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ABSTRACT 

The sponsor company, a global consumer goods enterprise known for high-quality products and 

customer service, has been on a digital transformation journey over the past few years to make its 

supply chain more responsive. Currently, the company manages its end-to-end supply chain planning 

using Mixed Integer Linear Programming-based (MILP) software. This process takes approximately 

two hours, limiting the company's ability to rapidly update production and distribution plans in 

response to sudden changes in supply or demand. 

Our capstone project proposes the use of metaheuristic models as an alternative to their existing 

planning software, with the goal of reducing planning time while minimizing total relevant costs. 

Specifically, we identified the conditions in which the company currently operates and developed a 

model configurator to optimize the end-to-end supply chain planning. The application of the 

configurator, based on Genetic Algorithm and Particle Swarm Optimization metaheuristics, was 

demonstrated across three representative demand scenarios and proved successful in reducing 

planning time by approximately 85%. 

Additionally, the proposed solution maintained the same quality as the current solution of the 

company, achieving a 2% and 13% cost reduction in production and distribution respectively, while 

accounting for penalties related to unmet inventory targets. This improvement is significant, as it 

enables the company to become more responsive to internal and external changes, improving its 

ability to adapt quickly to dynamic supply and demand conditions. 
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1. INTRODUCTION 

1.1 Background 

Optimization and automation in supply chain processes are crucial, as they enable companies 

to quickly adapt to changes in demand, supply disruptions, or market fluctuations. This not only 

improves operational efficiency but also enhances flexibility and responsiveness to unexpected 

situations, making the supply chain more competitive and robust. A lack of automation and 

optimization in the supply chain leads to delays, errors, and higher operational costs. It also hampers 

efficient planning and the ability to quickly adapt to changes in demand or disruptions, impacting both 

the company’s productivity and competitiveness.  

1.2 Motivation 

Our sponsor company, a global consumer goods enterprise known for its wide portfolio of 

categories such as personal care, household cleaning, and health products, is currently reviewing the 

optimization strategy for its end-to-end supply chain planning. The enterprise defines end-to-end 

supply chain planning as the process from purchasing raw materials, to manufacturing, inventory 

deployment, and finally to customer orders at downstream distribution centers, as is shown in Figure 

1. The inventory deployment process refers to moving the product from the production facility to one 

of their 10 storage facilities. 

 

Figure 1: End-to-End Supply Chain Planning Scope 

 

 

The project will be centered on the Fabric Care division, with a particular focus on the Heavy-

Duty Liquid (HDL) product line, which comprises approximately 600 Stock Keeping Units (SKUs). The 

manufacturing of the products is carried out in two production plants, A and B, with a total of 10 

production lines. Each plant serves different markets, resulting in both plants producing similar SKUs. 

The supply chain planning area is centralized for both production plants. At present, an 

automation process runs the manufacturing and product deployment planning program twice a day. 

The company utilizes specialized software, called OMP, to manage this operation. OMP is a provider 

of software solutions for supply chain planning and optimization. The data is transferred from SAP, a 

software used to manage business operations, to OMP, where Mixed Integer Programming (MIP) 

models are used for short-term planning at each plant. The objective of the MIP models is to 

determine the optimal quantity of each product to be produced and distributed to reduce inventory 
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costs. To find the optimal solution, certain constraints are established, such as production line 

capacities, lead times, and Minimum Order Quantity (MOQ), among others. 

According to the sponsor, the current system, OMP, is time-consuming and limits the overall 

responsiveness of the planning team, suggesting that it should operate faster. Furthermore, there are 

certain constraints that are not included in the planning model, for instance, storage capacity in the 

warehouses and raw materials availability, and these should be revised to assess their impact on the 

efficiency of the supply chain. 

1.3  Problem Statement and Key Questions  

The sponsor company has been working for years on the digital transformation of its supply 

chain. Aligned with their purpose of providing superior-quality products, they are working to create 

an optimization strategy and keep a responsive supply chain, capable of adjusting to supply, demand 

and market changes. Some of the important milestones on this path have been the implementation 

of an integrated business planning (SAP) and production optimization software (OMP). These systems 

were essential to achieve the company´s 98% service-level Key Performance Indicator (KPI), defined 

as the number of complete orders delivered on time divided by the total number of orders. However, 

the execution time required for production-to-distribution planning remains excessively long, thereby 

undermining the organization’s ability to respond effectively to dynamic operational conditions. 

Specifically, the manufacturing and deployment planning process relies on a single large 

program developed with linear constraints that determine what to manufacture, in what quantities, 

and where to store the products. To solve the planning problem within a maximum of 1.5 hours, as 

required by the sponsor, planners omit certain constraints from the program and “manually” apply 

them once the problem has been solved. If the program exceeds the allotted time, planners terminate 

the run prematurely and work with a suboptimal solution. Consequently, the company is seeking an 

alternative optimization strategy that allows it to reduce the planning execution time while ensuring 

costs minimization. 

Reducing the planning execution time would allow planners to iterate and perform sensitivity 

analyses, which, in turn, could improve service, cash flow (inventory levels), and production costs. 

Nonetheless, the sponsor company main concern is improving their supply chain responsiveness. We 

are using the term supply chain responsiveness as the ability to respond to changes in supply and 

demand as defined by Christopher and Towill (2000). By selecting the best configuration of 

optimization models, the company would have the flexibility to quickly model different scenarios and 

make decisions in urgent situations. A model configurator can generate efficient production and 

distribution plans by leveraging the strengths of different metaheuristics. This directly addresses the 
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execution time challenge, enabling faster and more responsive decision-making. In the context of the 

end-to-end planning process, the following questions will be addressed:  

1. What are the key processes in the end-to-end supply chain planning? Which dependencies 

exist within those processes? 

2. What are the variables and trade-offs that the current optimization model considers? 

3. What supply disruptions and demand changes should the configuration consider to cover all 

mismatch scenarios? 

4. What is the expected improvement in terms of cost and execution time resulting from the 

proposed model? 

1.4 Project Goals and Expected Outcomes 

The objective of the project is to develop a configurator of models to optimize the production 

and distribution planning process. It involves ensuring the management of overlapping objectives and 

determining the optimal limit of integration and constraints to guarantee solution quality and 

efficiency. To accomplish this, we will study the optimization model constraints and linkages for a 

particular business division in scope. We will also understand the tradeoffs between the quality of the 

model and running time to propose alternative solutions. To achieve the expected results, we will 

focus on a specific product category prioritized by the company. This scope includes production lines 

2A, 3A, and 6A at Plant A, as well as lines 1B and 2B at Plant B. The proposed solution is designed to 

be scalable across the company, making it adaptable to other products in the future. 

Creating an alternative model and comparing it to the current one requires a deep 

understanding of the processes, including variables such as product families, product types, and 

constraints like capacity and lead time. We will engage with stakeholders, particularly the 

Synchronized Planning Solutions team, and analyze historical data, including daily demand, capacity, 

and production rates for selected products. Subsequently, we will test various models to identify the 

optimal configuration that enhances supply chain responsiveness and service levels, while maintaining 

solution quality and reducing execution time. The findings will inform an assessment of current 

optimization practices and lead to actionable recommendations. 

The main deliverable for the sponsor company will be a configuration to optimize the 

production and distribution planning process. This model will be able to select the best solution from 

a set of different methodologies, all implemented in Python. We will evaluate the quality of the 

solution by the total cost of the optimized production and distribution plans. The costs that the 

company is currently using are illustrative figures rather than precise costs drawn from their financial 

statements. We will be using the same costs to compare our solutions to theirs and estimating more 
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accurate ones is out of scope. The demand forecast will also be provided by the company, and its 

calculation is out of scope. 

Other deliverables to the company will include: 

1. Diagnosis of the current planning strategy model in terms of supply chain responsiveness, 

service level, cost efficiency, and execution time. 

2. Recommendations regarding the current planning strategy. 

1.5 Plan of Work 

The first step, following the problem definition, is to interview the stakeholders involved in 

the planning process to understand the existing variables and constraints. Additionally, we will explore 

the relationships between all stages of the supply chain and the optimization model. Next, we will 

formulate the objective function of our problem. After that, we will define a configuration of models 

that incorporates our objective function and constraints. We will then test and validate the 

configuration model, and the solution methods analyzed. Service level, cost to serve, inventory 

turnover, and execution time will serve as indicators to evaluate the program's performance and the 

quality of the solution. We will also iterate on the solution to achieve improvements. Based on the 

tests and results, we will propose the configuration of models that best fits different scenarios. 

Appendix A shows the iterative process to test and define and propose the configuration of models. 

2. STATE OF THE PRACTICE 

The primary problem that our capstone project will address is identifying the configuration for 

the supply chain optimization models for the planning of a consumer-goods company. We will 

determine the ideal optimization method to each scenario, and the necessary constraints to apply to 

guarantee the solution quality and efficiency, and as a result, increase the company’s responsiveness 

and service level. To create the model, first we need to define the objective function. As we found 

more than one objective in our project, we defined our problem as multi-objective optimization.  

Given the project objectives and challenges, we will review literature across several key areas. 

First, we will examine literature on responsiveness in supply chains and the key factors for improving 

it. Second, we will address the importance of planning the end-to-end supply chain. Finally, we will 

review different metaheuristic methods for solving the current multi-objective problem. 

