Predicting On-time Delivery in the Trucking Industry

Authors: Rafael Duarte Alcoba, Kenneth W. Ohlund
Advisor: Matthias Winkenbach
Agenda

- Motivation
- Methodology
- Results
- Conclusion
The US trucking industry...

Dominates the commercial transportation industry with 83.7% of the revenue

- 1.4% WATER
- 1.5% RAIL INTERMODAL
- 3.2% AIR
- 4.6% PIPELINE
- 5.6% RAIL
- 83.7% TRUCK

Connects the entire US territory

Is expected to grow 21% over the next 10 years

1.4% WATER
1.5% RAIL INTERMODAL
3.2% AIR
4.6% PIPELINE
5.6% RAIL
83.7% TRUCK
Research Questions

- How can companies engaged in logistics optimize resources while improving customer service levels?
- Can on-time delivery in trucking be predicted?
- Can a predictive analytics model indicate which combinations of variables lead to delays?
Gathering Data

- Loads within the United States (more than 6,000 locations)
- Restricted to FTL (full truckload)
- Data from October 1, 2014 to September 30, 2016
- Binary decision variable for on-time delivery (0 = delayed; 1 = on-time)
Fishbone Diagram

Variables Potentially Affecting On-time Delivery

LOAD
- Commodity
- Weight
- Mode/Equipment
- Contract vs Spot
- Industry (dairy, paper…)
- Team vs Ind. Driver
- High risk / High Value

LANE
- Geography
- Distance
- Weather
- # of stops

CARRIER
- Size
- History w/ Coyote
- Safety rating
- CSA Score
- Tracking Method

PROCESS
- Tender Lead Time
- Appt Scheduling
- Bounces
- Incidents
- Pickup Time (buckets)
- Hours of Operation
- Origin Facility

OPERATIONS
- Arrived Time Pickup
- Departed Time Pickup
- # of stops
- Ops Team
- Tenure

FACILITY
- Late dispatch
- Ontime Pickup
- Days of the week
- Season
- Hours of Operation
- Origin Facility
- Destination Facility

On Time Delivery
Sampling & Partitioning

On-Time Delivery

Data

- Imbalanced
 - 95% on-time
 - 5% delayed

Model

- Overfitting
 - Rule of Thumb
 - 50% on-time
 - 50% delayed

- 75% Training
- 25% Validation

Undersampling
Model Selection

- **Response**
 - Categorical (0 or 1)
 - Continuous

- **Predictors**
 - Categorical

- **Logistic Regression**
- **Neural Network**
- **Bootstrap Forest**

- **Goal**: find an explanatory model with high interpretability
- **Main model**: LR
- **Assess Performance**: NN and BF
Variable Selection

Multi-Collinearity

Correlation Matrix

<table>
<thead>
<tr>
<th>Correlations</th>
<th>Contract-Spot</th>
<th>Duration at StartSegment</th>
<th>Historical Volume</th>
<th>Incidents per Volume</th>
<th>OnTime of StartSegment</th>
<th>Facility Type Appt of EndSegment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contract-Spot</td>
<td>1.00</td>
<td>-0.07</td>
<td>0.13</td>
<td>0.28</td>
<td>0.05</td>
<td>0.07</td>
</tr>
<tr>
<td>Duration at StartSegment</td>
<td>-0.07</td>
<td>1.00</td>
<td>-0.06</td>
<td>-0.01</td>
<td>0.02</td>
<td>0.03</td>
</tr>
<tr>
<td>Historical Volume</td>
<td>0.13</td>
<td>-0.06</td>
<td>1.00</td>
<td>-0.23</td>
<td>-0.34</td>
<td>-0.09</td>
</tr>
<tr>
<td>Incidents per Volume</td>
<td>0.26</td>
<td>-0.01</td>
<td>-0.23</td>
<td>1.00</td>
<td>0.09</td>
<td>0.02</td>
</tr>
<tr>
<td>OnTime of StartSegment</td>
<td>0.05</td>
<td>0.02</td>
<td>-0.34</td>
<td>0.09</td>
<td>1.00</td>
<td>0.03</td>
</tr>
<tr>
<td>Facility Type Appt of EndSegment</td>
<td>0.07</td>
<td>0.03</td>
<td>-0.09</td>
<td>0.02</td>
<td>0.03</td>
<td>1.00</td>
</tr>
</tbody>
</table>

