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ABSTRACT

The sponsor company, a global consumer goods enterprise known for high-quality products and
customer service, has been on a digital transformation journey over the past few years to make its
supply chain more responsive. Currently, the company manages its end-to-end supply chain planning
using Mixed Integer Linear Programming-based (MILP) software. This process takes approximately
two hours, limiting the company's ability to rapidly update production and distribution plans in
response to sudden changes in supply or demand.

Our capstone project proposes the use of metaheuristic models as an alternative to their existing
planning software, with the goal of reducing planning time while minimizing total relevant costs.
Specifically, we identified the conditions in which the company currently operates and developed a
model configurator to optimize the end-to-end supply chain planning. The application of the
configurator, based on Genetic Algorithm and Particle Swarm Optimization metaheuristics, was
demonstrated across three representative demand scenarios and proved successful in reducing
planning time by approximately 85%.

Additionally, the proposed solution maintained the same quality as the current solution of the
company, achieving a 2% and 13% cost reduction in production and distribution respectively, while
accounting for penalties related to unmet inventory targets. This improvement is significant, as it
enables the company to become more responsive to internal and external changes, improving its
ability to adapt quickly to dynamic supply and demand conditions.
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1. INTRODUCTION
1.1 Background

Optimization and automation in supply chain processes are crucial, as they enable companies
to quickly adapt to changes in demand, supply disruptions, or market fluctuations. This not only
improves operational efficiency but also enhances flexibility and responsiveness to unexpected
situations, making the supply chain more competitive and robust. A lack of automation and
optimization in the supply chain leads to delays, errors, and higher operational costs. It also hampers
efficient planning and the ability to quickly adapt to changes in demand or disruptions, impacting both

the company’s productivity and competitiveness.
1.2 Motivation

Our sponsor company, a global consumer goods enterprise known for its wide portfolio of
categories such as personal care, household cleaning, and health products, is currently reviewing the
optimization strategy for its end-to-end supply chain planning. The enterprise defines end-to-end
supply chain planning as the process from purchasing raw materials, to manufacturing, inventory
deployment, and finally to customer orders at downstream distribution centers, as is shown in Figure
1. The inventory deployment process refers to moving the product from the production facility to one

of their 10 storage facilities.

Figure 1: End-to-End Supply Chain Planning Scope

SUPPLIERS MANUFACTURING DISTRIBUTION CUSTOMER

The project will be centered on the Fabric Care division, with a particular focus on the Heavy-
Duty Liquid (HDL) product line, which comprises approximately 600 Stock Keeping Units (SKUs). The
manufacturing of the products is carried out in two production plants, A and B, with a total of 10
production lines. Each plant serves different markets, resulting in both plants producing similar SKUs.

The supply chain planning area is centralized for both production plants. At present, an
automation process runs the manufacturing and product deployment planning program twice a day.
The company utilizes specialized software, called OMP, to manage this operation. OMP is a provider
of software solutions for supply chain planning and optimization. The data is transferred from SAP, a
software used to manage business operations, to OMP, where Mixed Integer Programming (MIP)
models are used for short-term planning at each plant. The objective of the MIP models is to

determine the optimal quantity of each product to be produced and distributed to reduce inventory



costs. To find the optimal solution, certain constraints are established, such as production line
capacities, lead times, and Minimum Order Quantity (MOQ), among others.

According to the sponsor, the current system, OMP, is time-consuming and limits the overall
responsiveness of the planning team, suggesting that it should operate faster. Furthermore, there are
certain constraints that are not included in the planning model, for instance, storage capacity in the
warehouses and raw materials availability, and these should be revised to assess their impact on the

efficiency of the supply chain.
13 Problem Statement and Key Questions

The sponsor company has been working for years on the digital transformation of its supply
chain. Aligned with their purpose of providing superior-quality products, they are working to create
an optimization strategy and keep a responsive supply chain, capable of adjusting to supply, demand
and market changes. Some of the important milestones on this path have been the implementation
of an integrated business planning (SAP) and production optimization software (OMP). These systems
were essential to achieve the company’s 98% service-level Key Performance Indicator (KPI), defined
as the number of complete orders delivered on time divided by the total number of orders. However,
the execution time required for production-to-distribution planning remains excessively long, thereby
undermining the organization’s ability to respond effectively to dynamic operational conditions.

Specifically, the manufacturing and deployment planning process relies on a single large
program developed with linear constraints that determine what to manufacture, in what quantities,
and where to store the products. To solve the planning problem within a maximum of 1.5 hours, as
required by the sponsor, planners omit certain constraints from the program and “manually” apply
them once the problem has been solved. If the program exceeds the allotted time, planners terminate
the run prematurely and work with a suboptimal solution. Consequently, the company is seeking an
alternative optimization strategy that allows it to reduce the planning execution time while ensuring
costs minimization.

Reducing the planning execution time would allow planners to iterate and perform sensitivity
analyses, which, in turn, could improve service, cash flow (inventory levels), and production costs.
Nonetheless, the sponsor company main concern is improving their supply chain responsiveness. We
are using the term supply chain responsiveness as the ability to respond to changes in supply and
demand as defined by Christopher and Towill (2000). By selecting the best configuration of
optimization models, the company would have the flexibility to quickly model different scenarios and
make decisions in urgent situations. A model configurator can generate efficient production and

distribution plans by leveraging the strengths of different metaheuristics. This directly addresses the



execution time challenge, enabling faster and more responsive decision-making. In the context of the

end-to-end planning process, the following questions will be addressed:

1. What are the key processes in the end-to-end supply chain planning? Which dependencies
exist within those processes?

2. What are the variables and trade-offs that the current optimization model considers?

3. What supply disruptions and demand changes should the configuration consider to cover all
mismatch scenarios?

4. What is the expected improvement in terms of cost and execution time resulting from the

proposed model?
1.4 Project Goals and Expected Outcomes

The objective of the project is to develop a configurator of models to optimize the production
and distribution planning process. It involves ensuring the management of overlapping objectives and
determining the optimal limit of integration and constraints to guarantee solution quality and
efficiency. To accomplish this, we will study the optimization model constraints and linkages for a
particular business division in scope. We will also understand the tradeoffs between the quality of the
model and running time to propose alternative solutions. To achieve the expected results, we will
focus on a specific product category prioritized by the company. This scope includes production lines
2A, 3A, and 6A at Plant A, as well as lines 1B and 2B at Plant B. The proposed solution is designed to
be scalable across the company, making it adaptable to other products in the future.

Creating an alternative model and comparing it to the current one requires a deep
understanding of the processes, including variables such as product families, product types, and
constraints like capacity and lead time. We will engage with stakeholders, particularly the
Synchronized Planning Solutions team, and analyze historical data, including daily demand, capacity,
and production rates for selected products. Subsequently, we will test various models to identify the
optimal configuration that enhances supply chain responsiveness and service levels, while maintaining
solution quality and reducing execution time. The findings will inform an assessment of current
optimization practices and lead to actionable recommendations.

The main deliverable for the sponsor company will be a configuration to optimize the
production and distribution planning process. This model will be able to select the best solution from
a set of different methodologies, all implemented in Python. We will evaluate the quality of the
solution by the total cost of the optimized production and distribution plans. The costs that the
company is currently using are illustrative figures rather than precise costs drawn from their financial

statements. We will be using the same costs to compare our solutions to theirs and estimating more



accurate ones is out of scope. The demand forecast will also be provided by the company, and its

calculation is out of scope.

Other deliverables to the company will include:
1. Diagnosis of the current planning strategy model in terms of supply chain responsiveness,
service level, cost efficiency, and execution time.

2. Recommendations regarding the current planning strategy.
1.5 Plan of Work

The first step, following the problem definition, is to interview the stakeholders involved in
the planning process to understand the existing variables and constraints. Additionally, we will explore
the relationships between all stages of the supply chain and the optimization model. Next, we will
formulate the objective function of our problem. After that, we will define a configuration of models
that incorporates our objective function and constraints. We will then test and validate the
configuration model, and the solution methods analyzed. Service level, cost to serve, inventory
turnover, and execution time will serve as indicators to evaluate the program's performance and the
quality of the solution. We will also iterate on the solution to achieve improvements. Based on the
tests and results, we will propose the configuration of models that best fits different scenarios.

Appendix A shows the iterative process to test and define and propose the configuration of models.

2. STATE OF THE PRACTICE

The primary problem that our capstone project will address is identifying the configuration for
the supply chain optimization models for the planning of a consumer-goods company. We will
determine the ideal optimization method to each scenario, and the necessary constraints to apply to
guarantee the solution quality and efficiency, and as a result, increase the company’s responsiveness
and service level. To create the model, first we need to define the objective function. As we found
more than one objective in our project, we defined our problem as multi-objective optimization.

