measure how

various levels of digital maturity impact supply chain resilience, agility, and vulnerability.

Table 2. Scenario Evaluation and Comparative Analysis

Dimension Scenario B1: Fractured and Scenario B2: Reactive Scenario B3: Secure and
Vulnerable Supply Chain Compliance-Driven Future Connected Future
Data Platform | Fragmented legacy ERP Partial on-premises SAP S/4AHANA | Full cloud-based SAP S/AHANA
Activation systems, no cloud deployment, | migration, selective cloud use, migration, cloud-native capabilities,
significant cybersecurity gaps cybersecurity implemented to BTP integration, full cybersecurity
satisfy audits embedded
Smart Manual spreadsheet-based Partial deployment of smart S&OP | Fully embedded smart S&OP,
Planning planning, no segmentation, pilots, inconsistent segmentation, segmentation, dynamic execution,
Activation reactive execution manual overrides dominate and resilience
Intelligence No Al or generative systems, Experimental Al pilots in isolated Fully embedded autonomous Al
Activation manual risk monitoring only functions, no enterprise-wide models and NLP-driven risk sensing
integration
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Analytics Descriptive Analytics Predictive Analytics (limited Autonomous Analytics (real-time
Maturity Level | (historical reporting only) forecasting, partial risk sensing) adaptive planning)
Operational Elevated inventory buffers, Modest inventory and service 15-30% inventory reduction, 20—
Outcomes volatile service levels, improvements in pilot areas, 40% service level improvement, full
Project.C scaling stalled delayed Project.C scaling Project.C scalability
Strategic Risks | High risks (cyberattacks, Moderate risks (fragmented Minor risks (Al model retraining,
Remaining operational failures, regulatory | governance, delayed disruption evolving cyber threats, continuously
non-compliance, competitive response) mitigated)
erosion)

The evaluation highlights that Scenario B1 reflects the persistence of fragmented systems and manual processes,
resulting in descriptive analytics maturity and substantial operational and cybersecurity risks. Scenario B2 shows partial
progress, marked by predictive analytic maturity and selective technological deployment, but continues to suffer from
structural fragmentation. Scenario B3 achieves the highest level of supply chain resilience and digital maturity, driven
by full activation of foundational, planning, and autonomous layers. The comparative results emphasize the strategic

importance of comprehensive digital integration and intelligent planning activation.

4.2.5. Quick Scenario Ranking Overview

To further simplify interpretation, the final scenario outcomes are summarized through an overall ranking based
on resilience, risk exposure, and achieved analytics maturity. This quick comparison in Table 3 highlights the relative
strategic positioning of each scenario without extensive technical detail.

Table 3. Scenario Ranking

Scenario Resilience Risk Exposure Digital Maturity
Bl Low High Descriptive
B2 Moderate Medium Predictive
B3 High Low Autonomous

The ranking confirms that Scenario Bl exposes the organization to persistent risks and competitive
disadvantages, driven by insufficient technological advancement and weak operational governance. Scenario B2
represents a constrained trajectory where some operational improvements are realized but systemic vulnerabilities
remain. Scenario B3 positions the organization for superior agility, risk management, and future growth through full

digital enablement.

4.2.6. Summary of Scenario B Findings
The comparative scenario evaluation clearly demonstrates that full digital integration, intelligent planning

activation, and autonomous decision-making capabilities are essential for achieving future supply chain resilience,
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agility, and competitiveness. Based on the insights gained from the scenario analysis, the following strategic actions are
recommended to transition the organization toward the Secure and Connected Future.

First, the organization must complete the full integration of its ERP landscape under SAP S/4AHANA, ensuring
that cloud-native capabilities, real-time analytics, and the SAP Business Technology Platform (BTP) modular extensions
are fully leveraged. Data aggregation, normalization, and secure visualization must be operationalized across all
operational domains, with embedded cybersecurity frameworks aligned with 1ISO 27001 and NIST standards.
Consolidating data platforms is foundational to achieving trusted, real-time visibility necessary for dynamic supply chain
orchestration.

Second, the company should institutionalize the Smart Planning Layer by embedding intelligent planning
capabilities across functions and regions. A single, unified view of demand must be achieved at the enterprise level,
supported by systematic supply chain segmentation and dynamic smart S&OP execution. Real-time exception
management must replace manual interventions, and operational resiliency must be structured as a core system feature
rather than an ad hoc reaction to disruptions. Planning processes must shift from static cycles to adaptive, event-driven
responses aligned with real-time market signals.

Third, the organization should deploy and scale autonomous intelligence across planning and execution
workflows. Large language models (LLMs) and natural language processing (NLP) techniques should be integrated to
automate scenario generation, external risk sensing, and strategic adjustment recommendations. Autonomous Al systems
must be embedded not as isolated pilots but as enterprise-wide operational enablers, supported by dedicated governance
structures to ensure accountability, reliability, and ethical use.