PCA / MCA

Stepwise Regression Output

- Standard forward search
- Starts from an empty model
- At each step the model selects a variable that increases maximum likelihood fit.

\[
\text{LogWorth} = -\log_{10}(p - \text{value})
\]
Performance Evaluation

Build models using six explanatory variables with statistical significance

Confusion Matrix to assess the **predictive** power of the models

<table>
<thead>
<tr>
<th>Actual Class</th>
<th>Predicted Class</th>
<th>err</th>
<th>missed delays</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C₀</td>
<td>C₁</td>
<td></td>
</tr>
<tr>
<td>C₀</td>
<td>(n_{0,0}) = number of C₀ cases classified correctly</td>
<td>(n_{0,1}) = number of C₀ cases classified incorrectly as C₁</td>
<td>(\frac{n_{0,1} + n_{1,0}}{n})</td>
</tr>
<tr>
<td>C₁</td>
<td>(n_{1,0}) = number of C₁ cases classified incorrectly as C₀</td>
<td>(n_{1,1}) = number of C₁ cases classified correctly</td>
<td></td>
</tr>
</tbody>
</table>
Predictive Performance (Validation dataset)

Main model: LR

<table>
<thead>
<tr>
<th>Actual</th>
<th>Predicted</th>
<th>0</th>
<th>1</th>
<th>Σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>219</td>
<td></td>
<td>209</td>
<td>429</td>
</tr>
<tr>
<td>1</td>
<td>1,805</td>
<td>6,337</td>
<td>8,142</td>
<td></td>
</tr>
<tr>
<td>Σ</td>
<td>2024</td>
<td>6546</td>
<td>8570</td>
<td></td>
</tr>
</tbody>
</table>

err = (n₀₁ + n₁₀)/n
missed delays = n₀₁/n

- Model interpretations vs “Black Box” approach
- High visibility of the predictors
- Robust results

Assess Performance: NN and BF

NEURAL NETWORK

<table>
<thead>
<tr>
<th>Actual</th>
<th>Predicted</th>
<th>0</th>
<th>1</th>
<th>Σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>254</td>
<td></td>
<td>175</td>
<td>429</td>
</tr>
<tr>
<td>1</td>
<td>2,075</td>
<td>6,067</td>
<td>8,142</td>
<td></td>
</tr>
<tr>
<td>Σ</td>
<td>2329</td>
<td>6241</td>
<td>8570</td>
<td></td>
</tr>
</tbody>
</table>

err = (n₀₁ + n₁₀)/n
missed delays = n₀₁/n

- 26.25% error rate
- 2.04% missed delays

BOOTSTRAP FOREST

<table>
<thead>
<tr>
<th>Actual</th>
<th>Predicted</th>
<th>0</th>
<th>1</th>
<th>Σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>243</td>
<td></td>
<td>186</td>
<td>429</td>
</tr>
<tr>
<td>1</td>
<td>2,058</td>
<td>6,084</td>
<td>8,142</td>
<td></td>
</tr>
<tr>
<td>Σ</td>
<td>2301</td>
<td>6270</td>
<td>8570</td>
<td></td>
</tr>
</tbody>
</table>

err = (n₀₁ + n₁₀)/n
missed delays = n₀₁/n

- 26.18% error rate
- 2.17% missed delays
Predictive Performance (Testing dataset)

New dataset to gauge model’s accuracy and robustness

- **Validation**

<table>
<thead>
<tr>
<th>Actual</th>
<th>Predicted</th>
<th>(\Sigma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>219</td>
<td>209</td>
</tr>
<tr>
<td>1</td>
<td>1,805</td>
<td>6,337</td>
</tr>
<tr>
<td>(\Sigma)</td>
<td>2024</td>
<td>6546</td>
</tr>
</tbody>
</table>

\[
err = \frac{(n_{0,1} + n_{1,0})}{n} = 23.50\%
\]