Given the project objectives and challenges, we will review literature across several key areas.
First, we will examine literature on responsiveness in supply chains and the key factors for improving
it. Second, we will address the importance of planning the end-to-end supply chain. Finally, we will

review different metaheuristic methods for solving the current multi-objective problem.
2.1 Supply Chain Responsiveness

Supply chain responsiveness is the capability of a supply chain to adjust to changes in demand,
supply disruptions, or changes in the market environment. (Christopher & Towill, 2000). A responsive

supply chain is characterized by its agility and flexibility, enabling companies to effectively meet
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customer demands even in uncertain conditions. Key factors that improve responsiveness include
real-time monitoring, collaboration with suppliers and distributors, and agile inventory management,
among other factors.

On the one hand, real-time monitoring allows companies to adjust their processes to reduce
response times. This approach not only improves efficiency but also provides a competitive advantage,
as companies can respond to changes in demand or supply chain disruptions (Suri, 1998).

On the other hand, developing strong collaboration with suppliers and distributors is essential
for optimizing operational efficiency and responsiveness. Collaboration includes communication and
information sharing between partners. By working closely with suppliers and distributors, companies
can better anticipate and react to market fluctuations (Simchi-Levi & Kaminsky, 2007).

Finally, implementing agile inventory management practices is essential for managing
fluctuations in demand and supply. Agile inventory management refers to maintaining flexible
inventory strategies and having the ability to quickly adjust stock levels to support changes in the
environment, such as demand fluctuations or a supplier's disruptions (Chopra & Meindl, 2015).

According to a study performed by Accenture, a customer-centric supply chain is key for
reaching higher growth rates. After the COVID pandemic, 94% of consumer-packaged goods (CPG)
companies have growth less than 3% per year. The common factor between those companies that
have surpassed that growth threshold is a higher consumer value proposition through a connected
consumer experience, price competitiveness, and trust and sustainability. As stated by Accenture, CPG
companies require a tailored and responsive supply chain capable of reacting to the changes in
different buying channels to achieve a higher value proposition. In this type of industry, management
should focus on customer segmentation and building capabilities to deliver the right product portfolio
at optimal cost. (Accenture, 2020).

Maintaining a responsive supply chain is a key goal that our sponsor company is pursuing
through the optimization strategy. Responsiveness will enable the company to increase customer
satisfaction, shorten lead times, and maintain a competitive advantage in changing markets. For the
company, achieving a responsive supply chain requires updating their production and distribution
plans multiple times a day or whenever there is a supply disruption. This means they need to shorten

their current processes in order to meet this objective. (Chopra & Meindl, 2015).
2.2 End-to-end Supply Chain Planning

End-to-end supply chain planning has become critical over the last two decades. Globalization,
new consumer channels, and wider SKU portfolios, among other factors, have exponentially increased
complexity. At the same time, internal operation savings are reaching their limit since most of the

retailers have already spent decades making their supply chains highly efficient. As a result, supply
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chain professionals are shifting to more collaborative approaches looking for value creation inside and
outside their organizations. (Burnette & Dittmann, 2018).

The most resilient players of the consumer-goods industry during the COVID pandemic were
the ones that had started implementing end-to-end planning. It is expected that over the next decade
a high-performance planning function will help companies improve their top and bottom lines
(increase revenue and reduce costs). (Ghandour, et al., 2021).

Regarding the top line, companies can take advantage of new revenue streams (for example,
ecommerce), and acquire competitive advantage from resilience in the case of supply chain disruption
during global crises (i.e., the COVID pandemic). Regarding the bottom line, production and logistics
costs have been increasing because of changing customer expectations for product portfolios’ variety,
sustainable sourcing, reduced delivery time, and other consumer trends. To ensure optimal decisions,
organizations require cutting-edge algorithms and accurate information.

The principles that enable a successful implementation of end-to-end planning strategy are

(Ghandour, et al., 2021):

Cross-functional integration to take the decisions that create value.
Short planning cycles to respond to changes in demand.

Use of advanced analytics to improve forecasts and planning.

oW

Automation of standard tasks to allow planners to focus on decision making.

Inside a company there are multiple objectives to satisfy, such as inventory reduction, demand
fulfillment, and efficiency on production lines, among other objectives. Sometimes this variety of
objectives can overlap and generate contradictions. A typical example is the relationship between
minimization of total cost in the entire supply chain and the maximization of the service level.
Increasing the service level increases customer satisfaction, however, this tends to increase inventory
levels or incur extra costs. The keys to balancing these overlapping constraints are cross-functional

integration and the use of advanced analytics. (Ghandour, et al., 2021)
23 Techniques for Multi-objective Optimization Problems

In multi-objective optimization problems, there is more than one objective function to be
satisfied simultaneously. In some cases, the objectives overlap, leading to conflicts between them.
(Trisna, et al., 2016). In multi-objective optimization problems, there is no single global solution.
Instead, a set of solutions can be found that form Pareto optimal solutions. This means that there is a
set of solutions (trade-offs) among the different defined objectives (Deb, 2001).

According to Donoso and Fabregat (2007) we can divide multi-objective optimization

problems into two categories: classical (or traditional) methods and metaheuristic methods. Figure 3
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shows the classification mentioned. On the one hand, classical methods convert multi-objective
problems into single-objective problems by aggregating objective functions, and these problems are
often solved using techniques like mixed-integer linear programming (MILP). On the other hand,
metaheuristic methods can guide other heuristic methods or algorithms in the search for feasible

solutions of the optimal value or the set of optimal values.

Figure 2: Classification of Multi-objective Optimization

Multi-Objective Optimization

I

Metaheuristic Methods

Classical Methods

+ MILP * Simulated Annealing
+ LP * TubuSearch
* AntColony

Genetic Algorithm
Particle Swarm

Mixed Integer Linear Programming tools are commonly used to solve supply chain network

design problems. These tools can obtain an optimal solution within a wide range of linear constraints.

However, MILP is computationally expensive and time-consuming. For that reason, different

alternatives have been explored, such as metaheuristic approaches to solve complex supply chain

models.

Different metaheuristic methods can solve multi-objective optimization problems. We will

focus on five relevant approaches: Simulated Annealing, Tabu Search, Ant Colony, Genetic Algorithm

and Particle Swarm. These methods can find heuristic solutions to complex problems in an efficient

way. For the full list of researched metaheuristic optimization methods refer to Appendix B. Table 1

shows a brief comparison of the techniques that will be explored.

Table 1: Metaheuristic Methods Comparison Chart

) Ant Colony 3 3
Simulated oL Genetic Particle Swarm
Feature Tabu Search (TS) . Optimization . .
Annealing (SA) Algorithm (GA) Optimization (PSO)
(ACO)
. Behavior of ants
. Annealing . . . Movement of flocks
L Problem-solving . in finding optimal Natural evolution .
Inspiration . process in ) of birds or schools
strategies paths using process .
metallurgy of fish
pheromones
Explores Accepts changes Combines .
) . . L Particles move
neighborhoods that increase Ants deposit recombination, .
) s o ) through solution
. while avoiding the objective pheromones to mutation, and
Mechanism . . . . space based on
revisiting past function with a mark paths, selection to
: . . . personal and group
states using a decreasing influencing others | generate .
. o . behaviors
tabu list probability solutions

11




o . . - Number of
- Tabu list size - Pheromone - Population size .
. . particles
- Number of - Initial evaporation rate - Crossover ]
Key . . . - - Velocity of each
iterations temperature -Concentration of | probability .
Parameter . . . particle
- Neighborhood - Annealing rate | pheromone - Mutation L
. . . - Social influence
size - Ant colony size probability
parameter
. . - Avoids o
. - Avoids being - Is effective in - Balance between
- Avoids local convergence of
Key Strengths . . trapped at local . large and complex | local and global
optima effectively . suboptimal . ]
optimal . solution spaces optima
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2.3.1 Genetic Algorithm

The Genetic Algorithm (GA) is an attempt to simulate the natural evolution process where
attributes are modified by the exchange and combination of chromosomes during breeding. The two
main principles are that complicated structures can be represented by simple bit strings, and that
those strings can be improved by simple transformations.

Like Simulated Annealing, the GA only uses the objective function information, not its
derivatives, and it uses probabilistic transition rules. However, the GA uses an encoding of its control
variables instead of the variables themselves, and searches from one population of solutions to

|”

another. The GA consists of creating an initial “population” of solutions encoded in binary bit strings.
When encoding continuous control variables, the accuracy will depend on the length of the bit strings
leading to a trade-off between precision and running time. Different from other optimization routines,
the process of generating a new solution consists of three activities: selection, recombination (or

breeding), and mutation. (Parks, G., & Sepulchre, R., 2020).

2.3.2 Particle Swarm Optimization

The Particle Swarm methodology is a heuristic optimization algorithm inspired by the social
behavior of groups of animals like fish schooling, birds flocking, or honeybees flying (Gad, 2022).
Everyone within a swarm has their own simple capacities to find a solution. However, they perform in
a collaborative way, interacting among themselves to find the best solution. The interactions could be
direct (visual or auditive) or indirect (reacting to changes in the environment).

The methodology considers that everyone is a particle. Each individual is a potential solution
that is viewed as a particle with a specific velocity moving through a defined space. Each solution
combines data of historical best location, current location and data of other individuals of the swarm
to define the next movement. The next iteration occurs after all particles have been moved. Particles
adjust their velocity and position, converging towards the optimal solution as the swarm's collective

knowledge improves. (Dorigo, M., Maniezzo, V., & Colorni, A., 1996).