Fourth, the planning and risk management approach must shift from forecast-driven models to consumption-
driven, real-time adaptive systems. Predictive demand-sensing models must replace static inventory buffers, enabling
significant reductions in working capital requirements while simultaneously improving service levels. Supply chain
decisions should be based on live demand signals, dynamic risk assessments, and Al-generated scenario simulations, not
on historical averages or manual judgment.

Finally, the company must establish a permanent cross-functional governance body responsible for digital
transformation leadership, cybersecurity oversight, and continuous process innovation. This capability team should drive
system adherence, oversee master data quality, monitor real-time cybersecurity threats, and ensure continuous
improvement of planning, execution, and risk monitoring processes.

Collectively, these strategic actions provide a clear, actionable pathway for transitioning from fragmented legacy systems
toward an integrated, autonomous, and resilient supply chain architecture. They enable not only the successful scaling
of initiatives like Project.C but also position the organization for sustained competitive advantage in an increasingly

uncertain and digitized operating environment.
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4.3. Limitation of The Project

A key limitation of this study was the inability to access the actual planning parameters and internal operational
and risk data from the sponsor company due to confidentiality constraints. As a result, several assumptions were made
to simulate supply chain parameters, such as inventory levels, production capacity, time-to-survive, and recovery times.
While stakeholder interviews helped guide some of these assumptions, the absence of real-time transactional data limited
the accuracy of scenario calibration and model validation. Consequently, the outcomes of Scenario A and Scenario B
should be interpreted as indicative rather than definitive, and future work should include access to granular internal data

to enhance model simulation outcomes.

5. CONCLUSION

This research was motivated by the increasing frequency and complexity of global disruptions that challenge the
resilience of advanced supply chains, particularly in the personalized medicine sector. Traditional risk management
approaches often fail to anticipate long-term threats or translate early warning signals into actionable strategies. To
address this gap, the project developed a forward-looking framework that integrates Natural Language Processing (NLP),
machine learning, and scenario planning to detect emerging risks and simulate their operational impact. The purpose
was to provide supply chain leaders with a practical, data-driven approach to stress-test future scenarios and inform

strategic decisions on digital transformation, resilience planning, and risk governance.
5.1. Management Recommendations

This research highlights that proactive, data-driven, and technology-enabled risk management frameworks are
no longer optional but imperative for supply chains operating in high-uncertainty sectors like cell therapy. To sustain
competitiveness and resilience over the long term, companies must move beyond reactive risk management models and

instead embed predictive and autonomous technologies into core planning and execution processes.

The study recommends that the sponsor company prioritize full ERP platform integration under SAP S/AHANA,
supported by real-time cybersecurity frameworks, to achieve trust and seamless operational visibility. Intelligent
planning capabilities should be embedded through consumption-driven S&OP, dynamic segmentation, and real-time
event monitoring. Furthermore, the organization must institutionalize the use of autonomous intelligence, including
NLP-driven risk sensing and Al-based scenario generation, to continuously anticipate disruptions and proactively adjust
operational strategies. Establishing a permanent, cross-functional digital governance body is critical to sustaining digital

maturity, maintaining cybersecurity vigilance, and driving continuous operational innovation.
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5.2. Future Work

To maintain the framework proposed, we recommend establishing an annual update cycle for external risk
factors. This can be done by re-querying global news database and published political, economic, and security risk
indices. Internally, operational parameters such as facility locations, critical supplier and material lists or any changes in
the company’s network should be fed into the system to ensure that the model remains relevant. For continuous
improvement, data ingestion and model retraining should be automated in integrated pipelines. Over time, incorporating

feedback loops from decision-makers and outcomes from past scenarios can further enhance the accuracy of the model.

While this study provides a foundation for integrating NLP-enhanced scenario planning into long-term risk
management, several areas warrant future research. First, future work should explore integrating real-time operational
data, such as loT-based factory performance and transportation telemetry, into the risk prediction models to improve
responsiveness and granularity. Second, further advancements in explainable Al (XAI) methods could enhance the
interpretability and trustworthiness of autonomous scenario models deployed in supply chain operations. Third,
conducting longitudinal studies that evaluate the financial impact and operational outcomes of predictive and
autonomous models in live environments would strengthen the business case for full-scale adoption. Lastly, collaborative
research across different therapeutic modalities and manufacturing settings could validate the broader applicability of
the proposed framework beyond cell therapy.

5.3. Contribution

This capstone presents a next-generation risk management framework that combines scenario planning and
natural language processing to proactively forecast, simulate, and mitigate long-term supply chain risks. By
demonstrating how dynamic political, economic, and operational factors can be monitored and translated into actionable
strategic decisions, the study offers a practical model for organizations seeking to strengthen their resilience in uncertain
environments. The integration of smart digitalization layers— data platform activation, smart planning, and autonomous
intelligence— enables a structured pathway toward predictive and autonomous supply chain decision-making. Scenario
analysis reinforces that early adoption of these capabilities can reduce operational risks, lower costs, and enhance service
performance. This work contributes to advancing the digital transformation of supply chain risk management,

establishing a robust blueprint for navigating future uncertainties in personalized medicine and beyond.
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