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ABSTRACT 

For our project sponsor, a leading global Fast Moving Consumer Goods (FMCG) company, the 

challenge lies in optimizing inventory management strategies to balance avoiding stockouts with 

minimizing costs associated with excess inventory. This capstone project explores the use of 

machine learning to optimize target inventory levels, thus improving service levels. Developing 

features and creating labels using company data, we examined various machine learning 

techniques such as Random Forest and Extreme Gradient Boosting or XGBoost, and fine-tuned 

hyperparameters to develop the most accurate binary classification model. The Random Forest 

model  predicts stockout events for each stock keeping unit (SKU) and warehouse combination 

with 91% accuracy, evaluated by f1-score and recall. We further conducted sensitivity analyses on 

the best performing model to discover the elasticity between service levels and various scenarios 

of increased or decreased target inventory levels. Based on our results, we provide the company 

recommendations to adjust safety stock calculations during seasonal transitions, reducing 

excessive inventory by 15% while improving the overall target service level across all SKUs to 

97%. 
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1. Introduction 

In the dynamic environment of the North American FMCG industry, where demand patterns 

are in constant flux, the importance of precise inventory management cannot be overstated. Several 

factors contribute to this demand variability. Seasonal shifts, often tied to promotional seasons, 

can lead to heightened demand at specific times of the year. The industry also feels the ripples of 

potent advertising campaigns or the introduction of new products, causing short-term demand 

surges. Economic dynamics, whether downturns or upswings, directly shape consumer purchasing 

power and, by extension, the demand for FMCG products. Moreover, contemporary trends, 

societal norms, and values, often influenced by social media and celebrity endorsements, have a 

significant bearing on the popularity of certain products. 

For a global leader like our project sponsor, a leading global CPG company, the challenge is 

not merely to meet this multifaceted demand but to do so in an optimized manner. The company's 

inventory management strategies, while efficient in their current form, present an opportunity for 

further optimization. Setting the target inventory level appropriately is critical; if set too low, the 

company risks stockouts, failing to meet customer demands and service levels. On the other hand, 

setting it too high escalates inventory holding costs, which include more than just the expenses of 

storage. Excessive inventory can lead to tied-up capital, risk of product obsolescence, and 

depreciation, highlighting the importance of a balanced approach. This delicate trade-off between 

maintaining sufficient inventory to meet demand and minimizing holding costs creates a 

significant opportunity for optimization. Our project aims to refine its approach to determining the 

optimal target inventory level, employing advanced analytical methods to better align with the 

dynamic nature of market demands and operational realities, thereby enhancing overall efficiency 

and reducing unnecessary financial burdens. 

The integration of big data analytics into inventory control is a pivotal upgrade for the project 

sponsor's existing methods. This approach significantly enhances forecasting accuracy by 

analyzing large volumes of data on market trends, customer behaviors, and seasonal patterns, thus 

improving decision-making regarding inventory levels and production schedules. Additionally, 

big data analytics aids in optimizing the supply chain by providing insights into supplier 

performance and operational effectiveness, incorporating external market data and real-time feeds 

like social media sentiment, thereby offering a more dynamic and responsive inventory 

management system. 
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The project's central focus is on improving upon the current statistical model, which combines 

demand forecasting and simulation, by employing Machine Learning (ML) models to prescribe 

more accurate target inventory levels. This involves leveraging multivariate data, both endogenous 

and exogenous, to refine the dynamic inventory control model. The following research questions 

stem from this problem: 

• How can the current target inventory level setting be optimized at a granular level for each 

SKU and site? 

• What key variables or features should be incorporated into a multivariate dynamic 

inventory control model? 

• Which machine learning model can prescribe a more accurate target inventory level than 

the current model, and how? 

The primary objective of this project was to develop a comprehensive ML-based model that can 

accurately prescribe target inventory levels, considering a range of influencing factors. This 

involved: 

• Developing an advanced ML classification model: We constructed an advanced 

classification model that integrates a broad spectrum of internal and external variables into 

the organization. The goal was for this model to surpass the performance of existing 

forecasting and simulation models in terms of accuracy and reliability. 