12



The primary objective of the particle swarm methodology is to create a balance between each
individual particle and the swarm (local and global). It needs a few adjustable parameters since it is

computationally efficient and applicable to a wide range of optimization problems.

3. METHODOLOGY

In this chapter, we summarize the approach to developing a model configurator to optimize
production and distribution planning, that balances the trade-off between production capacity,
inventory relocation, and service level, considering that the execution time and quality of the solution
are key factors. In developing our model, we adapted methodologies and incorporated considerations

regarding different metaheuristic methods, as described in Section 2.3.
3.1 Project Framework

The sponsor company is recognized by its customers for its high-quality products. Therefore,
having a robust and highly responsive supply chain is key for their business strategy. Creating a
configuration for the supply chain optimization models can help to reach this goal. According to our
literature review, agile inventory practices and collaboration are essential in responsive supply chains.
However, as mentioned in Section 2.2, flexibility in inventory practices, responsiveness, and overall
service level are opposing objectives to a cost-efficient supply chain. Those different goals can be
managed through an end-to-end planning approach.

The sponsor company is currently using MIP-based software, which is highly time-consuming
and restricts the constraints that can be placed on the model. Metaheuristics are another alternative
to optimization problems, but unlike linear programming, metaheuristics do not look for exact
solutions but sufficiently good ones. These techniques can be an appropriate option since they require
less time and computational power. Based on the literature reviewed, we have concluded that the
most appropriate techniques are the Genetic Algorithm and the Particle Swarm.

We selected Genetic Algorithm (GA), and Particle Swarm Optimization (PSO) based on the
nature of the production and distribution planning problem and the need for faster, scalable solutions
compared to traditional Mixed-Integer Programming (MIP) approaches. Genetic Algorithm was
chosen due to its ability to explore large and complex solution spaces efficiently, handle discrete and
nonlinear decision variables, such as production quantities, scheduling, and plant assignments.
Additionally, GA avoids getting stuck in local optima through mechanisms like crossover and mutation.
GA is easily adaptable to custom constraints (e.g., minimum order quantities, line priorities), which
are difficult to incorporate in traditional solvers. On the other hand, Particle Swarm Optimization was
selected because it shows rapid convergence in continuous or near-continuous decision spaces, such

as production levels or distribution flows. It requires fewer hyperparameters and tends to be simpler
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to implement and tune. PS performs well in scenarios with smooth cost surfaces, such as inventory
holding, transportation, or penalty costs. By combining both approaches, we are able to leverage the
strengths of GA in combinatorial aspects of the problem, and the speed of PSO in continuous domains,
achieving feasible and high-quality solutions in significantly less time than MIP.

Figure 4 illustrates our project framework, which provides an organized scheme for addressing
the problem. As defined by the sponsor company, the end-to-end supply chain covers four main
stages: suppliers, manufacturing, distribution, and customer. The right coordination and balance
between these stages will enable responsiveness in the supply chain, a key objective for the
enterprise. Each process has its objectives. For instance, cost reduction or efficiency in production
lines are fundamental goals for the stage of manufacturing. In some cases, different objectives can

overlap, generating conflicts among themselves.

Figure 3: Project Framework
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[ INCLUDED IN THE CURRENT MODEL

Some of the constraints showed in figure 4 are included in the current optimization model,
such as supply capacity, over inventory cost, and demand. However, there are some constraints that
are not included in the model and must be addressed to achieve optimized results across the supply
chain.

After the variables and constraints are defined in the model, it is possible to formulate the
optimization problem and determine how to solve it. We will explore the current methodology
(traditional methods), and metaheuristic approaches to find a better solution in terms of efficiency
and quality. Finally, the output of the model recommends which SKUs and how much to produce,
when to produce and where to ship them to achieve a balance between the defined objectives and

tradeoffs.
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3.2 Production-Distribution Network Structure

The first part of the data analysis phase consisted of understanding the supply chain structure
of the sponsor company, through interviewing stakeholders, specifically, the Synchronized Planning
Solutions team. The key features to identify were the processes, objectives, constraints, and variables,
and which of them were already included in the company’s optimization model. Sensitive data was
masked to protect confidentiality.

To build our model, we received data related to the demand for each SKU-distribution center
pair, safety stock levels per SKU-distribution center, production rates for each production line and
SKU, the bill of materials for each SKU, lead times between production plants and distribution centers,
and current stock levels across distribution centers. Figure 5 illustrates the structure of the production
and distribution network. There are two production plants: Plant A and Plant B. Plant A consists of six
production lines (Line 1A to Line 6A) and Plant B has four production lines (Line 1B to Line 4B). Each
production Plant can serve a defined group of distribution centers. Plant A supplies products to DC1A
through DC6A and Plant B supplies products to DC1B through DC5B. Additionally, there is an inventory
balancing mechanism between the two plants, allowing them to transfer stock to optimize availability
across the network. The red and blue colors differentiate between the two types of products that the
plants can produce. Each group of lines is exclusive for each type of product. It means that production
line 1A, 4A, and 5A in Plant A and production lines 3B and 4B in Plant B can produce the same type of

products.

Figure 4: Production Network Structure and Distribution Flow
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3.3 Problem Scope Definition

Since each SKU type is produced on a specific set of production lines, managing production

allocation across both product types is unnecessary. To narrow the model’s scope and reduce

computational complexity, we selected one SKU type while ensuring that the chosen subset remained

mutually exclusive and collectively exhaustive. Both product types have a similar volume share;

however, in agreement with the company, we decided to focus on the company’s key product:

Product Type Blue and deliver a functional prototype that can be scaled to both product types. Figure

6 shows the daily demand for both product types over the next 90 days. Table 2 presents a statistical

analysis of the behavior of the two categories. It shows that the selected product type accounts for

45% of the total demand.

Figure 5: Forecast Demand (Units) 90 Days — Type of Product
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Table 2: Demand Units Summary Statistics
Daily Demand
Type of Product Mean (units) Std. Dev. (units) CV (%) Max (units) Min (units) Share (%)
Red 126,314 15,998 0.13 200,979 97,403 55.4%
Blue 101,805 18,228 0.18 167,108 77,738 44.6%
Total 228,119 31,075 0.14 336,954 177,692 100.0%

3.4 Model Specification and Development

We define the use of a “Hybrid decomposition optimization strategy” to solve a complex

problem by breaking it down into smaller, more manageable parts and optimizing each component

using different methods. There are two steps involved in this strategy: a) Decomposition approach

and b) Three-phase hybrid approach.



To build a decomposition approach, it is first necessary to preprocess the data by aggregating
the requirements from each distribution center and converting them into production plant
requirements. This involves checking future demand and inventory levels to define the specific
requirements for each production line. After this process, we can proceed with the decomposition
approach.

3.4.1 Decomposition Approach

The first step in the strategy involves designing a decomposition approach that decouples
elements with no dependencies. The decomposition focuses on distinct components within the supply

chain. We separated the production and distribution problem as shown in Figure 6.

Figure 6: Decomposition Approach
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The first optimization problem, Production, aims to determine the appropriate SKUs and
guantities to produce, based on the initial production requirements for each plant. This step defines
what to produce and in what amount, while considering capacity constraints at the production
facilities. The second optimization problem, Distribution, focuses on determining where to ship the
available inventory, given that the SKUs and their quantities have already been established in the first
problem. This decomposition ensures that each segment can be optimized individually while

maintaining coherence with the overall supply chain objectives.

3.4.2 Three-Phase Hybrid Approach

After decomposition, a three-phase hybrid optimization process is implemented. Each phase aims

to determine whether the optimization problems can be solved within a single production plant,
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meaning without sharing resources between plants. This would ensure that each optimization
problem remains small and can be solved more easily and quickly. If the capacity is not sufficient, a
shared-resource, more complex problem must be solved instead. A configuration model is created
using two different metaheuristic models (Genetic Algorithm and Particle Swarm) to explore the
search space efficiently.

e Genetic Algorithm (GA): Provides robust exploration using selection, crossover, and mutation.
Includes parameters such as population size, chromosome representation, gen
representation, and initial population.

e Particle Swarm Optimization (PSO): Features coordinated search and rapid convergence.
Requires low computational cost. Includes parameters such as population size, number of

iterations, inertia weight, cognitive parameter, and social parameter.

The objective function and associated constraints are formulated for both optimization

problems, production and distribution, and are solved using the configuration approach proposed.
3.4.2.1 Production Planning Optimization

For the Production problem, we define the objective function and the constraints. Table 3
presents the notation adopted throughout the formulation, Table 4 details the model parameters, and

Table 5 defines the decision variables involved in the optimization process.

Table 3: Notation for the Formulation of the Production Problem

Symbol Description Unit
T Planning horizon ={1,...,14} days
t Time index NA
P Set of SKUs ={1,...., P} SKU
D SKU index NA
L Production line NA

We define a 14-day planning horizon, as this is the timeframe currently used by the company

for optimization purposes.