2.1 Supply Chain Responsiveness 

Supply chain responsiveness is the capability of a supply chain to adjust to changes in demand, 

supply disruptions, or changes in the market environment. (Christopher & Towill, 2000). A responsive 

supply chain is characterized by its agility and flexibility, enabling companies to effectively meet 
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customer demands even in uncertain conditions. Key factors that improve responsiveness include 

real-time monitoring, collaboration with suppliers and distributors, and agile inventory management, 

among other factors. 

On the one hand, real-time monitoring allows companies to adjust their processes to reduce 

response times. This approach not only improves efficiency but also provides a competitive advantage, 

as companies can respond to changes in demand or supply chain disruptions (Suri, 1998). 

On the other hand, developing strong collaboration with suppliers and distributors is essential 

for optimizing operational efficiency and responsiveness. Collaboration includes communication and 

information sharing between partners. By working closely with suppliers and distributors, companies 

can better anticipate and react to market fluctuations (Simchi-Levi & Kaminsky, 2007). 

Finally, implementing agile inventory management practices is essential for managing 

fluctuations in demand and supply. Agile inventory management refers to maintaining flexible 

inventory strategies and having the ability to quickly adjust stock levels to support changes in the 

environment, such as demand fluctuations or a supplier's disruptions (Chopra & Meindl, 2015). 

According to a study performed by Accenture, a customer-centric supply chain is key for 

reaching higher growth rates. After the COVID pandemic, 94% of consumer-packaged goods (CPG) 

companies have growth less than 3% per year. The common factor between those companies that 

have surpassed that growth threshold is a higher consumer value proposition through a connected 

consumer experience, price competitiveness, and trust and sustainability. As stated by Accenture, CPG 

companies require a tailored and responsive supply chain capable of reacting to the changes in 

different buying channels to achieve a higher value proposition. In this type of industry, management 

should focus on customer segmentation and building capabilities to deliver the right product portfolio 

at optimal cost. (Accenture, 2020). 

Maintaining a responsive supply chain is a key goal that our sponsor company is pursuing 

through the optimization strategy. Responsiveness will enable the company to increase customer 

satisfaction, shorten lead times, and maintain a competitive advantage in changing markets. For the 

company, achieving a responsive supply chain requires updating their production and distribution 

plans multiple times a day or whenever there is a supply disruption. This means they need to shorten 

their current processes in order to meet this objective. (Chopra & Meindl, 2015). 

2.2 End-to-end Supply Chain Planning 

End-to-end supply chain planning has become critical over the last two decades. Globalization, 

new consumer channels, and wider SKU portfolios, among other factors, have exponentially increased 

complexity. At the same time, internal operation savings are reaching their limit since most of the 

retailers have already spent decades making their supply chains highly efficient. As a result, supply 
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chain professionals are shifting to more collaborative approaches looking for value creation inside and 

outside their organizations. (Burnette & Dittmann, 2018).  

The most resilient players of the consumer-goods industry during the COVID pandemic were 

the ones that had started implementing end-to-end planning. It is expected that over the next decade 

a high-performance planning function will help companies improve their top and bottom lines 

(increase revenue and reduce costs). (Ghandour, et al., 2021). 

Regarding the top line, companies can take advantage of new revenue streams (for example, 

ecommerce), and acquire competitive advantage from resilience in the case of supply chain disruption 

during global crises (i.e., the COVID pandemic). Regarding the bottom line, production and logistics 

costs have been increasing because of changing customer expectations for product portfolios’ variety, 

sustainable sourcing, reduced delivery time, and other consumer trends. To ensure optimal decisions, 

organizations require cutting-edge algorithms and accurate information. 

The principles that enable a successful implementation of end-to-end planning strategy are 

(Ghandour, et al., 2021): 

1. Cross-functional integration to take the decisions that create value. 

2. Short planning cycles to respond to changes in demand. 

3. Use of advanced analytics to improve forecasts and planning. 

4. Automation of standard tasks to allow planners to focus on decision making. 

Inside a company there are multiple objectives to satisfy, such as inventory reduction, demand 

fulfillment, and efficiency on production lines, among other objectives. Sometimes this variety of 

objectives can overlap and generate contradictions. A typical example is the relationship between 

minimization of total cost in the entire supply chain and the maximization of the service level. 

Increasing the service level increases customer satisfaction, however, this tends to increase inventory 

levels or incur extra costs. The keys to balancing these overlapping constraints are cross-functional 

integration and the use of advanced analytics. (Ghandour, et al., 2021) 

2.3 Techniques for Multi-objective Optimization Problems 

In multi-objective optimization problems, there is more than one objective function to be 

satisfied simultaneously. In some cases, the objectives overlap, leading to conflicts between them. 

(Trisna, et al., 2016). In multi-objective optimization problems, there is no single global solution. 

Instead, a set of solutions can be found that form Pareto optimal solutions. This means that there is a 

set of solutions (trade-offs) among the different defined objectives (Deb, 2001).  

According to Donoso and Fabregat (2007) we can divide multi-objective optimization 

problems into two categories: classical (or traditional) methods and metaheuristic methods. Figure 3 
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shows the classification mentioned. On the one hand, classical methods convert multi-objective 

problems into single-objective problems by aggregating objective functions, and these problems are 

often solved using techniques like mixed-integer linear programming (MILP). On the other hand, 

metaheuristic methods can guide other heuristic methods or algorithms in the search for feasible 

solutions of the optimal value or the set of optimal values. 

Figure 2: Classification of Multi-objective Optimization 

 

 

Mixed Integer Linear Programming tools are commonly used to solve supply chain network 

design problems. These tools can obtain an optimal solution within a wide range of linear constraints. 

However, MILP is computationally expensive and time-consuming. For that reason, different 

alternatives have been explored, such as metaheuristic approaches to solve complex supply chain 

models. 

Different metaheuristic methods can solve multi-objective optimization problems. We will 

focus on five relevant approaches: Simulated Annealing, Tabu Search, Ant Colony, Genetic Algorithm 

and Particle Swarm. These methods can find heuristic solutions to complex problems in an efficient 

way. For the full list of researched metaheuristic optimization methods refer to Appendix B. Table 1 

shows a brief comparison of the techniques that will be explored. 

 

Table 1: Metaheuristic Methods Comparison Chart 

Feature Tabu Search (TS) 
Simulated 

Annealing (SA) 

Ant Colony 

Optimization 

(ACO) 

Genetic 

Algorithm (GA) 

Particle Swarm 

Optimization (PSO) 

Inspiration 
Problem-solving 

strategies 

Annealing 

process in 

metallurgy 

Behavior of ants 

in finding optimal 

paths using 

pheromones 

Natural evolution 

process 

Movement of flocks 

of birds or schools 

of fish 

Mechanism 

Explores 

neighborhoods 

while avoiding 

revisiting past 

states using a 

tabu list 

Accepts changes 

that increase 

the objective 

function with a 

decreasing 

probability 

Ants deposit 

pheromones to 

mark paths, 

influencing others 

Combines 

recombination, 

mutation, and 

selection to 

generate 

solutions 

Particles move 

through solution 

space based on 

personal and group 

behaviors 
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Key 

Parameter 

- Tabu list size 

- Number of 

iterations 

- Neighborhood 

size 

- Initial 

temperature 

- Annealing rate 

- Pheromone 

evaporation rate 

-Concentration of 

pheromone 

- Ant colony size 

- Population size 

- Crossover 

probability 

- Mutation 

probability 

- Number of 

particles 

- Velocity of each 

particle 

- Social influence 

parameter 

Key Strengths 
- Avoids local 

optima effectively 

- Avoids being 

trapped at local 

optimal 

- Avoids 

convergence of 

suboptimal 

solutions 

- Is effective in 

large and complex 

solution spaces 

- Balance between 

local and global 

optima 

 

2.3.1 Genetic Algorithm 

The Genetic Algorithm (GA) is an attempt to simulate the natural evolution process where 

attributes are modified by the exchange and combination of chromosomes during breeding. The two 

main principles are that complicated structures can be represented by simple bit strings, and that 

those strings can be improved by simple transformations. 

Like Simulated Annealing, the GA only uses the objective function information, not its 

derivatives, and it uses probabilistic transition rules. However, the GA uses an encoding of its control 

variables instead of the variables themselves, and searches from one population of solutions to 

another. The GA consists of creating an initial “population” of solutions encoded in binary bit strings. 

When encoding continuous control variables, the accuracy will depend on the length of the bit strings 

leading to a trade-off between precision and running time. Different from other optimization routines, 

the process of generating a new solution consists of three activities: selection, recombination (or 

breeding), and mutation. (Parks, G., & Sepulchre, R., 2020). 

2.3.2 Particle Swarm Optimization 

The Particle Swarm methodology is a heuristic optimization algorithm inspired by the social 

behavior of groups of animals like fish schooling, birds flocking, or honeybees flying (Gad, 2022).  

Everyone within a swarm has their own simple capacities to find a solution. However, they perform in 

a collaborative way, interacting among themselves to find the best solution. The interactions could be 

direct (visual or auditive) or indirect (reacting to changes in the environment).  

The methodology considers that everyone is a particle. Each individual is a potential solution 

that is viewed as a particle with a specific velocity moving through a defined space. Each solution 

combines data of historical best location, current location and data of other individuals of the swarm 

to define the next movement. The next iteration occurs after all particles have been moved. Particles 

adjust their velocity and position, converging towards the optimal solution as the swarm's collective 

knowledge improves. (Dorigo, M., Maniezzo, V., & Colorni, A., 1996). 
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The primary objective of the particle swarm methodology is to create a balance between each 

individual particle and the swarm (local and global). It needs a few adjustable parameters since it is 

computationally efficient and applicable to a wide range of optimization problems. 