• Conducting Sensitivity Analyses: We performed sensitivity analyses using the trained 

classification model to explore the relationship between service levels and safety stock 

quantities. This analysis helped in understanding the impact of various factors on inventory 

requirements and facilitated more informed decision-making. 

• Performing a Root Cause Analysis: We conducted a deep dive into specific SKUs and 

sites that presented opportunities for improvement. This analysis focused on identifying 

and understanding the underlying causes of operational inefficiencies, providing a clear 

path for targeted interventions. 

Our research findings led to significant managerial insights and actionable outcomes for the 

sponsoring company. Key findings include: 
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• Reduction of Excessive Safety Stocks: We identified approximately 2,180 units of 

excessive safety stock across 27 SKUs at various facility sites. This discovery allowed for 

the optimization of inventory levels and the potential reduction of associated costs. 

• Repositioning Safety Stocks to Enhance Service Levels: By strategically repositioning 

6,155 units of safety stock across 24 facility sites, we saw an increase in the current service 

level from 95.2% to 96.7%.  

• Addressing the Landslide Effect: Our analysis revealed a "landslide effect" associated 

with the forward coverage inventory policies during seasonal transitions of consumer-

packaged goods (CPG). We proposed a novel method for setting target inventory levels 

that minimizes out-of-stock (OOS) situations when transitioning from high to low season 

and reduces safety stock costs when moving from low to high season. The implementation 

of the optimized target inventory levels is expected to improve service levels by an 

additional 6-7% and reduce inventory costs by 20%. 
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2. State of The Practice 

Managing inventory level for FMCG products, presents unique challenges due to a combination 

of factors: demand variability, inventory management constraints, and consumer behavior. To 

achieve the primary objective of this capstone project — generating reliable demand forecasts that 

can be utilized to identify target inventory levels using ML techniques — we undertook a 

comprehensive literature review concentrated on three key areas: 

1. FMCG Products Market Dynamics 

2. Inventory Management in FMCG Industry 

3. Machine Learning Techniques 

 

2.1 FMCG Products Market Dynamics 

The global FMCG market is experiencing significant growth, with the Asia-Pacific region 

leading in demand. In contrast, North American markets have seen stagnant growth due to market 

maturity. Economic factors are also influencing the market; stable disposable incomes in 

developed countries and increased purchasing power in developing nations have made FMCG 

products more affordable globally (Technavio, 2023). 

The FMCG market is dynamic and competitive, grappling with challenges surrounding cost, 

convenience, and sustainability. High production and distribution costs compel manufacturers to 

balance affordability and profitability while facing competition from sustainable alternatives, 

which have gained popularity due to environmental concerns. Moreover, e-commerce's emergence 

as a preferred shopping platform boosts FMCG sales online. Looking ahead, the market is poised 

for further growth, driven by demand for convenient, eco-friendly products and the expansion of 

e-commerce (Statista, 2023). 

 

However, challenges persist, including competition from other products and operational costs. 

To stay competitive, companies must innovate and emphasize sustainability in their products and 

marketing approaches, aligning with evolving consumer preferences (Statista, 2023). The market 

also faced challenges in 2020 due to COVID-19 lockdowns, leading to manufacturing disruptions 

and distribution channel breakdowns. The introduction of vaccines and lifting of lockdowns in Q3 

2020 has led to a market recovery, with resumed manufacturing and adherence to new social 
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distancing norms. The market is expected to grow as the focus on hygiene remains high 

(Technavio, 2023). 

 

2.2 Inventory Management in FMCG Industry 

Fast-moving consumer goods (FMCGs) encompass everyday items that are rapidly sold at a 

low cost to a broad consumer base (Lee & Siddiqui, 2023). To address the rapidly changing 

demand and manage the challenge of quick product turnover, companies need to keep ideal 

inventory levels, both in-store and at various stages of their supply chains (ITC Infotech, 2020). It 

is particularly crucial for FMCG companies operating on a built-to-stock model, where they need 

to allocate resources to finished goods based on projected demand, aiming to limit their financial 

risk. Those built-to-stock firms experiencing marked seasonal demand are required to initiate their 

planning and inventory accumulation sooner and often with less data compared to their 

counterparts in the non-seasonal CPG sector (Gundogdu & Maloney, 2019).  