- **Test**

<table>
<thead>
<tr>
<th>Actual</th>
<th>Predicted</th>
<th>(\Sigma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>23</td>
<td>50</td>
</tr>
<tr>
<td>1</td>
<td>452</td>
<td>1,448</td>
</tr>
<tr>
<td>(\Sigma)</td>
<td>475</td>
<td>1,498</td>
</tr>
</tbody>
</table>

\[
err = \frac{(n_{0,1} + n_{1,0})}{n} = 25.44\%
\]

- **Validation**

<table>
<thead>
<tr>
<th>Actual</th>
<th>Predicted</th>
<th>(\Sigma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2.6%</td>
<td>2.4%</td>
</tr>
<tr>
<td>1</td>
<td>21.1%</td>
<td>73.9%</td>
</tr>
</tbody>
</table>

- **Test**

<table>
<thead>
<tr>
<th>Actual</th>
<th>Predicted</th>
<th>(\Sigma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.2%</td>
<td>2.5%</td>
</tr>
<tr>
<td>1</td>
<td>22.9%</td>
<td>73.4%</td>
</tr>
</tbody>
</table>
Application - Results

Using model results to prioritize loads requiring attention

<table>
<thead>
<tr>
<th>LoadStopID of StartSegment</th>
<th>LoadStopID of EndSegment</th>
<th>Contract-Spot</th>
<th>Duration at StartSegment</th>
<th>Historical Volume</th>
<th>Incidents per Volume</th>
<th>OnTime of StartSegment</th>
<th>Facility Type Appt of EndSegment</th>
<th>Prob [On-time]</th>
</tr>
</thead>
<tbody>
<tr>
<td>XXX1</td>
<td>YYY1</td>
<td>1</td>
<td>14:39</td>
<td>111</td>
<td>0.12</td>
<td>0</td>
<td>1</td>
<td>10%</td>
</tr>
<tr>
<td>XXX2</td>
<td>YYY2</td>
<td>1</td>
<td>0:08</td>
<td>2011</td>
<td>0.07</td>
<td>0</td>
<td>1</td>
<td>20%</td>
</tr>
<tr>
<td>XXX3</td>
<td>YYY3</td>
<td>1</td>
<td>16:55</td>
<td>1010</td>
<td>0.08</td>
<td>1</td>
<td>1</td>
<td>42%</td>
</tr>
<tr>
<td>XXX4</td>
<td>YYY4</td>
<td>1</td>
<td>5:30</td>
<td>1349</td>
<td>0.07</td>
<td>1</td>
<td>1</td>
<td>57%</td>
</tr>
<tr>
<td>XXX5</td>
<td>YYY5</td>
<td>1</td>
<td>1:30</td>
<td>654</td>
<td>0.03</td>
<td>1</td>
<td>1</td>
<td>66%</td>
</tr>
<tr>
<td>XXX6</td>
<td>YYY6</td>
<td>1</td>
<td>2:30</td>
<td>1077</td>
<td>0.06</td>
<td>1</td>
<td>0</td>
<td>74%</td>
</tr>
<tr>
<td>XXX7</td>
<td>YYY7</td>
<td>1</td>
<td>1:40</td>
<td>6</td>
<td>0.00</td>
<td>1</td>
<td>0</td>
<td>80%</td>
</tr>
<tr>
<td>XXX8</td>
<td>YYY8</td>
<td>1</td>
<td>0:15</td>
<td>4</td>
<td>0.00</td>
<td>1</td>
<td>0</td>
<td>81%</td>
</tr>
<tr>
<td>XXX9</td>
<td>YYY9</td>
<td>1</td>
<td>0:01</td>
<td>85</td>
<td>0.00</td>
<td>1</td>
<td>0</td>
<td>82%</td>
</tr>
</tbody>
</table>
Application - Results
Using model results to drive actions

![Prediction Profiler diagram]

- **Inc. per Volume**: known when the load is tendered
- **Historical Volume**: known when the load is tendered
- **Cont. (0) vs Spot (1)**: known after pick-up
- **Facility Type Appt**: known after pick-up
- **Duration Start Seg.**: known after pick-up
- **On-time Start Seg.**: known after pick-up
Conclusion

1. Resources can be optimized using the Logistic Regression Model
2. On-time delivery can be predicted
3. Using a combination of six variables with high statistical significance can deliver predictive power