3. METHODOLOGY 

In this chapter, we summarize the approach to developing a model configurator to optimize 

production and distribution planning, that balances the trade-off between production capacity, 

inventory relocation, and service level, considering that the execution time and quality of the solution 

are key factors. In developing our model, we adapted methodologies and incorporated considerations 

regarding different metaheuristic methods, as described in Section 2.3. 

3.1 Project Framework 

The sponsor company is recognized by its customers for its high-quality products. Therefore, 

having a robust and highly responsive supply chain is key for their business strategy. Creating a 

configuration for the supply chain optimization models can help to reach this goal. According to our 

literature review, agile inventory practices and collaboration are essential in responsive supply chains. 

However, as mentioned in Section 2.2, flexibility in inventory practices, responsiveness, and overall 

service level are opposing objectives to a cost-efficient supply chain. Those different goals can be 

managed through an end-to-end planning approach. 

The sponsor company is currently using MIP-based software, which is highly time-consuming 

and restricts the constraints that can be placed on the model. Metaheuristics are another alternative 

to optimization problems, but unlike linear programming, metaheuristics do not look for exact 

solutions but sufficiently good ones. These techniques can be an appropriate option since they require 

less time and computational power. Based on the literature reviewed, we have concluded that the 

most appropriate techniques are the Genetic Algorithm and the Particle Swarm.  

We selected Genetic Algorithm (GA), and Particle Swarm Optimization (PSO) based on the 

nature of the production and distribution planning problem and the need for faster, scalable solutions 

compared to traditional Mixed-Integer Programming (MIP) approaches. Genetic Algorithm was 

chosen due to its ability to explore large and complex solution spaces efficiently, handle discrete and 

nonlinear decision variables, such as production quantities, scheduling, and plant assignments. 

Additionally, GA avoids getting stuck in local optima through mechanisms like crossover and mutation. 

GA is easily adaptable to custom constraints (e.g., minimum order quantities, line priorities), which 

are difficult to incorporate in traditional solvers. On the other hand, Particle Swarm Optimization was 

selected because it shows rapid convergence in continuous or near-continuous decision spaces, such 

as production levels or distribution flows. It requires fewer hyperparameters and tends to be simpler 
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to implement and tune. PS performs well in scenarios with smooth cost surfaces, such as inventory 

holding, transportation, or penalty costs. By combining both approaches, we are able to leverage the 

strengths of GA in combinatorial aspects of the problem, and the speed of PSO in continuous domains, 

achieving feasible and high-quality solutions in significantly less time than MIP. 

Figure 4 illustrates our project framework, which provides an organized scheme for addressing 

the problem. As defined by the sponsor company, the end-to-end supply chain covers four main 

stages: suppliers, manufacturing, distribution, and customer. The right coordination and balance 

between these stages will enable responsiveness in the supply chain, a key objective for the 

enterprise. Each process has its objectives. For instance, cost reduction or efficiency in production 

lines are fundamental goals for the stage of manufacturing. In some cases, different objectives can 

overlap, generating conflicts among themselves.  

Figure 3: Project Framework 

 

Some of the constraints showed in figure 4 are included in the current optimization model, 

such as supply capacity, over inventory cost, and demand. However, there are some constraints that 

are not included in the model and must be addressed to achieve optimized results across the supply 

chain.  

After the variables and constraints are defined in the model, it is possible to formulate the 

optimization problem and determine how to solve it. We will explore the current methodology 

(traditional methods), and metaheuristic approaches to find a better solution in terms of efficiency 

and quality. Finally, the output of the model recommends which SKUs and how much to produce, 

when to produce and where to ship them to achieve a balance between the defined objectives and 

tradeoffs. 
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3.2 Production-Distribution Network Structure 

The first part of the data analysis phase consisted of understanding the supply chain structure 

of the sponsor company, through interviewing stakeholders, specifically, the Synchronized Planning 

Solutions team. The key features to identify were the processes, objectives, constraints, and variables, 

and which of them were already included in the company’s optimization model. Sensitive data was 

masked to protect confidentiality.  

 To build our model, we received data related to the demand for each SKU-distribution center 

pair, safety stock levels per SKU-distribution center, production rates for each production line and 

SKU, the bill of materials for each SKU, lead times between production plants and distribution centers, 

and current stock levels across distribution centers. Figure 5 illustrates the structure of the production 

and distribution network. There are two production plants: Plant A and Plant B. Plant A consists of six 

production lines (Line 1A to Line 6A) and Plant B has four production lines (Line 1B to Line 4B). Each 

production Plant can serve a defined group of distribution centers. Plant A supplies products to DC1A 

through DC6A and Plant B supplies products to DC1B through DC5B. Additionally, there is an inventory 

balancing mechanism between the two plants, allowing them to transfer stock to optimize availability 

across the network. The red and blue colors differentiate between the two types of products that the 

plants can produce. Each group of lines is exclusive for each type of product. It means that production 

line 1A, 4A, and 5A in Plant A and production lines 3B and 4B in Plant B can produce the same type of 

products.   

Figure 4: Production Network Structure and Distribution Flow 
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3.3 Problem Scope Definition 

Since each SKU type is produced on a specific set of production lines, managing production 

allocation across both product types is unnecessary. To narrow the model’s scope and reduce 

computational complexity, we selected one SKU type while ensuring that the chosen subset remained 

mutually exclusive and collectively exhaustive. Both product types have a similar volume share; 

however, in agreement with the company, we decided to focus on the company’s key product: 

Product Type Blue and deliver a functional prototype that can be scaled to both product types. Figure 

6 shows the daily demand for both product types over the next 90 days. Table 2 presents a statistical 

analysis of the behavior of the two categories. It shows that the selected product type accounts for 

45% of the total demand. 

Figure 5: Forecast Demand (Units) 90 Days – Type of Product

 

 

Table 2: Demand Units Summary Statistics 

  Daily Demand 

Type of Product Mean (units) Std. Dev. (units) CV (%) Max (units) Min (units) Share (%) 

Red        126,314           15,998               0.13         200,979           97,403  55.4% 

Blue        101,805           18,228               0.18         167,108           77,738  44.6% 

Total        228,119           31,075               0.14         336,954         177,692  100.0% 

 

3.4 Model Specification and Development 

We define the use of a “Hybrid decomposition optimization strategy” to solve a complex 

problem by breaking it down into smaller, more manageable parts and optimizing each component 

using different methods. There are two steps involved in this strategy: a) Decomposition approach 

and b) Three-phase hybrid approach. 
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To build a decomposition approach, it is first necessary to preprocess the data by aggregating 

the requirements from each distribution center and converting them into production plant 

requirements. This involves checking future demand and inventory levels to define the specific 

requirements for each production line. After this process, we can proceed with the decomposition 

approach. 

3.4.1 Decomposition Approach 

The first step in the strategy involves designing a decomposition approach that decouples 

elements with no dependencies. The decomposition focuses on distinct components within the supply 

chain. We separated the production and distribution problem as shown in Figure 6. 

Figure 6: Decomposition Approach 

 

The first optimization problem, Production, aims to determine the appropriate SKUs and 

quantities to produce, based on the initial production requirements for each plant. This step defines 

what to produce and in what amount, while considering capacity constraints at the production 

facilities. The second optimization problem, Distribution, focuses on determining where to ship the 

available inventory, given that the SKUs and their quantities have already been established in the first 

problem. This decomposition ensures that each segment can be optimized individually while 

maintaining coherence with the overall supply chain objectives. 

3.4.2 Three-Phase Hybrid Approach 

After decomposition, a three-phase hybrid optimization process is implemented. Each phase aims 

to determine whether the optimization problems can be solved within a single production plant, 
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meaning without sharing resources between plants. This would ensure that each optimization 

problem remains small and can be solved more easily and quickly. If the capacity is not sufficient, a 

shared-resource, more complex problem must be solved instead. A configuration model is created 

using two different metaheuristic models (Genetic Algorithm and Particle Swarm) to explore the 

search space efficiently.  

• Genetic Algorithm (GA): Provides robust exploration using selection, crossover, and mutation. 

Includes parameters such as population size, chromosome representation, gen 

representation, and initial population. 

• Particle Swarm Optimization (PSO): Features coordinated search and rapid convergence. 

Requires low computational cost. Includes parameters such as population size, number of 

iterations, inertia weight, cognitive parameter, and social parameter. 

The objective function and associated constraints are formulated for both optimization 

problems, production and distribution, and are solved using the configuration approach proposed.  

3.4.2.1 Production Planning Optimization 

For the Production problem, we define the objective function and the constraints. Table 3 

presents the notation adopted throughout the formulation, Table 4 details the model parameters, and 

Table 5 defines the decision variables involved in the optimization process. 

Table 3: Notation for the Formulation of the Production Problem 

Symbol Description Unit 

𝑇 Planning horizon = {1,...,14} days 
𝑡 Time index NA 

𝑃 Set of SKUs = {1,…., 𝑃} SKU 

𝑝 SKU index NA 
𝐿 Production line NA 

We define a 14-day planning horizon, as this is the timeframe currently used by the company 

for optimization purposes. 