A key challenge in managing the supply chain of FMCG is identifying the ideal inventory levels 

at each stage of the supply chain. This is crucial to prevent stockouts, which may result in losing 

customers, and to avoid surplus inventory, which can lead to elevated storage and financial 

expenses (Inderfurth, 1991). The FMCG industry's high-volume, low-margin nature demands 

efficient inventory management to maintain uninterrupted supply and meet customer expectations. 

Seasonal variations and market fluctuations further complicate forecasting, making it crucial to 

monitor trends and historical data for informed inventory level adjustments (Rapidor, 2023). 

 

2.2.1 Performance Metrics for Inventory Control 

Global supply chains are vulnerable to disruptions that adversely affect their efficiency. 

Typically, these disturbances result in failure modes that compromise the supply chain's capacity 

to deliver goods and services as scheduled. Consequently, businesses involved in various supply 

chains are eager to develop resilience against such disruptions and their associated failure modes 

to ensure on-time delivery and maintain competitiveness (Carvalho et al., 2022). To establish an 

effective supply chain, businesses often track a variety of supply chain metrics or key performance 

indicators (KPIs). These KPIs are chosen for their significance and influence on the efficiency of 

the company's supply chain processes. The specific metrics differ across various levels and 

functions within the supply chain (Lohman et al., 2004). 
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For inventory control, service levels constitute arguably the most important performance 

measures. The fill rate in particular (which determines the percentage of demand satisfied directly 

from stock-on-hand) is the most commonly used measure in industry, as it translates directly to 

the customer service level achieved (Teunter et al., 2017).  

Product availability indicates a company's capacity to fulfill customer orders from its existing 

inventory. If a customer places an order when the product is unavailable, this leads to a stockout. 

There are multiple methods to assess product availability (Chopra & Meindl, 2016): 

• The product fill rate (FR) represents the proportion of product demand met using inventory 

stock. It is essentially the likelihood of meeting product demand from the available inventory. 

The fill rate is better assessed over specified amounts of demand rather than over time. 

• Order fill rate refers to the percentage of orders that are satisfied using the available inventory. 

The order fill rate should be evaluated based on a specific number of orders, rather than over 

a period of time. In situations involving multiple products, an order is considered filled from 

inventory only if all items in the order are available in the inventory. 

• Cycle Service Level (CSL) is the proportion of replenishment cycles that end with all 

customer demands fulfilled. A replenishment cycle refers to the time span between two 

consecutive replenishment deliveries. CSL corresponds to the likelihood of avoiding 

stockouts during a replenishment cycle. It should be calculated over a specified number of 

these cycles. 

In this capstone, the sponsoring company uses CSL as a key metric and a benchmark to measure 

the performance of customer delivery. This approach, known as Service Level-Driven Planning 

(SLDP), assists organizations in identifying and reaching a consensus on their optimal inventory 

level, or the "sweet spot". This spot is where the precise amount of product or material is designated 

to meet the desired service levels throughout the replenishment lead time. SLDP offers a concrete 

figure that forecasts the probable service level for each stocked item and for the overall inventory 

(Hartunian, 2015). 

 

2.2.2 Inventory Models 

Effective inventory management involves the implementation of models, techniques, and 

methods that facilitate proper resource utilization, control costs in operations, and aid in making 

informed decisions. These models encompass a range of policies and controls that track inventory 
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levels, ascertain the optimal levels to be sustained, the appropriate timing for restocking inventory, 

and the ideal order sizes. The literature identifies two primary categories of these models based on 

the nature of demand: (i) mathematical deterministic model (regular demand) and (ii) stochastic 

model (probabilistic demand) (Vidal, 2023). 