Table 4: Parameters of the Production Problem

Symbol Description Unit
Cior Cost of holding inventory over the target S
Ciur Cost of holding inventory under the target S
Cium Cost of holding inventory under the minimum S

lorpt Units of inventory over the target of product p in period t Un
lyrp,t Units of inventory under the target of product p in period t Un

Tymp,e Units of inventory under the minimum of product p in period t Un
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Ilﬁ Target inventory of product p Un

I Min inventory of product p Un
Copt Cost of stockout $
By ¢ Units of inventory stockout of product p in period ¢t Un
Iyt Units of inventory of product p in period t Un

T Production Rate of product p un/ Hr
Dy ¢ Units demand of product p in period t Un

H; Maximum hours in period t Hr

Table 1: Decision Variables for the Production Problem

Symbol Description Unit

Units to manufacture of product p during period t in production

line L Un

Xp,t.L

Objective Function

The objective function in the first optimization problem is to satisfy the demand to achieve

the target service level while maintaining target inventory levels. To define this objective function, we

first identify what we want to minimize and the components that determine which SKUs to produce

and in what quantities. These components are:

Cost of holding inventory over the target: Calculated as the sum product of the inventory over

the target o7, ¢ Of all SKUs and the cost c;or, aggregated for all periods.

Yo 2t Cior * lorpe VPEP; tET (Eq 2)

Cost of holding inventory under the target: Calculated as the sum product of the inventory

under the target Iy7p, . of all SKUs and the cost ¢;yr, aggregated for all periods.

252? Cryr * lyrpe VDEP; tET (Eq 3)

Cost of holding inventory under the minimum: Calculated as the sum product of the inventory
under the minimum Iy, + of all SKUs and the cost ¢y, aggregated for all periods. In this

case, the company assumes that the minimum inventory is 0.9 * target inventory.

Yo 2t Cym * lympe VP EP; tET (Eq 4)
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e Cost of stockout: It is calculated as the sum product of the inventory stockout By, ; of all SKUs

and the cost Cp, aggregated for all periods.

YEXICp* By VDEP; t €T (Eq 5)

Finally, our objective function Minimizes cost as a result of holding inventory over or under

targets and stockout penalties.

Min 25 X1 Cror * lorp,: + ZZ X7 Cryr * lyrp, + ZS X7 Cym * lymp,t + ZS YT Cp* Byt (Eq6)
Constraints

e Production Capacity constraint: Limits total production per period based on capacity of each

production line.

YpXpe*ty— H <0, VEET (Eq7)

e Inventory Balance: Tracks inventory changes across periods.

Ip,t - Ip,t—l + xp't'L + Dp,t + Bp,t—l - Bp,t = 0, Vt, Vp (Eq 8)

e Inventory Target deviation:

Ip,t - Ilt; S IOT,p,t’ IOT,p,t 2 0, Vt, Vp (Eq 9)

I5 Lyt < Iyrpe Iyrpe =0, VE, VP (Eq 10)

e Inventory Minimum deviation:

L + Tumpe = 17, Tympr = 0, VE,Vp (Eq 11)

3.4.2.2 Distribution Planning Optimization

The objective function in the second optimization problem is to satisfy the demand in each
distribution center to achieve the target service level while maintaining target inventory levels. For
the Distribution problem we define another objective function and constraints. Table 6 presents the
notation adopted throughout the formulation, Table 7 details the model parameters, and Table 8

defines the decision variables involved in the optimization process.
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Table 6: Notation for the Formulation of the Distribution Problem

Symbol Description Unit
] Set of Distribution centers = {1,...,10} NA
j Distribution center index NA
P Set of SKUs ={1,...., P} SKU
p SKU index NA

Table 7: Parameters of the Distribution Problem

Symbol Description Unit
Cp,j Cost of sending inventory of SKU p to Distribution Center j S
Dyt Units demand of product p in DC j in period t Un
By it Units Stockout of product p in DC j in period t Un
Ipjt Units of inventory of product p in DCj in period t Un

Table 8: Decision Variables for the Distribution Problem

Symbol Description Unit

Xp,jt Units to send of product p to DCj in period t Un

Objective Function

To define the objective function in the second problem, we must consider the transportation

cost of sending a product p to Distribution Center j in period t and total units to send:
Min Y5 Cpj* xpje VEET (Eq 12)

Constraints

e Demand constraint: Satisfy the requirements of each distribution center.

Dyje — Bpje—y — Xpje <0, Vt €T (Eq 13)

e Inventory constraint: Satisfy the inventory balance constraint in each distribution center.

xpjt + Bpjt—l — Ipjt < 0, Vt €T (Eq 14)

With a clear understanding of the two optimization problems to be solved, we can apply our

model configurator using the Three-Phase Hybrid Approach. This means that both optimization
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problems are solved when applying each metaheuristic algorithm, following the structure presented

in Figure 7 as further described below.

Figure 7: Three-Phase Hybrid Approach: Configuration of Models
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The three-phase hybrid approach begins by defining the availability of each production line.
To define this availability, we can identify expected and unexpected changes in the supply and

production as shown in Table 9.

Table 9: Causes for Changes in the Availability of Resources

Expected Unexpected
. Preventive maintenance Corrective maintenance in production lines
Production . . . .
Programed infrastructure upgrades Quality defects in production
Disruptions in the supply chain of raw materials
Supply None vendors

Transit or weather incidents that constraint delivery

Additionally, it is important to account for increases in demand and to distinguish between
internal factors (such as operations and promotions) and external ones.

After this definition, the process begins by independently running a Genetic Algorithm (GA)
for each plant. The objective of this step is to quickly assess each plant’s capacity. It also helps define
the bounds for the optimization in the subsequent steps.

Once the GA is executed, a capacity check is performed. If both plants, plant A and B, operate
within their capacity limits, the process proceeds to a second GA run with updated parameters of
population and generation size, to reach a more refined solution. Still optimizing each plant
individually. The results from this GA run are then collected, which provides the optimization results

for the first phase.
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If during the first capacity check either plant A or B exceed its respective capacity limits (or
both do), the system proceeds to reduce the safety stock (SS) and reruns the GA for each plant
individually. A second capacity check follows. If both plants remain within capacity, the Particle Swarm
Optimization (PS) algorithm is run separately for each plant using the boundaries determined by the
GA. The objective of this step is to refine the solution given by the GA. The results from this PS run are
then collected, which provides the optimization results for the second phase.

Finally, If the capacities are still exceeded, a joint Genetic Algorithm is run for both plants
simultaneously using newly defined bounds, followed by a joint Particle Swarm run using the
boundaries (limited search space) provided by the GA. This final stage produces optimized results,
ensuring that both plants meet capacity requirements while sharing resources. This is the end of the
third phase.

This methodology ensures a coordinated, computationally efficient approach to supply chain
optimization by leveraging the strengths of metaheuristics for initial solution exploration and solution

refinement.

4. RESULTS AND DISCUSSION

After developing the optimization model described in Section 3, we adjusted the
parametrization of the metaheuristic models to identify the right balance between solution quality
and execution time. To assess these trade-offs, we designed a set of illustrative scenarios that
demonstrate the model’s logic, adaptability, and performance under diverse supply and demand
conditions. Each scenario reflects a different degree of alignment, or misalignment, between supply
and demand:

e Scenario 1 - Baseline capacity match: Each plant has enough capacity to meet its own demand
and maintain its target inventory levels.

e Scenario 2 - Capacity meets demand but falls below target inventory: Each plant has enough
capacity to meet its own demand, but not to maintain the target inventory levels for every
SKU.

e Scenario 3 — Inventory transfer between plants due to capacity shortfall: Demand cannot be
satisfied by one of the plants, even by using the safety stock. Transferring inventory between

plants is necessary.

Although the number of SKUs or units that fall below target inventory or stockout may vary,
these three scenarios capture the primary demand fulfillment conditions. In practice, Scenarios 1 and
2 are the most common, but including Scenario 3 ensures that the model is tested under every possible

condition and allows us to measure execution time for each case.
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This section is structured as follows. Subsection 4.1 describes the testing and parameter
tuning of the models. Then, Subsections 4.1.1 to 4.1.3 cover scenarios 1 to 3, respectively. Finally,
Subsection 4.2 provides a summary and comparison of the proposed models against the company’s

current solution in Section 4.2.

4.1 Model Testing and Parameter Tuning

As we explained in Section 2.3, a limitation of metaheuristic techniques is that they do not
necessarily obtain the optimal solution, although they can obtain a solution close to it in less time than
MILP-based optimizers. The trade-off between the quality of the solution (in this case, cost reduction),
and the time to run the program is determined by the parameters used by the metaheuristic. In the
case of Genetic Algorithm, the parameters used are population size, number of generations, crossover
rate, and mutation rate. Similarly, the Particle Swarm methodology uses population size, number of
iterations, inertia rate, cognitive parameter, and social parameter.

In this section, we analyze the performance of each step in the configuration model by
examining the parameters and results for each step and algorithm. To do this, we create different

scenarios to test the three phases of the “Three-Phase Hybrid Approach”.