Table 4: Parameters of the Production Problem 

Symbol Description Unit 

𝐶𝐼𝑂𝑇 Cost of holding inventory over the target $ 

𝐶𝐼𝑈𝑇 Cost of holding inventory under the target $ 

𝐶𝐼𝑈𝑀 Cost of holding inventory under the minimum $ 

𝐼𝑂𝑇,𝑝,𝑡 Units of inventory over the target of product 𝑝 in period 𝑡 Un 

𝐼𝑈𝑇,𝑝,𝑡 Units of inventory under the target of product 𝑝 in period 𝑡 Un 

𝐼𝑈𝑀,𝑝,𝑡 Units of inventory under the minimum of product 𝑝 in period 𝑡 Un 
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𝐼𝑝
𝑡  Target inventory of product 𝑝 Un 

𝐼𝑝
𝑚 Min inventory of product 𝑝 Un 

𝐶𝐵,𝑝,𝑡 Cost of stockout $ 

𝐵𝑝,𝑡 Units of inventory stockout of product 𝑝 in period 𝑡 Un 

𝐼𝑝,𝑡 Units of inventory of product 𝑝 in period 𝑡 Un 

𝑟𝑝 Production Rate of product 𝑝 Un/ Hr 

𝐷𝑝,𝑡 Units demand of product 𝑝 in period 𝑡 Un 

𝐻𝑡  Maximum hours in period 𝑡 Hr 

 

Table 1: Decision Variables for the Production Problem 

Symbol Description Unit 

𝑥𝑝,𝑡,𝐿 
Units to manufacture of product 𝑝 during period 𝑡 in production 

line 𝐿 
Un 

 

Objective Function  

The objective function in the first optimization problem is to satisfy the demand to achieve 

the target service level while maintaining target inventory levels. To define this objective function, we 

first identify what we want to minimize and the components that determine which SKUs to produce 

and in what quantities. These components are: 

• Cost of holding inventory over the target: Calculated as the sum product of the inventory over 

the target 𝐼𝑂𝑇𝑝,𝑡 of all SKUs and the cost 𝑐𝐼𝑂𝑇, aggregated for all periods. 

 

∑ ∑ 𝐶𝐼𝑂𝑇 ∗  𝐼𝑂𝑇𝑝,𝑡
𝑇
𝑡

𝑃
𝑝  ∀ 𝑝 𝜖 𝑃;  𝑡 ∈ 𝑇                                                   (Eq 2) 

 

• Cost of holding inventory under the target: Calculated as the sum product of the inventory 

under the target 𝐼𝑈𝑇𝑝,𝑡  of all SKUs and the cost 𝑐𝐼𝑈𝑇, aggregated for all periods. 

 

∑ ∑ 𝐶𝐼𝑈𝑇 ∗ 𝐼𝑈𝑇𝑝,𝑡
𝑇
𝑡

𝑃
𝑝  ∀ 𝑝 𝜖 𝑃;  𝑡 ∈ 𝑇                                                   (Eq 3) 

 

• Cost of holding inventory under the minimum: Calculated as the sum product of the inventory 

under the minimum 𝐼𝑈𝑀𝑝,𝑡 of all SKUs and the cost 𝑐𝐼𝑈𝑀, aggregated for all periods. In this 

case, the company assumes that the minimum inventory is 0.9 * target inventory. 

 

∑ ∑ 𝐶𝐼𝑈𝑀 ∗  𝐼𝑈𝑀𝑝,𝑡
𝑇
𝑡

𝑃
𝑝  ∀ 𝑝 𝜖 𝑃;  𝑡 ∈ 𝑇                                                 (Eq 4) 
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• Cost of stockout: It is calculated as the sum product of the inventory stockout 𝐵𝑝,𝑡 of all SKUs 

and the cost 𝐶𝐵, aggregated for all periods.  

 

∑ ∑ 𝐶𝐵 ∗ 𝐵𝑝,𝑡
𝑇
𝑡

𝑃
𝑝  ∀ 𝑝 𝜖 𝑃;  𝑡 ∈ 𝑇                                                       (Eq 5) 

 

Finally, our objective function Minimizes cost as a result of holding inventory over or under 

targets and stockout penalties.  

 

𝑀𝑖𝑛 ∑ ∑ 𝐶𝐼𝑂𝑇 ∗ 𝐼𝑂𝑇𝑝,𝑡
𝑇
𝑡

𝑃
𝑝 +  ∑ ∑ 𝐶𝐼𝑈𝑇 ∗ 𝐼𝑈𝑇𝑝,𝑡

𝑇
𝑡

𝑃
𝑝 +  ∑ ∑ 𝐶𝐼𝑈𝑀 ∗  𝐼𝑈𝑀𝑝,𝑡

𝑇
𝑡

𝑃
𝑝 +  ∑ ∑ 𝐶𝐵 ∗ 𝐵𝑝,𝑡

𝑇
𝑡

𝑃
𝑝       (Eq 6) 

Constraints  

• Production Capacity constraint: Limits total production per period based on capacity of each 

production line. 

 

∑ 𝑥𝑝,𝑡 ∗ 𝑟𝑝
𝑃
𝑝 − 𝐻𝑡 ≤ 0, ∀𝑡 ∈ 𝑇                                                (Eq 7) 

 

• Inventory Balance: Tracks inventory changes across periods. 

 

𝐼𝑝,𝑡 −  𝐼𝑝,𝑡−1 + 𝑥𝑝,𝑡,𝐿 + 𝐷𝑝,𝑡 + 𝐵𝑝,𝑡−1 − 𝐵𝑝,𝑡 = 0, ∀𝑡, ∀𝑝                       (Eq 8) 

 

• Inventory Target deviation: 

 

𝐼𝑝,𝑡 −  𝐼𝑝
𝑡 ≤  𝐼𝑂𝑇,𝑝,𝑡 , 𝐼𝑂𝑇,𝑝,𝑡 ≥ 0, ∀𝑡, ∀𝑝                                              (Eq 9) 

 𝐼𝑝 −
𝑡 𝐼𝑝,𝑡 ≤  𝐼𝑈𝑇,𝑝,𝑡, 𝐼𝑈𝑇,𝑝,𝑡 ≥ 0, ∀𝑡, ∀𝑝                                            (Eq 10) 

 

• Inventory Minimum deviation: 

 

𝐼𝑝,𝑡 +  𝐼𝑈𝑀,𝑝,𝑡 ≥  𝐼𝑝
𝑚 , 𝐼𝑈𝑀,𝑝,𝑡 ≥ 0, ∀𝑡, ∀𝑝                                          (Eq 11) 

3.4.2.2 Distribution Planning Optimization 

The objective function in the second optimization problem is to satisfy the demand in each 

distribution center to achieve the target service level while maintaining target inventory levels. For 

the Distribution problem we define another objective function and constraints. Table 6 presents the 

notation adopted throughout the formulation, Table 7 details the model parameters, and Table 8 

defines the decision variables involved in the optimization process. 
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Table 6: Notation for the Formulation of the Distribution Problem 

Symbol Description Unit 

𝐽 Set of Distribution centers = {1,...,10} NA 
𝑗 Distribution center index NA 
𝑃 Set of SKUs = {1,…., 𝑃} SKU 
𝑝 SKU index NA 

 

Table 7: Parameters of the Distribution Problem 

Symbol Description Unit 

𝐶𝑝,𝑗  Cost of sending inventory of SKU 𝑝 to Distribution Center 𝑗 $ 

𝐷𝑝,𝑗,𝑡 Units demand of product 𝑝 in DC 𝑗 in period 𝑡 Un 

𝐵𝑝,𝑗,𝑡 Units Stockout of product 𝑝 in DC 𝑗 in period 𝑡 Un 

𝐼𝑝,𝑗,𝑡 Units of inventory of product 𝑝 in DC 𝑗 in period 𝑡 Un 

 

Table 8: Decision Variables for the Distribution Problem 

Symbol Description Unit 

𝑥𝑝,𝑗,𝑡 Units to send of product 𝑝 to DC 𝑗 in period 𝑡 Un 

 

Objective Function  

To define the objective function in the second problem, we must consider the transportation 

cost of sending a product 𝑝 to Distribution Center 𝑗 in period 𝑡 and total units to send: 

𝑀𝑖𝑛 ∑ 𝐶𝑝𝑗 ∗  𝑥𝑝𝑗𝑡
𝑃
𝑝  ∀ 𝑡 ∈ 𝑇                                                       (Eq 12) 

Constraints  

• Demand constraint: Satisfy the requirements of each distribution center. 

 

𝐷𝑝𝑗𝑡 − 𝐵𝑝𝑗𝑡−1 −  𝑥𝑝𝑗𝑡 ≤ 0, ∀𝑡 ∈ 𝑇                                               (Eq 13) 

 

• Inventory constraint: Satisfy the inventory balance constraint in each distribution center. 

 

𝑥𝑝𝑗𝑡 +  𝐵𝑝𝑗𝑡−1 −  𝐼𝑝𝑗𝑡 ≤ 0, ∀𝑡 ∈ 𝑇                                                 (Eq 14) 

With a clear understanding of the two optimization problems to be solved, we can apply our 

model configurator using the Three-Phase Hybrid Approach. This means that both optimization 
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problems are solved when applying each metaheuristic algorithm, following the structure presented 

in Figure 7 as further described below.  

 

Figure 7: Three-Phase Hybrid Approach: Configuration of Models 

 

 

The three-phase hybrid approach begins by defining the availability of each production line. 

To define this availability, we can identify expected and unexpected changes in the supply and 

production as shown in Table 9. 

Table 9: Causes for Changes in the Availability of Resources 

 Expected Unexpected 

Production 
Preventive maintenance 
Programed infrastructure upgrades 

Corrective maintenance in production lines 
Quality defects in production 

Supply None 
Disruptions in the supply chain of raw materials 
vendors 
Transit or weather incidents that constraint delivery 

Additionally, it is important to account for increases in demand and to distinguish between 

internal factors (such as operations and promotions) and external ones. 