The transition to policies like periodic review (R, s, S) marked significant advancements in 

handling stochastic single-product inventory control systems. This approach merges the (s, S) and 

(R,S) inventory systems. The concept involves inspecting the inventory levels at every interval of 

R time units. Should the inventory level be at or fall below the reorder threshold s, an order is 

placed to increase the level up to S. Conversely, if the inventory level is above s, no action is taken 

until the subsequent review period arrives (Silver et al., 2017). The value of S is determined based 

on service measure, which for this research is the service level. 

Demand forecasting plays a key role in inventory management (Gardner, 1990). Moreover, it 

is key in determining the order-up-to-level (S) under a periodic review inventory control system. 

Order-up-to inventory level needs to ensure that the inventory levels can cover the average demand 

of the product and buffer against any uncertain demand fluctuation in between the review period 

(R). Therefore, S has two key components, average demand over the review period and the safety 

stock, also known as buffer stock. The forecast is used to calculate the safety stock component of 

the order-up-to-level. To do so, the demand for a product is forecasted using the historical demand 

of the product. Once the forecast is obtained, the root mean squared error (RMSE) of the forecast 

is used to assess if the forecast explains the variability in demand (Hyndman & Koehler, 2006). 

The lower the RMSE, the better it explains the demand variability. The RMSE is used to 

calculate the safety stock component of order-up-to-level in the periodic review control system. 

These models, however, often operate under assumptions that may not align with real-world 

complexities in terms of (1) assuming demand distribution (2) assuming IID (independent and 

identically distributed) demand. Demand forecasting serves as a foundational tool for setting target 

inventory levels, employing a variety of methods and techniques. This approach ensures inventory 

optimization by accurately adjusting stock levels accordingly. 

 

2.3 Target Inventory Level Determination: A Review 

When determining the target inventory level, the methods can broadly be categorized into two 

main types: the classic model and the data model, as illustrated in Figure 1. 
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2.3.1 Classic Model for Optimal Target Inventory Level Setting  

The classic method of determining the optimal target inventory level involves a process that 

starts with demand forecasting, then hypothesizes a particular demand distribution, follows with 

simulations, and concludes with establishing a target inventory level (Seyedan et al., 2023). This 

method, though fundamental, is limited by its presumptions about demand, often envisaging it as 

deterministic or adhering to a preconceived probability distribution, a notion that may be 

unsuitable in real-world scenarios where demand patterns are unpredictable or ambiguous 

(Clausen & Li, 2022). 

 

Figure 1 

Target Inventory Level Literature Structure 

 
 

Pioneering work in this domain, such as that of Zipkin (2000), includes models that operate 

with restricted knowledge of demand distribution. For instance, Gallego and Moon (1993) 

developed newsvendor models utilizing only demand's mean and variance, refining the Scarf 

ordering rule. Perakis and Roels (2008) also highlighted the significance of distributional 
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moments, like mean and variance, in their exploration of the newsvendor model. Zhang & Yang 

(2016) investigated multi-item newsvendor models employing historical univariate demand data. 

 

2.3.2 Limitation of the Classical Model in Handling IID (independent and identically distributed) 

Demand Data 

The classical model, exemplified by the newsvendor model, is instrumental in fostering new 

methodological insights. However, its effectiveness is predominantly confined to scenarios 

involving independent and identically distributed (IID) demand data. This limitation becomes 

apparent when considering the advancements in data-driven inventory models and solution 

algorithms, particularly within the realm of dynamic inventory models (Clausen & Li, 2022). 

For instance, Bollapragada & Morton (1999) developed a heuristic specifically for the (s, S) 

inventory model that effectively addresses IID demand data scenarios. Similarly, Huh & 

Rusmevichientong  (2009) drew inspiration from the newsvendor model to create a data-driven 

multiple period order-up-to level inventory control model. This model aims to optimize total costs 

and profits over a planning horizon, considering factors like order cost, holding cost, and lost sales 

cost, and is particularly adept when applied to IID data, as demonstrated by their univariate 

algorithm that achieves asymptotic optimality in such contexts. 

These developments underscore a critical limitation of the classical model: its reliance on the 

assumption of IID demand data, which restricts its applicability and adaptability in more complex, 

real-world scenarios where demand patterns may not conform to the IID criterion. In this paper, 

the classic model can serve as a foundational baseline for comparison with big data models in 

determining the optimal target inventory level. 