<table>
<thead>
<tr>
<th>Actual</th>
<th>Prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.1%</td>
<td>2.6%</td>
</tr>
<tr>
<td>73.9%</td>
<td>2.4%</td>
</tr>
</tbody>
</table>

- Tracking 23.7% of the loads
- Missing only 2.4% of loads that will be late
Conclusion

Trade-off: Resource Reduction vs Missing Error

<table>
<thead>
<tr>
<th>Cut Off</th>
<th>Prediction</th>
<th>Actual</th>
<th></th>
<th>Tracking</th>
<th>Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>2.6%</td>
<td>21.1%</td>
<td>2.4%</td>
<td>73.9%</td>
<td>2.4%</td>
</tr>
<tr>
<td>0.6</td>
<td>4.1%</td>
<td>53.8%</td>
<td>0.9%</td>
<td>41.2%</td>
<td>0.9%</td>
</tr>
<tr>
<td>0.7</td>
<td>4.9%</td>
<td>86.6%</td>
<td>0.1%</td>
<td>8.4%</td>
<td>0.1%</td>
</tr>
</tbody>
</table>
Suggestion for Future Research

- Increased availability of online information through new technologies
- Readiness to store records on remote servers using (cloud servers)
- Predictive model able to capture information from online records could bring new insights and complement the analysis presented in this study
backup slides
Variables

Build models using six explanatory variables with statistical significance

<table>
<thead>
<tr>
<th></th>
<th>Inc. per Volume</th>
<th>Historical Volume</th>
<th>Cont. (0) vs Spot (1)</th>
<th>Facility Type Appt</th>
<th>Duration Start Seg.</th>
<th>On-time Start Seg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prob. [0]</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>1</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>Prob. [1]</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>0</td>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>
Reweighted Confusion Matrix

Original Confusion Matrix

<table>
<thead>
<tr>
<th></th>
<th>Predicted</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>Σ</td>
</tr>
<tr>
<td>Actual</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>2,192</td>
<td>2,093</td>
<td>4,285</td>
</tr>
<tr>
<td>1</td>
<td>950</td>
<td>3,335</td>
<td>4,285</td>
</tr>
<tr>
<td>Σ</td>
<td>3,142</td>
<td>5,428</td>
<td>8,570</td>
</tr>
</tbody>
</table>

\[
\text{err} = \frac{n_{0,1} + n_{1,0}}{n}
\]

\[
\text{Err for predicting 1 and actual } = 0
\]

35.51%

24.42%

Reweighted Confusion Matrix

<table>
<thead>
<tr>
<th></th>
<th>Predicted</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>Σ</td>
</tr>
<tr>
<td>Actual</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>219</td>
<td>209</td>
<td>429</td>
</tr>
<tr>
<td>1</td>
<td>1,805</td>
<td>6,337</td>
<td>8,142</td>
</tr>
<tr>
<td>Σ</td>
<td>2,024</td>
<td>6,546</td>
<td>8,570</td>
</tr>
</tbody>
</table>

\[
\text{err} = \frac{n_{0,1} + n_{1,0}}{n}
\]

\[
\text{Err for predicting 1 and actual } = 0
\]

23.50%

2.44%
of observations

Total Sample: 522,920
Excl. Outliers or missing values: 342,800
Undersampling: 34,280
Validation: 8570

Logistic Regression

<table>
<thead>
<tr>
<th>Actual</th>
<th>Predicted</th>
<th>0</th>
<th>1</th>
<th>Σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>219</td>
<td>209</td>
<td>429</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>1,805</td>
<td>6,337</td>
<td>8,142</td>
</tr>
<tr>
<td>Σ</td>
<td></td>
<td>2024</td>
<td>6546</td>
<td>8570</td>
</tr>
</tbody>
</table>

$$\text{err} = \frac{n_{0,1} + n_{1,0}}{n}$$

Missed delays = 2.44%
Predictive Models

- **Logistic Regression**
 - Simply saying, it works with the same ideas as linear regression, but for a categorical output.
 - Relies on mathematical equation relating predictors with the outcome.

- **Neural Network**
 - Machine Learning technique. It mimics the activity in the brain, where neurons are interconnected and learn from experience.

- **Bootstrap Forest**
 - Variation of Random Forests. It combines results from multiple trees to improve predictive power.