After this definition, the process begins by independently running a Genetic Algorithm (GA) 

for each plant. The objective of this step is to quickly assess each plant’s capacity. It also helps define 

the bounds for the optimization in the subsequent steps. 

Once the GA is executed, a capacity check is performed. If both plants, plant A and B, operate 

within their capacity limits, the process proceeds to a second GA run with updated parameters of 

population and generation size, to reach a more refined solution. Still optimizing each plant 

individually. The results from this GA run are then collected, which provides the optimization results 

for the first phase. 
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If during the first capacity check either plant A or B exceed its respective capacity limits (or 

both do), the system proceeds to reduce the safety stock (SS) and reruns the GA for each plant 

individually. A second capacity check follows. If both plants remain within capacity, the Particle Swarm 

Optimization (PS) algorithm is run separately for each plant using the boundaries determined by the 

GA. The objective of this step is to refine the solution given by the GA. The results from this PS run are 

then collected, which provides the optimization results for the second phase. 

Finally, If the capacities are still exceeded, a joint Genetic Algorithm is run for both plants 

simultaneously using newly defined bounds, followed by a joint Particle Swarm run using the 

boundaries (limited search space) provided by the GA. This final stage produces optimized results, 

ensuring that both plants meet capacity requirements while sharing resources. This is the end of the 

third phase. 

This methodology ensures a coordinated, computationally efficient approach to supply chain 

optimization by leveraging the strengths of metaheuristics for initial solution exploration and solution 

refinement.  

4. RESULTS AND DISCUSSION 

After developing the optimization model described in Section 3, we adjusted the 

parametrization of the metaheuristic models to identify the right balance between solution quality 

and execution time. To assess these trade-offs, we designed a set of illustrative scenarios that 

demonstrate the model’s logic, adaptability, and performance under diverse supply and demand 

conditions. Each scenario reflects a different degree of alignment, or misalignment, between supply 

and demand: 

• Scenario 1 - Baseline capacity match: Each plant has enough capacity to meet its own demand 

and maintain its target inventory levels.  

• Scenario 2 - Capacity meets demand but falls below target inventory: Each plant has enough 

capacity to meet its own demand, but not to maintain the target inventory levels for every 

SKU. 

• Scenario 3 – Inventory transfer between plants due to capacity shortfall: Demand cannot be 

satisfied by one of the plants, even by using the safety stock. Transferring inventory between 

plants is necessary. 

Although the number of SKUs or units that fall below target inventory or stockout may vary, 

these three scenarios capture the primary demand fulfillment conditions. In practice, Scenarios 1 and 

2 are the most common, but including Scenario 3 ensures that the model is tested under every possible 

condition and allows us to measure execution time for each case.  
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This section is structured as follows. Subsection 4.1 describes the testing and parameter 

tuning of the models. Then, Subsections 4.1.1 to 4.1.3 cover scenarios 1 to 3, respectively. Finally, 

Subsection 4.2 provides a summary and comparison of the proposed models against the company’s 

current solution in Section 4.2. 

4.1 Model Testing and Parameter Tuning 

As we explained in Section 2.3, a limitation of metaheuristic techniques is that they do not 

necessarily obtain the optimal solution, although they can obtain a solution close to it in less time than 

MILP-based optimizers. The trade-off between the quality of the solution (in this case, cost reduction), 

and the time to run the program is determined by the parameters used by the metaheuristic. In the 

case of Genetic Algorithm, the parameters used are population size, number of generations, crossover 

rate, and mutation rate. Similarly, the Particle Swarm methodology uses population size, number of 

iterations, inertia rate, cognitive parameter, and social parameter. 

In this section, we analyze the performance of each step in the configuration model by 

examining the parameters and results for each step and algorithm. To do this, we create different 

scenarios to test the three phases of the “Three-Phase Hybrid Approach”. 

4.1.1 Scenario 1: Baseline Capacity Match 

We analyzed the scenario in which all the requirements at each plant can be satisfied without 

using the safety stock. Scenario 1 follows the path shown in colors in Figure 8. 

 

Figure 8: Path in the Configuration of Models for Scenario 1 

 

 

We analyzed Plant A. The initial parameters for this scenario are shown in Table 10. 
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Table 10: Parameters Scenario 1 

Plant N° of SKUs Avg Daily Demand (Units) Initial Inventory (Units) Inventory (Days) 

A 200 32,038 508,702 15.8 

As represented in Figure 8, once we have defined the availability of resources, the Genetic 

Algorithm is performed. This Algorithm is less restrictive and does not consider MOQ constraints. This 

is because we need to perform a quick evaluation of the plant’s capacity. At the beginning, the GA 

algorithm is executed using the parameters shown in Table 11. The initial parameters were selected 

following the recommendations given by Boyabatli and Sabuncuoglu (2004). 

Table 11: Parameters Genetic Algorithm 

Parameter Value Description 

Population Size 20 Number of candidate solutions per generation 

Generations 50 Number of iterations the algorithm runs 

Crossover Rate 0.5 Probability of combining two solutions to create offspring 

Mutation Rate 0.05 Probability of randomly altering a solution to maintain diversity 

 

Then we conducted a sensitivity analysis, changing the number of generations in the 

algorithm. The number of generations is a key parameter in Genetic Algorithms, as it determines how 

many iterations the evolutionary process will undergo. Each generation represents a cycle of selection, 

crossover, and mutation, allowing the algorithm to progressively improve the quality of the solutions. 

A higher number of generations generally enables better convergence toward optimal or near-optimal 

solutions, but it also increases computational time. Therefore, choosing an appropriate number of 

generations involves balancing solution quality and computational efficiency. This step is not meant 

to be repeated each time the configurator is used, but only initially to set up the GA. 

Figure 10 shows the change in the solution (cost) and the execution time while increasing the 

number of generations in the model. As observed, the improvement in the optimal solution is 

moderate throughout the analysis, with no more than a 5% difference between the best and worst 

solutions. Therefore, we decided to set the number of generations to 50 as was recommended in 

Boyabatli and Sabuncuoglu (2004). This value is a reasonable time for our model (22 seconds) and 

ensures a good-quality solution while allowing us to efficiently proceed to the next step in the 

configuration model. Appendix C shows how the algorithm can find the optimal solution for the 

production plan in Generation 28.  
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Figure 9: Impact of the Number of Generations on Cost Optimization and Execution Time in the 

Genetic Algorithm  

 

 

This first run allows us to perform an initial capacity check. It helps us determine whether the 

plant has enough capacity to meet all requirements, measured as a percentage of production plant 

utilization. The first scenario occurs when both production plants can satisfy all requirements, and the 

optimal solution is obtained in the first phase of the configuration model. The result of this first run 

give us the utilization of each production Plant. For the analysis of Plant A, the results after running 

the first capacity check in Scenario 1 are shown in Table 12. 

Table 12: Utilization of Production Plant A Given by the First Run of GA in Scenario 1 

 

Table 12 shows that Plant A has the capacity to produce all the requirements using less than 

the available capacity on each production line and day. At this point, a second run of the GA is 

performed to obtain a refined solution of the production plan. This time, we added the MOQ 

constraint to create a more robust production plan. The Genetic Algorithm is run again with the same 

parameters as in the previous execution.   

We repeat the sensitive analysis for the second run of Genetic Algorithm changing the number 

of generations and tracking the quality of the solution and the model execution time. Testing a start 

at 20 generations and culminates at 100 generations. The results of this analysis are shown in Figure 

10. 
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Figure 10: Impact of the Number of Generations on Cost Optimization and Execution Time in the 

Genetic Algorithm 

 

 As we can see in Figure 10, increasing the number of generations does not significantly reduce 

the cost of the solution. We decided to set the number of generations to 55, as the minimum cost was 

reached at that point within 45 seconds. It is important to note that the minimum cost obtained is 

higher than in the first run, due to the incorporation of additional constraints in this model. In 

Appendix D, we can observe how the algorithm identifies the optimal solution for the production plan 

by generation 20.  

After this process, we also run the Genetic Algorithm to solve the distribution problem. This 

step takes 93 seconds.  

Executing the Genetic Algorithm marks the end of the first phase of the configuration model and gives 

as a result a production and a distribution plan for each of the plants. As expected, there are no 

stockouts and inventory levels are kept above the safety stock, since in this scenario each production 

plant has the capacity to meet the full demand. Additionally, the production lines have sufficient 

capacity and are operating below full utilization. Table 13 shows a summary of the production plan for 

Plant A obtained from the optimization model. Table 14 shows the detail of the utilization of each 

production line. Table 15 shows the distribution plan from Plant A to the different distribution centers. 

The total execution time for this scenario was 193 seconds. The average daily cost for the production 

problem was $1,033,345 and for the distribution problem was $2,259,266. 

Table 13: Production Plan Summary Scenario 1 (Units of Products) 
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Production Line 2A 3,146   1,536   1,537   3,075   3,183   4,606   3,071   7,682   3,072   3,295   6,144   10,750 1,829   9,214   
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Production Line 6A 7,453   7,490   3,669   6,032   8,950   9,840   15,234 16,852 11,392 8,989   10,094 16,866 10,509 6,866   

Total 21,382 18,051 11,949 14,933 27,588 20,846 34,851 39,287 21,694 22,773 31,788 50,596 24,178 31,538 
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Table 14: Line Utilization Scenario 1 (%) 

 

 

Table 15: Distribution Plan Summary Scenario 1 (Units of Products) 

 

4.1.2 Scenario 2: Capacity Meets Demand but Falls Below Target Inventory 

 The second scenario consists of having enough capacity to fulfill demand but not to replenish 

the safety stock. In this case, we need to check again the capacity of each plant, this time without 

considering the safety stock requirements. We assess this capacity using the Genetic Algorithm once 

again, followed by a more refined solution using Particle Swarm Optimization, as shown in colors in 

Figure 11.  