 

2.3.3 Big Data Approach in Inventory Management  

In contrast to classic models, the big data model does not assume any specific distribution of 

demand data. It leverages machine learning techniques to uncover the relations between demand 

and various observed features, demonstrating robust performance even with non-IID demand data 

(Maheshwari et al., 2021). As a relatively nascent area of research, the big data-driven inventory 

model has seen limited but insightful studies. 

Ban & Rudin (2019) made a significant contribution by applying this model to situations where 

businesses possess extensive historical demand data and a broad range of demand-influencing 
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features, utilizing distribution-agnostic machine learning algorithms. This method proficiently 

copes with data-intensive scenarios and delineates clear performance metrics for out-of-sample 

costs. Further advancing this field, developed a Neural Network-based formulation of the big data-

driven newsvendor model, utilizing the Empirical Risk Minimization (ERM) principle. Building 

upon this, Clausen & Li (2022) extended this research by employing ERM to craft a dynamic, big 

data-driven order-up-to level inventory model, complete with a custom-designed machine learning 

algorithm. Their results underscore the efficacy of this integrated approach, showing potential cost 

reductions of up to 60% over the most effective univariate models and up to 6.37% over the top 

big data-driven benchmark models. 

This progression in the big data model's development highlights its capacity to handle complex 

demand data scenarios more effectively than traditional models, marking a significant 

advancement in inventory management research. As our sponsoring company demonstrates non-

IID demand data, we will delve deeply into this model as a preferred technique to determine the 

target inventory level. 

 

Figure 2 

Different Types of Machine Learning (Sanjeevi et al., 2017) 

 
 

2.4 Applying Machine Learning to The Supply Chain 

Machine learning, a subset of artificial intelligence, involves developing algorithms that learn 

from data to solve various problems. These techniques derive insights from historical data to 
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address similar challenges in the future (Michalski et al., 1983). Priore et al. (2019) identified key 

machine learning techniques for inventory policies, including artificial neural networks (ANN), 

case-based reasoning, support vector machines (SVM), and reinforcement learning. 

In the increasingly complex and dynamic field of supply chain management, machine learning has 

become a crucial tool, as highlighted by de Melo (2019). This review examines the application of 

various machine learning techniques in inventory management, a key aspect of supply chain 

operations. According to Sanjeevi et al. (2017), machine learning algorithms are generally 

categorized into three types: supervised learning, unsupervised learning, and reinforcement 

learning, as shown in Figure 2. 

 

2.4.1 Supervised Learning  

In supervised algorithms a training set with correct responses is provided and, based on this 

training set, the algorithm generalizes to respond correctly to all possible inputs (Marsland, 2014).  

Some of the common supervised ML methods are:  

• Decision Trees use observations about certain actions and identify an optimal path for 

arriving at a desired outcome (de Melo, 2019). 

• Random Forest operates as an ensemble learning method. It constructs multiple decision 

trees during training and generates predictions by averaging the outputs of these trees. 

Known for its versatility in handling diverse data types and distributions, Random Forest 

is robust and reduces overfitting risks. Deraz (2023) applied it to optimize inventory levels 

for fast-moving consumer goods (FMCGs), exploring its effectiveness in predicting weekly 

Economic Order Quantity (EOQ) under two scenarios: parallel (where data is certain and 

available) and sequential (where data is predictable). The study found that Boosted 

Decision Tree (BDT), another similar algorithm, yielded accurate results in both scenarios. 

• XGBoost (Extreme Gradient Boosting), although predominantly recognized for its 

classification capabilities, excels in regression tasks. It employs a gradient-boosting 

framework to enhance its predictive accuracy. By minimizing an objective function that 

amalgamates a convex loss function with a regularization term, XGBoost efficiently and 

accurately predicts continuous values (de Melo, 2019). Utilizing decision trees as its base 

models, this ensemble method integrates them for effective predictions. Gumus & Kiran 
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(2017) highlight its efficiency, while Namir et al. (2022) demonstrate its practical 

application in creating a decision support tool for dynamic inventory management. 