4.1.1 Scenario 1: Baseline Capacity Match

We analyzed the scenario in which all the requirements at each plant can be satisfied without

using the safety stock. Scenario 1 follows the path shown in colors in Figure 8.

Figure 8: Path in the Configuration of Models for Scenario 1

Aand B> OK
) Results of

GA

Availability’
definition

* Defines
production
bounds

Q start/ End
@ Results

B Algorithms —
&> Capacity Check

We analyzed Plant A. The initial parameters for this scenario are shown in Table 10.
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Table 10: Parameters Scenario 1

Plant  N° of SKUs Avg Daily Demand (Units) Initial Inventory (Units) Inventory (Days)
A 200 32,038 508,702 15.8

As represented in Figure 8, once we have defined the availability of resources, the Genetic
Algorithm is performed. This Algorithm is less restrictive and does not consider MOQ constraints. This
is because we need to perform a quick evaluation of the plant’s capacity. At the beginning, the GA
algorithm is executed using the parameters shown in Table 11. The initial parameters were selected

following the recommendations given by Boyabatli and Sabuncuoglu (2004).

Table 11: Parameters Genetic Algorithm

Parameter Value Description
Population Size 20 Number of candidate solutions per generation
Generations 50 Number of iterations the algorithm runs
Crossover Rate 0.5 Probability of combining two solutions to create offspring
Mutation Rate 0.05 Probability of randomly altering a solution to maintain diversity

Then we conducted a sensitivity analysis, changing the number of generations in the
algorithm. The number of generations is a key parameter in Genetic Algorithms, as it determines how
many iterations the evolutionary process will undergo. Each generation represents a cycle of selection,
crossover, and mutation, allowing the algorithm to progressively improve the quality of the solutions.
A higher number of generations generally enables better convergence toward optimal or near-optimal
solutions, but it also increases computational time. Therefore, choosing an appropriate number of
generations involves balancing solution quality and computational efficiency. This step is not meant
to be repeated each time the configurator is used, but only initially to set up the GA.

Figure 10 shows the change in the solution (cost) and the execution time while increasing the
number of generations in the model. As observed, the improvement in the optimal solution is
moderate throughout the analysis, with no more than a 5% difference between the best and worst
solutions. Therefore, we decided to set the number of generations to 50 as was recommended in
Boyabatli and Sabuncuoglu (2004). This value is a reasonable time for our model (22 seconds) and
ensures a good-quality solution while allowing us to efficiently proceed to the next step in the
configuration model. Appendix C shows how the algorithm can find the optimal solution for the

production plan in Generation 28.
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Figure 9: Impact of the Number of Generations on Cost Optimization and Execution Time in the

Genetic Algorithm
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This first run allows us to perform an initial capacity check. It helps us determine whether the
plant has enough capacity to meet all requirements, measured as a percentage of production plant
utilization. The first scenario occurs when both production plants can satisfy all requirements, and the
optimal solution is obtained in the first phase of the configuration model. The result of this first run
give us the utilization of each production Plant. For the analysis of Plant A, the results after running

the first capacity check in Scenario 1 are shown in Table 12.

Table 12: Utilization of Production Plant A Given by the First Run of GA in Scenario 1

Utilization Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day10 Dayl1l Day12 Day13 Day14
PlantA 17% 3% 3% 16% 33% 36% 56% 62% 33% 52% 59% 58% 50% 57%

Table 12 shows that Plant A has the capacity to produce all the requirements using less than
the available capacity on each production line and day. At this point, a second run of the GA is
performed to obtain a refined solution of the production plan. This time, we added the MOQ
constraint to create a more robust production plan. The Genetic Algorithm is run again with the same
parameters as in the previous execution.

We repeat the sensitive analysis for the second run of Genetic Algorithm changing the number
of generations and tracking the quality of the solution and the model execution time. Testing a start
at 20 generations and culminates at 100 generations. The results of this analysis are shown in Figure

10.
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Figure 10: Impact of the Number of Generations on Cost Optimization and Execution Time in the

Genetic Algorithm
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As we can see in Figure 10, increasing the number of generations does not significantly reduce
the cost of the solution. We decided to set the number of generations to 55, as the minimum cost was
reached at that point within 45 seconds. It is important to note that the minimum cost obtained is
higher than in the first run, due to the incorporation of additional constraints in this model. In
Appendix D, we can observe how the algorithm identifies the optimal solution for the production plan
by generation 20.

After this process, we also run the Genetic Algorithm to solve the distribution problem. This
step takes 93 seconds.

Executing the Genetic Algorithm marks the end of the first phase of the configuration model and gives
as a result a production and a distribution plan for each of the plants. As expected, there are no
stockouts and inventory levels are kept above the safety stock, since in this scenario each production
plant has the capacity to meet the full demand. Additionally, the production lines have sufficient
capacity and are operating below full utilization. Table 13 shows a summary of the production plan for
Plant A obtained from the optimization model. Table 14 shows the detail of the utilization of each
production line. Table 15 shows the distribution plan from Plant A to the different distribution centers.
The total execution time for this scenario was 193 seconds. The average daily cost for the production

problem was $1,033,345 and for the distribution problem was $2,259,266.

Table 13: Production Plan Summary Scenario 1 (Units of Products)

Production (units) Dayl Day2 Day3 Day4 Day5 Day6 Day7 Day8 Day9 Dayl10 Day1l Day12 Day13 Day14
Production Line2A 3,146 1,536 1,537 3,075 3,183 4,606 3,071 7,682 3,072 3,295 6,144 10,750 1,829 9,214
Production Line 3A 10,783 9,025 6,743 5826 15,455 6,400 16,546 14,753 7,230 10,489 15,550 22,980 11,840 15,458
Production Line6A 7,453 7,490 3,669 6,032 8950 9,840 15,234 16,852 11,392 8,989 10,094 16,866 10,509 6,866
Total 21,382 18,051 11,949 14,933 27,588 20,846 34,851 39,287 21,694 22,773 31,788 50,596 24,178 31,538
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Table 14: Line Utilization Scenario 1 (%)

Utilization (%) Dayl Day2 Day3 Day4 Day5 Day6 Day7 Day8 Day9 Dayl0 Day1l Day12 Day13 Day14
Production Line 2A 12% 4% 4% 7% 15% 11% 7% 18% 7% 23% 14% 25% 24% 21%
Production Line 3A 54% 18% 18% 11% 33% 13% 34% 31% 15% 25% 31% 49% 25% 33%
Production Line 6A 27% 16% 11% 30% 36% 44% 51% 49% 22% 27% 41% 49% 40% 31%

Table 15: Distribution Plan Summary Scenario 1 (Units of Products)

Dayl Day2 Day3 Day4 Day5 Day6 Day7 Day8 Day9 Dayl1l0 Dayl1ll Day12 Day13 Dayl4

DC1A 446 2,545 865 1,366 3,177 3,877 6719 7,104 3,719 5502 3,410 3,750 7,063 7,481
DC2A 1,931 2,119 2,374 1,746 4784 37367 2,204 3,691 5783 3591 4,074 4,805 4,166 3,756
DC3A 241 2,640 3,403 4243 3235 4,402 3,072 3,473 3272 3420 3768 5700 5402 3,819
DC4A 4257 3,789 2,587 1670 5402 3,316 2918 2,518 2,994 2,880 3,462 3,760 3,184 3,066
DC5A 57 3 18 - - 10 6 6 8 13 - - 23 15
DC6A - 6 - 2 1 - 1 1 1 1 1 1 1 1
Total 6,930 11,101 9,246 9,027 16,597 14,971 14,918 16,792 15775 15405 14,714 18014 19,837 18,137

4.1.2 Scenario 2: Capacity Meets Demand but Falls Below Target Inventory

The second scenario consists of having enough capacity to fulfill demand but not to replenish
the safety stock. In this case, we need to check again the capacity of each plant, this time without
considering the safety stock requirements. We assess this capacity using the Genetic Algorithm once
again, followed by a more refined solution using Particle Swarm Optimization, as shown in colors in
Figure 11.

Figure 11: Path in the Configuration of Models for Scenario 2
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The main idea is that the analysis can still be performed within each production plant, without
sharing resources. In this section, we carry out the analysis for Plant A. Initial parameters for this

scenario are shown in Table 16.

Table 16: Parameters Scenario 2

Plant N° SKUs Avg Daily Demand (Units) Initial Inventory (Units) Inventory (Days)

A 200 64,076 508,702 7.9
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Similar to Scenario 1, we follow the flow of Figure 11 by defining the availability of resources
at the production plant. Then, we run the initial Genetic Algorithm to check the plant’s capacity, using
the same parameters defined in the previous scenario. Table 17 shows that, after running the first
capacity check, it becomes clear that Plant A is not capable of meeting all the demand and safety stock

requirements, as it exceeds 100% of its capacity on days 5, 6, 7, 8, 10, 11, 12, 13, and 14.

Table 17: First Capacity Check Scenario 2

Utilization Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day10 Day1l Day12 Day13 Day14
PlantA 50% 68% 46% 99% 106% 103% 143% 138% 95% 128% 120% 143% 125% 130%

Therefore, we decided to run a second Genetic Algorithm, this time without considering the
safety stock requirements. This means that only the demand will be fulfilled. The second run shows
that the solution represents a compromise: meeting all the demand while covering only part of the

safety stock, as shown in Table 18.