Figure 11: Path in the Configuration of Models for Scenario 2 

 

The main idea is that the analysis can still be performed within each production plant, without 

sharing resources. In this section, we carry out the analysis for Plant A. Initial parameters for this 

scenario are shown in Table 16. 

Table 16: Parameters Scenario 2 

Plant N° SKUs Avg Daily Demand (Units) Initial Inventory (Units) Inventory (Days) 

A 200 64,076 508,702 7.9 

Utilization (%) Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10 Day 11 Day 12 Day 13 Day 14

Production Line 2A 12% 4% 4% 7% 15% 11% 7% 18% 7% 23% 14% 25% 24% 21%

Production Line 3A 54% 18% 18% 11% 33% 13% 34% 31% 15% 25% 31% 49% 25% 33%

Production Line 6A 27% 16% 11% 30% 36% 44% 51% 49% 22% 27% 41% 49% 40% 31%

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10 Day 11 Day 12 Day 13 Day 14

DC1A 446       2,545    865       1,366    3,177    3,877    6,719    7,104    3,719    5,502    3,410    3,750    7,063    7,481    

DC2A 1,931    2,119    2,374    1,746    4,784    3,367    2,204    3,691    5,783    3,591    4,074    4,805    4,166    3,756    

DC3A 241       2,640    3,403    4,243    3,235    4,402    3,072    3,473    3,272    3,420    3,768    5,700    5,402    3,819    

DC4A 4,257    3,789    2,587    1,670    5,402    3,316    2,918    2,518    2,994    2,880    3,462    3,760    3,184    3,066    

DC5A 57          3            18          -             -             10          6            6            8            13          -             -             23          15          

DC6A -             6            -             2            1            -             1            1            1            1            1            1            1            1            

Total 6,930    11,101  9,246    9,027    16,597  14,971  14,918  16,792  15,775  15,405  14,714  18,014  19,837  18,137  
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Similar to Scenario 1, we follow the flow of Figure 11 by defining the availability of resources 

at the production plant. Then, we run the initial Genetic Algorithm to check the plant’s capacity, using 

the same parameters defined in the previous scenario. Table 17 shows that, after running the first 

capacity check, it becomes clear that Plant A is not capable of meeting all the demand and safety stock 

requirements, as it exceeds 100% of its capacity on days 5, 6, 7, 8, 10, 11, 12, 13, and 14. 

Table 17: First Capacity Check Scenario 2 

 

Therefore, we decided to run a second Genetic Algorithm, this time without considering the 

safety stock requirements. This means that only the demand will be fulfilled. The second run shows 

that the solution represents a compromise: meeting all the demand while covering only part of the 

safety stock, as shown in Table 18. 

Table 18: Second Capacity Check Scenario 2 

 

To obtain a more specific and robust solution, and to cover as much of the safety stock 

requirements as possible using only Production Plant A, we ran the Particle Swarm Optimization 

algorithm, using the results obtained from the Genetic Algorithm as boundaries. This technique 

allowed us to reduce the search space and find the solution more efficiently. Table 19 presents the 

parameters used to implement the Particle Swarm algorithm. These parameters were selected based 

on the recommendations of Clerc and Kennedy (2002). 

Table 19: Parameters Particle Swarm Algorithm Scenario 2 

Parameter Value Description 

Population Size 20 Number of particles in the swarm 

Number of Iterations 100 How many times particles update their positions 

Inertia Rate 0.7 Controls momentum 

Cognitive Parameter 1.5 How much a particle follows its own best solution 

Social Parameter 1.5 How much a particle follows the swarm’s best solution 

We conducted a sensitivity analysis by varying the number of iterations in the Particle Swarm 

Optimization algorithm, tracking both solution quality and execution time. Figure 13 shows the change 

in minimum cost relative to execution time. Since we did not observe a consistent improvement in 

solution quality, we decided to run the model with 100 iterations. This configuration provided our 

solution to the production problem in 73 seconds. 

Utilization Day   1 Day   2 Day   3 Day   4 Day   5 Day   6 Day   7 Day   8 Day   9 Day 10 Day 11 Day 12 Day 13 Day 14

Plant A 50% 68% 46% 99% 106% 103% 143% 138% 95% 128% 120% 143% 125% 130%

Utilization Day   1 Day   2 Day   3 Day   4 Day   5 Day   6 Day   7 Day   8 Day   9 Day 10 Day 11 Day 12 Day 13 Day 14

Plant A 65% 75% 85% 71% 86% 80% 98% 95% 85% 97% 89% 94% 96% 89%
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Figure 12: Impact of the Number of Iterations on Optimal Solution and Execution Time in Particle 

Swarm Algorithm 

 

Finally, with a clear production plan, we ran the algorithm to obtain the distribution plan for 

the distribution centers in 93 seconds. The outcome of this phase is a complete production and 

distribution plan for each plant and distribution center. Table 20 shows a summary of the production 

plan for Plant A obtained from the optimization model. Table 21 shows the detail of the utilization of 

each production line. We can see that in this scenario, since the plant cannot fully meet all the 

requirements, line 6A operates at full capacity on days 7, 8, and 10. Table 22 shows the distribution 

plan from Plant A to the different distribution centers. The total execution time for this scenario was 

268 seconds. The average daily cost for the production problem was $1,682,365 and for the 

distribution problem was $2,985,866. 

Table 20: Production Plan Summary Scenario 2 (units) 

 

Table 21: Line Utilization Scenario 2 per Production Line (%)

 

Table 22: Distribution plan summary Scenario 2 (units of products) 
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Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10 Day 11 Day 12 Day 13 Day 14

Production Line 2A 4,681    3,072    13,934 10,862 7,680    17,006 12,581 16,896 12,398 12,837 10,825 9,436    7,973    14,117 

Production Line 3A 13,925 24,142 10,990 28,768 21,952 22,003 36,916 28,256 26,560 32,041 35,598 31,767 21,152 27,703 

Production Line 6A 11,214 23,185 4,971    16,671 9,263    20,803 32,639 38,328 21,168 40,779 25,960 24,229 25,743 18,428 

Total 29,820 50,399 29,895 56,301 38,895 59,812 82,136 83,480 60,126 85,657 72,383 65,432 54,868 60,248 

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10 Day 11 Day 12 Day 13 Day 14

Production Line 2A 16% 7% 40% 33% 18% 47% 49% 39% 36% 67% 30% 37% 38% 53%

Production Line 3A 57% 56% 32% 58% 44% 66% 80% 60% 54% 77% 90% 69% 44% 67%

Production Line 6A 37% 58% 31% 80% 66% 86% 100% 100% 58% 100% 87% 85% 78% 69%

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10 Day 11 Day 12 Day 13 Day 14

DC1A 849        5,133     1,729     2,732     6,353     7,753     13,438   14,208   7,438     11,003   6,820     7,500     14,125   14,963   

DC2A 3,861     4,237     4,748     3,491     9,567     6,733     4,407     7,382     11,565   7,181     8,148     9,609     8,332     7,512     

DC3A 481        5,279     6,612     8,679     6,469     8,804     6,143     6,945     6,544     6,840     7,535     11,399   10,803   7,638     

DC4A 8,511     7,578     4,915     3,599     10,803   6,631     5,835     5,036     5,987     5,759     6,924     7,519     6,367     6,132     

DC5A 101        17           35           -              -              20           11           11           15           25           -              -              46           29           

DC6A -              12           -              4             1             -              1             1             1             1             1             1             1             1             

Total 13,803   22,256   18,039   18,505   33,193   29,941   29,835   33,583   31,550   30,809   29,428   36,028   39,674   36,275   
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4.1.3 Scenario 3: Inventory transfer between plants due to capacity shortfall 

 The third scenario consists of having insufficient capacity to fulfill demand or replenish the 

safety stock. In this case, resources must be shared between production plants. We assess this 

capacity using the Genetic Algorithm once again, followed by a more refined solution using Particle 

Swarm Optimization, this time applied to a more complex optimization problem that includes both 

production plants, as illustrated in color in Figure 13.  

Figure 13: Path in the configuration model for Scenario 3 

 

The initial parameters in this scenario consider both plants, as shown in Table 23. 

Table 23: Initial parameters Scenario 3 

Plant N° SKUs Avg Daily Demand (Units) Initial Inventory (Units) Inventory (Days) 

A 200 73,687 508,702 6.9 

B 170 36,829 259,959 7.1 

Similar to Scenarios 1 and 2, we first need to define the availability of resources in each 

production plant. We follow the diagram of Figure 13 by running the first and second Genetic 

Algorithm to check the capacity of each plant. Table 24 shows the status of each production plant 

during the first capacity check, while Table 25 presents the status during the second capacity check, 

where safety stock is not considered. We can observe that in both cases, Plant A is not capable of 

meeting the requirements. Therefore, we designed a more complex model in which both plants can 

share resources. 