• Support Vector Machines (SVM), more commonly associated with classification tasks, 

are also adept at regression, termed Support Vector Regression (SVR) in this context. SVR 

employs SVM principles but focuses on fitting as many data instances as possible onto the 

regression line while limiting margin violations (de Melo, 2019). This approach is 

particularly effective in identifying intricate relationships within data sets. Carbonneau et 

al. (2008) have shown that SVM, along with recurrent neural networks, can provide highly 

accurate forecasts in real-world data sets, significantly improving inventory control. 

 

2.4.2 Unsupervised Learning  

In unsupervised learning, algorithms learn from unlabeled data, uncovering hidden patterns 

within datasets (de Melo, 2019). The K-nearest neighbor algorithm, for example, has been 

instrumental in improving supply chain production policies (Akhbari et. al, 2014). Furthermore, 

Neural Networks, especially Artificial Neural Networks (ANNs) such as autoencoders, have 

proven effective in models geared towards data-driven decision-making in supply chain 

environments. This efficacy is evident in the research conducted by Clausen & Li (2022)and Huber 

et al. (2019), demonstrating the significant impact of these learning algorithms in the supply chain 

sector. 

 

2.4.3 Reinforcement Learning 

Reinforcement learning is a data driven methodology that is gaining prominence in many 

economic research areas, particularly in inventory management. It involves an agent learning to 

make decisions within an environment to achieve specific goals (de Melo, 2019). Giannoccaro & 

Pontrandolfo (2002) provide an early introduction of reinforcement learning methods to inventory 

management. Since then, the field has seen significant theoretical advancements, with Kara & 

Dogan (2018), Perez et al. (2021), and Wang et al. (2012) applying newer reinforcement learning 

methods to tackle inventory management problems using univariate demand data. 

This exploration of the relevant literatures has enabled us to pinpoint several approaches for 

determining the optimal inventory levels for the company. These include involving demand 
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forecasts that incorporates exogenous variables and establishing target inventory levels based on 

this forecast, taking into account the constraints of inventory management policy. 
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3. Methodology 

Following several discussions with our partner company, we agreed to focus on the central 

research question: how to utilize machine-learning-based demand forecasting to determine 

inventory levels to withstand various market changes such as seasonality. Our literature review led 

us to identify two methods for establishing the company's optimized inventory levels: developing 

a demand forecast that includes exogenous variables and determining target inventory levels based 

on this forecast and inventory management constraints. The project goal is for the optimized target 

inventory level to help our partner company lower its inventory and associated holding costs, while 

still maintaining the determined service levels. Our proposed methodology, in comparison to the 

company's current approach, is illustrated in Figure 3. 

 

Figure 3 

Proposed Methodology Compared to Existing Method to Generate Target Inventory Level 
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Our methodology is divided into 5 steps as shown in Figure 4. 

 

Figure 4 

Methodology Steps 

 
 

3.1. Scope Definition 

Over several weekly meetings with the sponsoring company, we engaged in in-depth 

discussions focused on defining the problem at hand, thus ensuring a mutual understanding of the 

challenges and objectives. This also involved narrowing the scope of our project, making it more 

targeted and manageable. We also discussed the strategies for data access, considering the 

importance of data in driving our analysis and conclusions. Furthermore, we had extensive 

discussions about the methodology we proposed to ensure that our approach was both 

academically rigorous and relevant to the industry context. 

 

3.2. Data Cleaning and Processing 

This step included data acquisition, cleaning, and processing. For this project, The historical 

data and daily forecast were gathered from the company's internal database. These data took the 

form of inputs to the machine learning model, including historical open orders, historical 

shipments, historical target inventory level, and historical ending inventory. Data cleaning 

involved identifying and correcting (or removing) errors and inconsistencies from data to improve 

its quality, while data processing involved transforming raw data into a more usable and efficient 

format. 