Table 18: Second Capacity Check Scenario 2

Utilization Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Dayl0 Day1l Day12 Day13 Day14
PlantA 65% 75% 85% 71% 86% 80% 98% 95% 85% 97% 89% 94% 96% 89%

To obtain a more specific and robust solution, and to cover as much of the safety stock
requirements as possible using only Production Plant A, we ran the Particle Swarm Optimization
algorithm, using the results obtained from the Genetic Algorithm as boundaries. This technique
allowed us to reduce the search space and find the solution more efficiently. Table 19 presents the
parameters used to implement the Particle Swarm algorithm. These parameters were selected based

on the recommendations of Clerc and Kennedy (2002).

Table 19: Parameters Particle Swarm Algorithm Scenario 2

Parameter Value Description
Population Size 20 Number of particles in the swarm
Number of Iterations 100 How many times particles update their positions
Inertia Rate 0.7 Controls momentum
Cognitive Parameter 1.5 How much a particle follows its own best solution
Social Parameter 1.5 How much a particle follows the swarm’s best solution

We conducted a sensitivity analysis by varying the number of iterations in the Particle Swarm
Optimization algorithm, tracking both solution quality and execution time. Figure 13 shows the change
in minimum cost relative to execution time. Since we did not observe a consistent improvement in
solution quality, we decided to run the model with 100 iterations. This configuration provided our

solution to the production problem in 73 seconds.

29



Figure 12: Impact of the Number of Iterations on Optimal Solution and Execution Time in Particle
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Finally, with a clear production plan, we ran the algorithm to obtain the distribution plan for

the distribution centers in 93 seconds. The outcome of this phase is a complete production and

distribution plan for each plant and distribution center. Table 20 shows a summary of the production

plan for Plant A obtained from the optimization model. Table 21 shows the detail of the utilization of

each production line. We can see that in this scenario, since the plant cannot fully meet all the

requirements, line 6A operates at full capacity on days 7, 8, and 10. Table 22 shows the distribution

plan from Plant A to the different distribution centers. The total execution time for this scenario was

268 seconds. The average daily cost for the production problem was $1,682,365 and for the

distribution problem was $2,985,866.

Table 20: Production Plan Summary Scenario 2 (units)

Dayl Day?2

Day 3

Day 4

Day 5

Day 6

Day 7

Day8 Day9 Dayl1l0 Day1ll Day12 Day13 Day1l14

Production Line 2A 4,681 3,072
Production Line 3A 13,925 24,142
Production Line 6A 11,214 23,185

13,934
10,990
4,971

10,862
28,768
16,671

7,680 17,006
21,952 22,003
9,263 20,303

12,581
36,916
32,639

16,896 12,398 12,837 10,825 9,436 7,973 14,117
28,256 26,560 32,041 35,598 31,767 21,152 27,703
38,328 21,168 40,779 25,960 24,229 25,743 18,428

Total 29,820 50,399

Table

Dayl Day?2

29,895

21: Line Utilization Scenario 2 per Production Line (%)

Day3 Day4

56,301

Day 5

38,895 59,812

Day 6

82,136

Day 7

83,480 60,126 85,657 72,383 65,432 54,868 60,248

Day8 Day9 Dayl1l0 Day1ll Day12 Day13 Day14

Production Line 2A 16% 7%
Production Line 3A 57% 56%
Production Line 6A 37% 58%

40%
32%
31%

33%
58%
80%

18%
44%
66%

47%
66%
86%

49%
80%

39% 36% 67% 30% 37% 38% 53%
60% 54% 77% 90% 69% 44% 67%
100%  100% 58%  100% 87% 85% 78% 69%

Table 22: Distribution plan summary Scenario 2 (units of products)

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day9 Day10 Day1ll Day12 Day1l3 Dayl4
DCI1A 849 5133 1,729 2,732 6353 7,753 13,438 14,208 7,438 11,003 6820 7,500 14,125 14,963
DC2A 3,861 4,237 4748 3491 9567 6733 4,407 7,382 11565 7,181 8148 9,609 8332 7,512
DC3A 481 5279 6612 8679 6469 8804 6143 6945 6544 6840 7,535 11,399 10,803 7,638
DC4A 8511 7,578 4915 3599 10,803 6,631 5835 5036 5987 5759 6924 7519 6367 6,132
DC5A 101 17 35 - - 20 11 11 15 25 - - 46 29
DC6A - 12 - 4 1 - 1 1 1 1 1 1 1 1
Total 13,803 22,256 18,039 18,505 33,193 29941 29,835 33,583 31550 30,809 29,428 36,028 39,674 36,275
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4.1.3 Scenario 3: Inventory transfer between plants due to capacity shortfall

The third scenario consists of having insufficient capacity to fulfill demand or replenish the
safety stock. In this case, resources must be shared between production plants. We assess this
capacity using the Genetic Algorithm once again, followed by a more refined solution using Particle
Swarm Optimization, this time applied to a more complex optimization problem that includes both

production plants, as illustrated in color in Figure 13.

Figure 13: Path in the configuration model for Scenario 3
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The initial parameters in this scenario consider both plants, as shown in Table 23.

Table 23: Initial parameters Scenario 3

Plant N° SKUs Avg Daily Demand (Units) Initial Inventory (Units) Inventory (Days)
A 200 73,687 508,702 6.9
B 170 36,829 259,959 7.1

Similar to Scenarios 1 and 2, we first need to define the availability of resources in each
production plant. We follow the diagram of Figure 13 by running the first and second Genetic
Algorithm to check the capacity of each plant. Table 24 shows the status of each production plant
during the first capacity check, while Table 25 presents the status during the second capacity check,
where safety stock is not considered. We can observe that in both cases, Plant A is not capable of
meeting the requirements. Therefore, we designed a more complex model in which both plants can

share resources.
Table 24: First capacity check Scenario 3
Utilization Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Dayl1l0 Day1l Dayl2 Day13 Day 14

PlantA 89% 87% 62% 122% 125% 126% 173% 140% 109% 153% 146% 164% 139% 150%
PlantB 3% 10% 53% 64% 87% 85% 80% 87% 79% 98% 80% 95%  99%  78%
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Table 25: Second capacity check Scenario 3

Utilization Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day10 Dayll Day12 Day13 Day14
PlantA 89% 87%  79%  85% 102%  98% 132% 120% 101% 112% 110% 132% 112% 135%
PlantB 0% 1% 20% 48% 71% 70% 66% 67% 70% 98% 76% 95% 98%  77%

In this scenario, Plant A cannot fulfill its own demand. Therefore, we run a new optimization
model with the 5 production lines of both Plant A and Plant B using the Genetic Algorithm. This step
allows us to pool the demand and share resources between plants. The optimization problem
becomes bigger than the previous scenarios, and the execution time increases to 90 seconds. After
running the Genetic Algorithm, we run again the model using Particle Swarm for both plants to obtain
a refined solution in about 90 seconds.

We use the parameters from Scenarios 1 and 2 to run both the Genetic Algorithm and Particle
Swarm. In this scenario we need to balance the inventory between the two production plants since
Plant B is producing to fulfill the demand in Plant A.

After running both methods, we obtain a production and a distribution plan in which plants
are sharing resources. Table 26 shows the detail of the utilization of each production line in both
plants. We can see that in this scenario, since Plant A cannot fully meet all the requirements, line 6A
operates at full capacity on certain days. Additionally, line 1B from Plant B is also at full capacity,
serving as an extra resource to support Plant A’s requirements. Table 27 shows the distribution plan
from Production Plant A and Production Plant B to the different distribution centers. In this case,
14,352 units are required to be transferred from Plant B to Plant A for subsequent distribution. The
total execution time for this scenario was 400 seconds. Average daily cost for the production problem
was $4,235,421 and for the distribution problem was $2,319,745. This cost does not include the cost

of moving the inventory from Production Plant A to Production Plant B.