Table 24: First capacity check Scenario 3 

 

Utilization Day   1 Day   2 Day   3 Day   4 Day   5 Day   6 Day   7 Day   8 Day   9 Day 10 Day 11 Day 12 Day 13 Day   14

Plant A 89% 87% 62% 122% 125% 126% 173% 140% 109% 153% 146% 164% 139% 150%

Plant B 3% 10% 53% 64% 87% 85% 80% 87% 79% 98% 80% 95% 99% 78%
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Table 25: Second capacity check Scenario 3 

 

In this scenario, Plant A cannot fulfill its own demand. Therefore, we run a new optimization 

model with the 5 production lines of both Plant A and Plant B using the Genetic Algorithm. This step 

allows us to pool the demand and share resources between plants. The optimization problem 

becomes bigger than the previous scenarios, and the execution time increases to 90 seconds. After 

running the Genetic Algorithm, we run again the model using Particle Swarm for both plants to obtain 

a refined solution in about 90 seconds. 

We use the parameters from Scenarios 1 and 2 to run both the Genetic Algorithm and Particle 

Swarm. In this scenario we need to balance the inventory between the two production plants since 

Plant B is producing to fulfill the demand in Plant A. 

After running both methods, we obtain a production and a distribution plan in which plants 

are sharing resources. Table 26 shows the detail of the utilization of each production line in both 

plants. We can see that in this scenario, since Plant A cannot fully meet all the requirements, line 6A 

operates at full capacity on certain days. Additionally, line 1B from Plant B is also at full capacity, 

serving as an extra resource to support Plant A’s requirements. Table 27 shows the distribution plan 

from Production Plant A and Production Plant B to the different distribution centers. In this case, 

14,352 units are required to be transferred from Plant B to Plant A for subsequent distribution. The 

total execution time for this scenario was 400 seconds. Average daily cost for the production problem 

was $4,235,421 and for the distribution problem was $2,319,745. This cost does not include the cost 

of moving the inventory from Production Plant A to Production Plant B. 

Table 26: Line utilization per production line Scenario 3 (%) 

 

 

 

 

 

 

Utilization Day   1 Day   2 Day   3 Day   4 Day   5 Day   6 Day   7 Day   8 Day   9 Day 10 Day 11 Day 12 Day 13 Day 14

Plant A 89% 87% 79% 85% 102% 98% 132% 120% 101% 112% 110% 132% 112% 135%

Plant B 0% 1% 20% 48% 71% 70% 66% 67% 70% 98% 76% 95% 98% 77%

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10 Day 11 Day 12 Day 13 Day 14

Production Line 2A 12% 21% 25% 36% 29% 56% 29% 32% 56% 56% 20% 60% 38% 38%

Production Line 3A 50% 38% 66% 59% 59% 50% 67% 80% 74% 80% 74% 67% 57% 53%

Production Line 6A 24% 35% 77% 89% 69% 71% 100% 100% 81% 100% 92% 87% 76% 76%

Production Line 1B 5% 18% 87% 93% 93% 100% 99% 100% 93% 100% 100% 100% 83% 90%

Production Line 2B 5% 18% 46% 41% 37% 62% 44% 82% 55% 49% 58% 49% 39% 48%
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Table 27: Distribution plan summary Scenario 3 (units of products) 

 

4.2 Summary and Model Comparison 

In this section, we compare our configuration of models with the company's current approach to 

solving the production and distribution optimization problem in terms of execution time. To test the 

quality of the model, we focus on comparing our Scenario 2 with the company’s solution, as this is the 

only available data we have. 

4.2.1 Execution Time Summary 

Table 28 represents a summary of the execution time in each step in each scenario analyzed. We 

can observe that in the most complex scenario (Scenario 3) the execution time is less than 7 minutes 

(400 seconds). 

Table 28: Execution time summary 

 

4.2.2 Model Comparison 

We compare our results in Scenario 2 with the company’s solution in terms of both solution 

quality and execution time. Tables 29 and 30 show the line utilization in our solution and the 

company's solution, respectively.  

Table 29: Line utilization per production line Scenario 2 (%)

 

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10 Day 11 Day 12 Day 13 Day 14

DC1A 1,614       5,275       2,007       3,606       7,462       11,587     16,452     16,647     8,877       12,708     8,053       8,795       16,414     17,211     

DC2A 2,433       4,292       3,909       3,486       10,193     10,831     7,932       9,237       16,494     9,475       10,420     11,516     9,201       9,389       

DC3A 687          5,962       6,732       7,611       5,395       10,100     7,151       10,006     10,772     10,434     10,952     13,692     12,894     9,947       

DC4A 6,887       8,604       4,033       4,393       10,209     9,807       7,884       8,062       10,142     7,887       7,869       9,864       7,500       7,259       

DC5A 64            6              36            -               -               18            20            20            17            29            -               -               35            40            

DC6A -               15            -               5              1              -               1              1              1              1              1              1              1              1              

DC1B 10,497     7,403       13,350     7,687       9,265       10,037     6,955       29,811     22,576     10,805     9,244       11,070     10,471     11,160     

DC2B 3,010       7,488       9,727       2,599       5,561       6,973       6,862       6,199       8,347       6,063       6,393       6,722       8,492       6,641       

DC3B -               32            -               2              1              44            -               -               13            -               -               98            6              -               

DC4B 3              55            -               150          195          278          319          356          261          25            246          319          457          222          

DC5B 1,860       2,078       2,911       5,615       4,152       5,256       4,372       4,121       7,703       6,000       4,683       5,467       7,418       4,278       

Plant A

Plant B

Scenario 1 Scenario 2 Scenario 3

1 Availability Definition

2 Genetic Algorithm in each plant for first capacity check and set boundaries 50 50 50
3 Genetic Algorithm in each plant for a refine solution 50 NA NA

4 Genetic Algorithm for distribution problem 93 NA NA
5 Genetic Algorithm in each plant for second capacity check NA 50 50

6 Particle Swarm Algorithm in each plant for a refine solution NA 73 NA
7 Particle Swarm Algorithm in each plant for distribution problem NA 95 NA

8 Genetic Algorithm in both plants for set boundaries NA NA 90
9 Particle Swarm Algorithm in both plant for a refine solution NA NA 90

10 Particle Swarm Algorithm in both plant for distribution problem NA NA 120
193 268 400

Execution Time (seconds)

Total

DescriptionStep

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10 Day 11 Day 12 Day 13 Day 14

Production Line 2A 16% 7% 40% 33% 18% 47% 49% 39% 36% 67% 30% 37% 38% 53%

Production Line 3A 57% 56% 32% 58% 44% 66% 80% 60% 54% 77% 90% 69% 44% 67%

Production Line 6A 37% 58% 31% 80% 66% 86% 100% 100% 58% 100% 87% 85% 78% 69%
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Table 30: Line utilization per production line Company´s solution (%) 

 

We observe that our solution balances the capacity across production lines and leverage the 

available capacity more efficiently. In terms of units produced, our solution achieves a 13% increase 

compared to the company's solution, while also reducing the penalty cost in the production problem 

by 2%, considering overstock penalties, penalties for inventory below the minimum, penalties for 

inventory below the target, and stockout penalties.  This improvement is mainly because the 

optimization model penalizes stockouts 1,500 times more heavily than overstock situations. 

Additionally, in terms of distribution costs, our solution is 13% lower than the company's, again driven 

by the strong penalty associated with stockouts. 

Another way to measure the quality of our model is by comparing the resulting inventory 

positions. Tables 31 and 32 show the number of SKUs in Plant A projected to be in stockout, below 

the minimum inventory level, below the target inventory level, and above the target inventory level 

in both our solution and the company's solution. 

Table 31: Inventory position Scenario 2 (SKUs) 

 

Table 32: Inventory position Company´s solution (SKUs) 

 

As shown in Table 31 and Table 32, our solution aims to reduce the number of SKUs that fall 

below the target level, below the minimum, and into stockout, compared to the company’s solution. 

Another important consideration is that our model in Scenario 2 takes only 268 seconds to run, 

compared to approximately half an hour (1800 seconds) for the company's solution.  

For an excerpt of the production and distribution plan obtained with the proposed model, refer 

to Appendix E and F. 

 

 

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10 Day 11 Day 12 Day 13 Day 14

Production Line 2A 4% 18% 4% 18% 18% 18% 30% 9% 34% 42% 26% 8% 22% 46%

Production Line 3A 42% 21% 74% 62% 74% 91% 72% 65% 81% 88% 71% 74% 28% 100%

Production Line 6A 65% 90% 80% 81% 65% 75% 83% 73% 75% 78% 71% 68% 82% 31%

SCENARIO 2 Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10 Day 11 Day 12 Day 13 Day 14

Over Target 200 200 200 200 200 197 192 189 190 185 186 185 183 186

Between Target and Minimum -            -            -            1           -            1           4           5           5           2           5           3           3           1           

Between Minimum and 0 1           -            -            -            -            -            1           4           -            2           3           3           1           3           

Below 0 -            -            -            -            -            -            -            -            1           -            -            -            -            -            

Total 200 200 200 200 200 200 200 200 200 200 200 200 200 200

COMPANY Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10 Day 11 Day 12 Day 13 Day 14

Over Target 186 189 190 189 191 186 186 183 185 182 182 180 184 182

Between Target and Minimum 5 6 5 7 4 7 8 9 5 7 6 7 5 4

Between Minimum and 0 5 2 2 1 2 3 2 4 6 7 8 9 7 9

Below 0 4 3 3 3 3 4 4 4 4 4 4 4 4 5

Total 200 200 200 200 200 200 200 200 200 200 200 200 200 200
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4.3 Model Limitations 

Since our model is designed to be fast and provide a feasible solution in a short period, it also 

comes with some limitations. As mentioned in Section 2.3, using the Genetic Algorithm and the 

Particle Swarm does not always guarantee finding the global optimum, but they produce a high-quality 

solution if parametrized correctly. When capacity is not a constraint, a small discrepancy from the 

optimal solution may be acceptable; however, when capacity is limited, finding the optimal solution 

becomes crucial. Therefore, the ideal scenario would be to be able to use both models according to 

the situation. On the one hand, using the MIP model for regular planning when time is not a constraint 

would grant optimality. On the other hand, the combination of both algorithms can deliver valuable 

insights for the planning team, especially when the situation requires a quick response. 