 

3.3. Data Analysis 

In this process, we carried out a descriptive analysis and create an initial model utilizing a 

baseline technique. The descriptive analysis involved examining time series historical data, 
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concentrating on metrics of central tendency, distribution, and identifying aspects like level, trend, 

and seasonality. Based on this historical data, we constructed a baseline model employing linear 

regression that incorporates exogenous variables. 

 

3.4. Machine Learning Model Simulation 

The main steps for this project were using historical data and exogenous variables as input to 

the multi-variate big data analytics model to generate a target inventory level as an output. We 

identified several machine learning techniques that could be applied to address this capstone's 

problem: XGBoost and Random Forest. For these different methods, we calculated the Forecast 

Value Added (FVA) for each technique compared to the baseline model. Based on the negative 

recall metric, we identified Random Forest as the best model. 

 

3.5. Result Interpretation  

In this step, we performed a comprehensive comparison of the current target inventory level 

against the optimized target inventory level. This comparison involved a detailed analysis of how 

the optimized levels differ from the existing ones and the potential impact of these differences on 

the business. We also extended the discussion to cover business and managerial insights, exploring 

the broader implications of these inventory levels on operational efficiency and overall business 

strategy. 
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4. Quantitative Analysis 

In this chapter, we explore the quantitative aspects of our research. We started by presenting 

domain knowledge, followed by a descriptive analysis of data trends. Subsequent sections covered 

the selection and engineering of features, our data preprocessing approaches, and the selection and 

tuning of machine learning models suitable for inventory management. We also evaluated these 

models and present the classification results. Lastly, we analyzed the importance of various 

features using SHAP method, providing insights into their impact on model performance. 

 

4.1 Exploratory Data Analysis 

In our analysis, we focused on SKUs (Stock Keeping Units) within a certain size of the product 

line, encompassing over 500 SKUs across an 18-month period. This selection is aimed at capturing 

a wide spectrum of inventory dynamics and demand patterns, providing the robust dataset required 

for machine learning models. We simplified the company’s multi-echelon supply chain into a two-

echelon system consisting of three service warehouses (SW) and ten mixing centers (MC). SWs 

are multi-functional, managing both customer deliveries and replenishment to MCs, while MCs 

focus exclusively on customer service. This structure is significant given the differing lead times 

for replenishment (7 days) and customer shipments (20 days), as shown in Figure 5, with SWs 

directly fulfilling around 40% of customer deliveries, emphasizing their critical role in ensuring 

supply chain responsiveness. 

 

 

  



 18 

Figure 5 

Multi-echelon Supply Chain Network  

 
 

In line with the sponsored company's inventory management policy, we adopted a forward 

coverage approach. The company operates under a fixed forecast provided by the forecasting team, 

leaving the quantity of safety stock for each SKU at each site (SKU_site) and specific dates as the 

primary variable to manage demand variability. This safety stock aims to cushion against demand 

fluctuations over a predetermined forward coverage period, thereby ensuring optimal inventory 

levels and enhancing the robustness of the supply chain against unforeseen demand changes. This 

methodological foundation supported our objective of optimizing inventory levels to balance 

availability with cost efficiency, particularly within the context of a targeted review of forecast 

and demand data over an aggregated 20-day cycle. This period formed the basis for our safety 

stock calculation, aiming to cover the subsequent 20 days and establish a balanced inventory level 

that includes both safety and cycle stock considerations. Figure 6 presents the 20-day aggregated 

demand profiles for five selected high-volume SKUs and five selected low-volume SKUs over the 

past six months. 
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Figure 6 

20-Day Aggregated Act Demand of 3 High Vol & 3 Low Vol SKUs Over 3 Months 

 
 

The graph reveals a significant disparity in the 20-day aggregated order quantities between the 

high and low-volume SKU-site combinations. We interpret this variability as an opportunity to 

ensure our model is both rigorous and representative by including a diverse range of SKU-site 

combinations. 

 

4.2 Modeling 

4.2.1 Feature Selection & Engineering  

In preparing for the modeling phase, we selected a set of features from the company's internal 

database to predict inventory needs accurately. 