Table 26: Line utilization per production line Scenario 3 (%)

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day9 Day10 Dayl1l Dayl1l2 Day13 Day1l14

Production Line 2A 12% 21% 25% 36% 29% 56% 29% 32% 56% 56% 20% 60% 38% 38%
Production Line 3A 50% 38% 66% 59% 59% 50% 67% 80% 74% 80% 74% 67% 57% 53%
Production Line 6A 24% 35% 77% 89% 69% 71% 100% 100% 81% 100% 92% 87% 76% 76%
Production Line 1B 5% 18% 87% 93% 93% 100% 99% 100% 93% 100% 100% 100% 83% 90%
Production Line 2B 5% 18% 46% 41% 37% 62% 44% 82% 55% 49% 58% 49% 39% 48%
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Table 27: Distribution plan summary Scenario 3 (units of products)

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10 Day 11 Day 12 Day 13 Day 14
DCI1A 1,614 5,275 2,007 3,606 7,462 11,587 16,452 16,647 8,877 12,708 8,053 8,795 16,414 17,211
DC2A 2,433 4,292 3,909 3,486 10,193 10,831 7,932 9,237 16,494 9,475 10,420 11,516 9,201 9,389
Plant A DC3A 687 5,962 6,732 7,611 5395 10,100 7,151 10,006 10,772 10,434 10,952 13,692 12,894 9,947
DC4A 6,887 8,604 4,033 4,393 10,209 9,807 7,884 8,062 10,142 7,887 7,869 9,864 7,500 7,259
DC5A 64 6 36 - - 18 20 20 17 29 - 35 40
DC6A - 15 - 5 1 - 1 1 1 1 1 1 1 1
DC1B 10,497 7,403 13,350 7,687 9,265 10,037 6,955 29,811 22,576 10,805 9,244 11,070 10,471 11,160
DC2B 3,010 7,488 9,727 2,599 5,561 6,973 6,862 6,199 8,347 6,063 6,393 6,722 8,492 6,641
Plant B DC3B - 32 - 2 1 44 - - 13 - 98 6 -
DC4B 3 55 - 150 195 278 319 356 261 25 246 319 457 222
DC5B 1,860 2,078 2,911 5,615 4,152 5,256 4,372 4,121 7,703 6,000 4,683 5,467 7,418 4,278

4.2 Summary and Model Comparison

In this section, we compare our configuration of models with the company's current approach to

solving the production and distribution optimization problem in terms of execution time. To test the

quality of the model, we focus on comparing our Scenario 2 with the company’s solution, as this is the

only available data we have.

4.2.1 Execution Time Summary

Table 28 represents a summary of the execution time in each step in each scenario analyzed. We

can observe that in the most complex scenario (Scenario 3) the execution time is less than 7 minutes

(400 seconds).
Table 28: Execution time summary
- Execution Time (seconds)
Step Description Scenario 1 Scenario 2 Scenario 3

1  Availability Definition
2 Genetic Algorithm in each plant for first capacity check and set boundaries 50 50 50
3 Genetic Algorithm in each plant for a refine solution 50 NA NA
4 Genetic Algorithm for distribution problem 93 NA NA
5 Genetic Algorithm in each plant for second capacity check NA 50 50
6  Particle Swarm Algorithm in each plant for a refine solution NA 73 NA
7  Particle Swarm Algorithm in each plant for distribution problem NA 95 NA
8  Genetic Algorithm in both plants for set boundaries NA NA 90
9  Particle Swarm Algorithm in both plant for a refine solution NA NA 90
10  Particle Swarm Algorithm in both plant for distribution problem NA NA 120

Total 193 268 400

4.2.2 Model Comparison

We compare our results in Scenario 2 with the company’s solution in terms of both solution

quality and execution time. Tables 29 and 30 show the line utilization in our solution and the

company's solution, respectively.

Table 29: Line utilization per production line Scenario 2 (%)

Dayl Day2 Day3 Day4 Day5 Day6 Day7 Day8 Day9 Dayl1l0 Dayl1l Day12 Day13 Day14
Production Line 2A 16% 7% 40% 33% 18% 47% 49% 39% 36% 67% 30% 37% 38% 53%
Production Line 3A 57% 56% 32% 58% 44% 66% 80% 60% 54% 77% 90% 69% 44% 67%
Production Line 6A 37% 58% 31% 80% 66% 86% 100% 100% 58% 100% 87% 85% 78% 69%
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Table 30: Line utilization per production line Company’s solution (%)

Dayl Day2 Day3 Day4 Day5 Day6 Day7 Day8 Day9 Dayl1l0 Dayll Dayl12 Day13 Day1l14
Production Line 2A 4% 18% 4% 18% 18% 18% 30% 9% 34% 42% 26% 8% 22% 46%
Production Line 3A 42% 21% 74% 62% 74% 91% 72% 65% 81% 88% 71% 74% 28%  100%
Production Line 6A 65% 90% 80% 81% 65% 75% 83% 73% 75% 78% 71% 68% 82% 31%

We observe that our solution balances the capacity across production lines and leverage the
available capacity more efficiently. In terms of units produced, our solution achieves a 13% increase
compared to the company's solution, while also reducing the penalty cost in the production problem
by 2%, considering overstock penalties, penalties for inventory below the minimum, penalties for
inventory below the target, and stockout penalties. This improvement is mainly because the
optimization model penalizes stockouts 1,500 times more heavily than overstock situations.
Additionally, in terms of distribution costs, our solution is 13% lower than the company's, again driven
by the strong penalty associated with stockouts.

Another way to measure the quality of our model is by comparing the resulting inventory
positions. Tables 31 and 32 show the number of SKUs in Plant A projected to be in stockout, below
the minimum inventory level, below the target inventory level, and above the target inventory level

in both our solution and the company's solution.

Table 31: Inventory position Scenario 2 (SKUs)

SCENARIO 2 Dayl Day2 Day3 Day4 Day5 Day6 Day7 Day8 Day9 Dayl0 Dayll Dayl1l2 Day13 Dayl4
Over Target 200 200 200 200 200 197 192 189 190 185 186 185 183 186
Between Target and Minimum - - - 1 - 1 4 5 5 2 5 3 3

Between Minimum and 0 1 - - - - - 1 4 - 2 3 3 1 3
Below 0 - - - - - - - - 1 - - - - -
Total 200 200 200 200 200 200 200 200 200 200 200 200 200 200

Table 32: Inventory position Company’s solution (SKUs)

COMPANY Dayl Day2 Day3 Day4 Day5 Day6 Day7 Day8 Day9 Dayl0 Dayl1ll Dayl1l2 Day13 Dayl4
Over Target 186 189 190 189 191 186 186 183 185 182 182 180 184 182
Between Target and Minimum 5 6 5 7 4 7 8 9 5 7 6 7 5

Between Minimum and 0 5 2 2 1 2 3 2 4 6 7 8 9 7 9
Below 0 4 3 3 3 3 4 4 4 4 4 4 4 4 5
Total 200 200 200 200 200 200 200 200 200 200 200 200 200 200

As shown in Table 31 and Table 32, our solution aims to reduce the number of SKUs that fall
below the target level, below the minimum, and into stockout, compared to the company’s solution.
Another important consideration is that our model in Scenario 2 takes only 268 seconds to run,
compared to approximately half an hour (1800 seconds) for the company's solution.

For an excerpt of the production and distribution plan obtained with the proposed model, refer

to Appendix E and F.
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4.3 Model Limitations

Since our model is designed to be fast and provide a feasible solution in a short period, it also
comes with some limitations. As mentioned in Section 2.3, using the Genetic Algorithm and the
Particle Swarm does not always guarantee finding the global optimum, but they produce a high-quality
solution if parametrized correctly. When capacity is not a constraint, a small discrepancy from the
optimal solution may be acceptable; however, when capacity is limited, finding the optimal solution
becomes crucial. Therefore, the ideal scenario would be to be able to use both models according to
the situation. On the one hand, using the MIP model for regular planning when time is not a constraint
would grant optimality. On the other hand, the combination of both algorithms can deliver valuable
insights for the planning team, especially when the situation requires a quick response.

Another important limitation is that the performance of both algorithms heavily depends on
proper parameter tuning, such as population size, number of generations, mutation and crossover
rates, and number of iterations, among others. In our case, we evaluated the behavior of the optimal
solution under specific scenarios, but it is important to note that more detailed parameter tuning
would be required in the case of a broader variety of scenarios.

It is also important to mention that due to random initialization, different runs may yield
different solutions, affecting repeatability. Because of this, it is sometimes difficult to interpret the
solutions and justify decision-making, as it is not always clear how the algorithms operate or reach
those results.

As mentioned in Section 1.4, the sponsor company is currently working with cost figures that
represent penalties to drive the desired behavior into the model. Therefore, the models do not
calculate the real cost of manufacturing and delivering the product, as is shown in Figure 3: Framework
Project. We believe that there could be significant benefits from using estimated values, such as
obtaining better insights into the business and making decisions to reduce the bottom line. In addition,
currently the sponsor company is not considering the production (manufacturing) and transport costs.
In a similar way, adding transportation costs could help the company understand a trade-off between
stocking more inventory and transferring inventory from another plant.

Finally, it is also important to mention that there is data preparation required to execute the
program that we built. Currently, OMP connects directly to SAP and extracts the information it needs
to run the optimization automatically. In our case, we had to extract the information from the system
and upload that information into Google Colab to run the program in Python. In this document, we
are comparing the execution time of the MILP-based program against our configuration of

metaheuristic models, but we are not including the time to obtain and prepare the information. Since
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our model cannot be directly connected to the company's ERP, we would recommend automating the

process to obtain the necessary data to run the program.

5. CONCLUSION
To conclude our capstone, this chapter shares key management takeaways based on the

model’s results, along with some suggestions for future improvements.
5.1 Insights and Recommendations

The sponsor company is currently using Mixed-Integer Programming (MIP) based software to
optimize its end-to-end supply chain planning. The main purpose of the company is to increase the
speed at which it responds to changes in demand and external conditions. To achieve this, the sponsor
company wants to execute their optimization planning program more quickly, and as a result, being
able to update demand and production conditions as needed.