Another important limitation is that the performance of both algorithms heavily depends on 

proper parameter tuning, such as population size, number of generations, mutation and crossover 

rates, and number of iterations, among others. In our case, we evaluated the behavior of the optimal 

solution under specific scenarios, but it is important to note that more detailed parameter tuning 

would be required in the case of a broader variety of scenarios. 

It is also important to mention that due to random initialization, different runs may yield 

different solutions, affecting repeatability. Because of this, it is sometimes difficult to interpret the 

solutions and justify decision-making, as it is not always clear how the algorithms operate or reach 

those results. 

As mentioned in Section 1.4, the sponsor company is currently working with cost figures that 

represent penalties to drive the desired behavior into the model. Therefore, the models do not 

calculate the real cost of manufacturing and delivering the product, as is shown in Figure 3: Framework 

Project. We believe that there could be significant benefits from using estimated values, such as 

obtaining better insights into the business and making decisions to reduce the bottom line. In addition, 

currently the sponsor company is not considering the production (manufacturing) and transport costs. 

In a similar way, adding transportation costs could help the company understand a trade-off between 

stocking more inventory and transferring inventory from another plant. 

Finally, it is also important to mention that there is data preparation required to execute the 

program that we built. Currently, OMP connects directly to SAP and extracts the information it needs 

to run the optimization automatically. In our case, we had to extract the information from the system 

and upload that information into Google Colab to run the program in Python. In this document, we 

are comparing the execution time of the MILP-based program against our configuration of 

metaheuristic models, but we are not including the time to obtain and prepare the information. Since 
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our model cannot be directly connected to the company's ERP, we would recommend automating the 

process to obtain the necessary data to run the program.  

5. CONCLUSION 

To conclude our capstone, this chapter shares key management takeaways based on the 

model’s results, along with some suggestions for future improvements. 

5.1 Insights and Recommendations 

The sponsor company is currently using Mixed-Integer Programming (MIP) based software to 

optimize its end-to-end supply chain planning. The main purpose of the company is to increase the 

speed at which it responds to changes in demand and external conditions. To achieve this, the sponsor 

company wants to execute their optimization planning program more quickly, and as a result, being 

able to update demand and production conditions as needed. 

To accomplish such an aim, we propose two key approaches, based on our research and 

analysis. The first relates to the size of the problem; it is possible to break down the large optimization 

problem into smaller, more manageable sub-problems while still respecting all constraints. 

Specifically, in this project, we broke the problem based on three criteria: location (Plant A and Plant 

B), process type (production and distribution), and equipment used (Product Type Blue and Product 

Type Red). However, it is essential to conduct a rigorous evaluation of the supply chain before applying 

this strategy, as it requires identifying all interdependencies between variables and business-specific 

features.  

The second approach is the potential use of alternative optimization methods that can deliver 

high-quality solutions more quickly than traditional MIP. In our study, we evaluated a hybrid approach 

that combines two metaheuristic algorithms, Genetic Algorithm and Particle Swarm Optimization, and 

leveraged their strengths to design a configuration model capable of delivering fast solutions that are 

close to optimal. Additionally, we found that providing an estimated baseline solution significantly 

reduces the execution time of the metaheuristic methods. 

Regarding the overall process agility, we recommend limiting the planning horizon depending 

on its purpose and adjusting the frequency accordingly. There are traditionally three-time horizons for 

supply chain planning (long-, medium-, and short-term). While running a planning process twice per 

day is important to respond to changes in demand on an operational level (short-term), it does not 

add value on the tactical level (medium-term). We consider that the short-term horizon should be 

analyzed daily and independently, especially when there are disruptions in supply or changes in 

demand. However, the medium-term horizon should only be run once or twice per month to make 

tactical decisions. 
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The final insight is that a well-tuned metaheuristic model configuration can outperform a MIP 

model when the latter is prematurely terminated. Since the sponsor company enforces a 1.5-hour 

time limit on the planning program execution, the program returns the best solution that has been 

calculated so far. Therefore, even when working with a MIP model, optimality is not guaranteed. In 

our experiments, the proposed solution reduced production costs by 2% and distribution costs by 13%. 

These improvements are driven by lowering the number of SKUs under the inventory target, under 

the minimum target, and inventory stockouts. While the overall savings are modest, they were 

achieved in 85% less time than the current MIP process. 

5.2 Broader Applicability of the Developed Optimization Models  

In global consumer goods enterprises, uncertainty in demand, supplier performance, and 

external factors can lead to poor inventory planning, resulting in overstock or stockouts. To mitigate 

these risks, companies must react quickly and responsively to any environmental changes that may 

disrupt production or distribution plans. However, creating a new production or distribution plan can 

be difficult and time-consuming, especially in companies managing a large number of SKUs. 

Through this study, we present an alternative, near-optimal approach to solving optimization 

problems. While traditional MIP-based solutions are effective in many cases, other methodologies can 

offer improvements in both speed and solution quality. Several of these methods can be integrated 

into existing systems to deliver results that are both time-efficient and high in quality.  

The methodology presented in this study can be applied not only to production and 

distribution planning, but also to a wide range of optimization problems within the supply chain, such 

as storage, transportation, and procurement, across various industries. Adaptation is possible by 

modifying specific parameters. 

The conclusions and insights found in this study are valuable not only for our sponsor company 

but also for other industries facing similar challenges. These results are encouraging for organizations 

to explore alternative approaches to solve complex optimization problems.  
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APPENDICES 

Appendix A: Process to define the Configuration of Models 

 

Appendix B: Other metaheuristic techniques 

Tabu Search 

Tabu Search is a method that can be applied for the optimization of complex problems with 

multiple objectives. Tabu Search is a metaheuristic optimization method that begins with local search 

by incorporating memory structures to explore the solution space and avoid returning to previously 

visited solutions (Glover, 1986). 

The methodology starts with a feasible solution that is often generated randomly or by using 

a heuristic method. It is necessary to define a Tabu list, which represents the recently visited solutions 

or forbidden moves. It is also necessary to define the Tabu list size and one stopping criterion in the 

model to conclude the optimization. After these definitions, it is essential to determine the 

neighborhood, where all the solutions can be reached, and evaluate all possible solutions in the 

neighborhood. The algorithm will select the best move from the neighborhood based on the objective 

function, and every new movement must be checked against the forbidden list. The current solution 

will be replaced with the new selected movement that satisfies the objective function. The search 

ends when the stopping criterion is met (Glover, 1986).  

Simulated Annealing 

Simulated Annealing is an analogy of the annealing process, which refers to a metal freezing into 

a minimum energy structure. The advantage of this method over other optimization models is its 

effectiveness in looking for the global minimum of the objective function. This quality is achieved by 

accepting changes that decrease the objective function, and changes that increase them with a 

probability: 

𝑝 = 𝑒𝑥𝑝
−𝛿𝑓

𝑇
                                                                 (Eq 1) 

where  is the change in the objective function and  is the control parameter (stands for temperature, 

referencing the annealing process). 
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The process consists in creating an initial solution and estimating its initial T. Then, we need 

to create a new solution with a generator of random changes that allows all possible solutions to be 

reached. The new solution should be evaluated against the current one, and if it is accepted, it 

becomes the current solution. The T parameter is adjusted according to an annealing schedule, and 

the process is repeated a number of times defined by the required amount of T values to be used, or 

a total number of solutions to be generated. (Parks & Sepulchre, 2020). 

Ant Colony Optimization 

The ant colony algorithm is an optimization method based on the behavior of real ants within 

colonies, with the objective of solving a wide range of optimization problems. The algorithm mimics 

the search patterns between the colony and food. The main idea is that ants deposit pheromones to 

delimit different paths, which serve as guidance to other ants to find optimized paths or solutions 

(Dorigo and Stütlze, 2004). The communication over iterations via pheromone left from previous ants 

allows better solutions to be found. 

The method begins with the definition of a certain number of pheromones as an initial 

parameter in the paths (solutions). The algorithm allows other ants to use these pheromones as a 

signal and follow the paths with higher concentrations. The right path (the decision rule) is chosen 

considering the pheromone intensity (path with higher concentrations are more attractive) and 

heuristic information such as local factors (e.g., distance between nodes). More desirable solutions or 

paths attract more ants and lead to higher probabilities to select a specific solution. Once all ants have 

completed their path decisions, the pheromones are updated to reflect the quality of the solutions. 

Over time, the evaporation of pheromones occurs. This phenomenon helps to avoid convergence of 

suboptimal solutions and ensures that ants continue exploring new paths. The process of solution 

creation and information update is repeated for a predefined number of iterations or until certain 

criteria are met (Doringo, 1996). 
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Appendix C: Fitness Function throughout Generations Genetic Algorithm  

 

Appendix D: Fitness Function throughout Generations Genetic Algorithm  

 

Appendix E: Production Plan proposal Model 
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Appendix F: Distribution Plan Proposal Model 

 