To accomplish such an aim, we propose two key approaches, based on our research and
analysis. The first relates to the size of the problem:; it is possible to break down the large optimization
problem into smaller, more manageable sub-problems while still respecting all constraints.
Specifically, in this project, we broke the problem based on three criteria: location (Plant A and Plant
B), process type (production and distribution), and equipment used (Product Type Blue and Product
Type Red). However, it is essential to conduct a rigorous evaluation of the supply chain before applying
this strategy, as it requires identifying all interdependencies between variables and business-specific
features.

The second approach is the potential use of alternative optimization methods that can deliver
high-quality solutions more quickly than traditional MIP. In our study, we evaluated a hybrid approach
that combines two metaheuristic algorithms, Genetic Algorithm and Particle Swarm Optimization, and
leveraged their strengths to design a configuration model capable of delivering fast solutions that are
close to optimal. Additionally, we found that providing an estimated baseline solution significantly
reduces the execution time of the metaheuristic methods.

Regarding the overall process agility, we recommend limiting the planning horizon depending
on its purpose and adjusting the frequency accordingly. There are traditionally three-time horizons for
supply chain planning (long-, medium-, and short-term). While running a planning process twice per
day is important to respond to changes in demand on an operational level (short-term), it does not
add value on the tactical level (medium-term). We consider that the short-term horizon should be
analyzed daily and independently, especially when there are disruptions in supply or changes in
demand. However, the medium-term horizon should only be run once or twice per month to make

tactical decisions.
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The final insight is that a well-tuned metaheuristic model configuration can outperform a MIP
model when the latter is prematurely terminated. Since the sponsor company enforces a 1.5-hour
time limit on the planning program execution, the program returns the best solution that has been
calculated so far. Therefore, even when working with a MIP model, optimality is not guaranteed. In
our experiments, the proposed solution reduced production costs by 2% and distribution costs by 13%.
These improvements are driven by lowering the number of SKUs under the inventory target, under
the minimum target, and inventory stockouts. While the overall savings are modest, they were

achieved in 85% less time than the current MIP process.

5.2 Broader Applicability of the Developed Optimization Models

In global consumer goods enterprises, uncertainty in demand, supplier performance, and
external factors can lead to poor inventory planning, resulting in overstock or stockouts. To mitigate
these risks, companies must react quickly and responsively to any environmental changes that may
disrupt production or distribution plans. However, creating a new production or distribution plan can
be difficult and time-consuming, especially in companies managing a large number of SKUs.

Through this study, we present an alternative, near-optimal approach to solving optimization
problems. While traditional MIP-based solutions are effective in many cases, other methodologies can
offer improvements in both speed and solution quality. Several of these methods can be integrated
into existing systems to deliver results that are both time-efficient and high in quality.

The methodology presented in this study can be applied not only to production and
distribution planning, but also to a wide range of optimization problems within the supply chain, such
as storage, transportation, and procurement, across various industries. Adaptation is possible by
modifying specific parameters.

The conclusions and insights found in this study are valuable not only for our sponsor company
but also for other industries facing similar challenges. These results are encouraging for organizations

to explore alternative approaches to solve complex optimization problems.
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APPENDICES

Appendix A: Process to define the Configuration of Models
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Appendix B: Other metaheuristic techniques
Tabu Search

Tabu Search is a method that can be applied for the optimization of complex problems with
multiple objectives. Tabu Search is a metaheuristic optimization method that begins with local search
by incorporating memory structures to explore the solution space and avoid returning to previously
visited solutions (Glover, 1986).

The methodology starts with a feasible solution that is often generated randomly or by using
a heuristic method. It is necessary to define a Tabu list, which represents the recently visited solutions
or forbidden moves. It is also necessary to define the Tabu list size and one stopping criterion in the
model to conclude the optimization. After these definitions, it is essential to determine the
neighborhood, where all the solutions can be reached, and evaluate all possible solutions in the
neighborhood. The algorithm will select the best move from the neighborhood based on the objective
function, and every new movement must be checked against the forbidden list. The current solution
will be replaced with the new selected movement that satisfies the objective function. The search

ends when the stopping criterion is met (Glover, 1986).

Simulated Annealing

Simulated Annealing is an analogy of the annealing process, which refers to a metal freezing into
a minimum energy structure. The advantage of this method over other optimization models is its
effectiveness in looking for the global minimum of the objective function. This quality is achieved by
accepting changes that decrease the objective function, and changes that increase them with a
probability:

-5f

p=exp—— (Eq 1)

where is the change in the objective function and is the control parameter (stands for temperature,

referencing the annealing process).
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The process consists in creating an initial solution and estimating its initial T. Then, we need
to create a new solution with a generator of random changes that allows all possible solutions to be
reached. The new solution should be evaluated against the current one, and if it is accepted, it
becomes the current solution. The T parameter is adjusted according to an annealing schedule, and
the process is repeated a number of times defined by the required amount of T values to be used, or

a total number of solutions to be generated. (Parks & Sepulchre, 2020).

Ant Colony Optimization

The ant colony algorithm is an optimization method based on the behavior of real ants within
colonies, with the objective of solving a wide range of optimization problems. The algorithm mimics
the search patterns between the colony and food. The main idea is that ants deposit pheromones to
delimit different paths, which serve as guidance to other ants to find optimized paths or solutions
(Dorigo and Stiitlze, 2004). The communication over iterations via pheromone left from previous ants
allows better solutions to be found.

The method begins with the definition of a certain number of pheromones as an initial
parameter in the paths (solutions). The algorithm allows other ants to use these pheromones as a
signal and follow the paths with higher concentrations. The right path (the decision rule) is chosen
considering the pheromone intensity (path with higher concentrations are more attractive) and
heuristic information such as local factors (e.g., distance between nodes). More desirable solutions or
paths attract more ants and lead to higher probabilities to select a specific solution. Once all ants have
completed their path decisions, the pheromones are updated to reflect the quality of the solutions.
Over time, the evaporation of pheromones occurs. This phenomenon helps to avoid convergence of
suboptimal solutions and ensures that ants continue exploring new paths. The process of solution
creation and information update is repeated for a predefined number of iterations or until certain

criteria are met (Doringo, 1996).
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Appendix C: Fitness Function throughout Generations Genetic Algorithm
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Appendix D: Fitness Function throughout Generations Genetic Algorithm

Fitness Function

Appendix E: Production Plan proposal Model
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Generations

SKU | Dayl | Day2 | Day3 | Day4 | Day5 | Day6 | Day7 Day9 | Day10 | Day1l | Day12 | Day13 | Day14
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0 0 0 0 0
21 0 0 0 110 0 0 0 0 110 0 0 0 110 0
22 0 0 0 0 0 0 110 0 110 0 110 0 110 110
23 1729 0 1536 0 0 0 1536 0 0 1536 0 0 0 0
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0
25 0 0 0 0 0 0 0 0 0 0 73 0 0 73
26 0 0 0 0 0 0 0 0 0 1536 0 0 0 0
27 0 0 0 0 0 0 0 0 0 73 0 73 0 0
28 153 0 153 0 0 0 0 0 153 0 0 0 153 0
29 0 0 0 0 0 0 0 0 0 0 0 0 0 0
30 0 0 0 0 0 0 0 0 0 0 0 0 0 0
31 0 0 0 0 0 0 0 0 0 0 0 0 0 0
32 0 0 0 0 0 0 0 0 0 0 0 0 0 0
33 0 0 0 0 0 0 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0 153 0 0 1536 0 0
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Appendix F: Distribution Plan Proposal Model

SKU | Location| Dayl | Day2 | Day3 | Day4 | Day5 | Day6 | Day7 | Day8 | Day9 | Day10 | Day1l | Day12 | Day13 | Day14

1 DC1A 10 247 56 56 0 79 56 28 0 0 0 0 0 0
2 DC2A 0 0 0 0 o] 0 o] 0 0 0 0 0 0 0
3 DC3A 15 196 28 28 84 55 84 28 0 0 0 0 0 0
4 DC2A 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 DC1A 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 DC2A 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 DC1A 0 0 0 0 7 0 o] 0 20 0 0 0 0 0
8 DC2A 0 0 o] 0 o] 0 o] 0 0 0 0 0 0 0
9 DC1A 13 4 12 6 8 19 95 25 64 23 28 19 29 41
10 DC3A 0 4 1 0 128 9 39 27 51 13 31 67 46 52
11 DC4A 0 20 0 8 44 5 24 19 17 12 26 44 8 8
12 DC5A 0 0 27 1 129 11 160 23 39 46 39 53 50 65
13 DC2A 0 0 o] 0 o] 0 o] 0 0 0 0 0 0 0
14 DC1A 0 0 0 0 0 0 0 0 219 192 0 608 0 0
15 DC2A 0 0 0 0 0 0 0 0 227 0 0 146 0 0
16 DC3A 0 0 0 0 0 0 0 0 83 0 0 0 0 0
17 DC4A 0 4 32 1 4 17 13 32 30 19 24 32 17 14
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