• forecast_version_date: The date a future demand forecast is generated, with daily forecasts 

up to 60 days ahead and weekly thereafter.  

• reqdlv_dt: The requested delivery date, indicating customer demand. 

• sku_site: A categorical feature representing a unique combination of an SKU code and a 

site code, indicating the specific location where the product is stored.  

• site_type: A categorical feature to differentiate whether the site code is a service warehouse 

(“SW”) and a mixing center (“MC”). 
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• safety_stock: A numerical feature representing the safety stock value at the requested 

delivery date for each sku_site  

• ending_inventory: A numerical feature representing the actual inventory level at the 

requested delivery date for each sku_site   

• sum_forecast: A numerical feature representing the aggregated forecasted order quantity 

over the next 20 days (customer shipment) or next 7 days (replenishment) at each sku_site 

To enhance the model accuracy, we also included time series features below. 

• Lag20:  A time series feature that introduces the lag of sum_demand. A minimum lag of 

20 days is selected based on the company's basis to capture sum_demand in determining 

safety stock.  

• Month: Categorical variables representing the month of reqdlv_dt. 

• Day of the Week and week of the year: Categorical variables representing the day of the 

week and week of the year of reqdlv_dt. 

• is_quarter_end: A binary variable indicating the last day of a quarter. 

After introducing all the features into our model, we determined the target variable that we 

aimed to predict. In this project, our goal is to predict the probability of stockouts using the current 

inventory levels and inventory management strategies. We defined the target variable as 

binary_label, which assumes a value of 0 if the sum of the forecast value and safety stock is lower 

than the sum_demand, indicating a stockout situation where the safety stock is insufficient to meet 

the incoming demand. Conversely, it assumes a value of 1 when the sum of the forecast value and 

safety stock is greater than or equal to sum_demand, reflecting a scenario where the inventory is 

adequately protected against potential stockouts. 

Having established the selection of features and the target variable, we moved on to the data 

preprocessing stage before feeding the data into the model. This step was crucial for ensuring that 

the imbalanced data was properly sampled and normalized for modeling, thereby enhancing the 

model's performance and accuracy. 
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4.2.2 Data Preprocessing 

In the data pre-processing stage, we developed a pipeline to process both numerical and 

categorical data, essential for the model to accurately analyze the dataset's complexity. Given the 

dataset's imbalanced nature, we implemented sampling strategies to ensure a balanced class 

distribution: SMOTE (Synthetic Minority Oversampling Technique) for oversampling the 

minority class, and random under-sampling to reduce the prevalence of the majority class. These 

techniques helped  achieve a more equitable representation of classes, thereby improving model 

accuracy and generalizability. 

For time series data, we split the dataset based on a predetermined cutoff date (2023-11-30), 

dividing it into training and testing sets to preserve the chronological sequence. This division was 

critical for evaluating the model's forecasting capabilities using historical data to predict future 

outcomes. Integrating these pre-processing steps with our data pipeline facilitated compatibility 

with classification models, thus optimizing the model training and evaluation process. 

 

4.2.3 Classification Model 

• Model Selection 

For our binary classification task, we selected Random Forest and XGBoost, known for 

their efficacy in handling binary outcomes and imbalanced datasets. Random Forest is 

favored for its interpretability and ability to handle non-linear data through decision trees, 

reducing overfitting risks. XGBoost excels in efficiency, handling sparse data effectively 

with its gradient boosting framework, making it ideal for our needs. 

• Hyperparameter Tuning 

We utilized Grid Search for systematic tuning of key hyperparameters: n_estimators 

(number of trees), max_depth (depth of each tree), and learning_rate for XGBoost, alongside 

n_estimators and max_depth for Random Forest. This method helped us identify the optimal 

model settings, enhancing predictive accuracy. 

To counter overfitting in XGBoost, we applied L2 (Lambda) and L1 (Alpha) 

regularization, adjusting penalties on coefficients' magnitude through Grid Search. This step 

ensured that our model's complexity was balanced with its generalization capability. 
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• Model Training and Validation 

Employing a time-sensitive dataset split and TimeSeriesSplit for cross-validation, we 

respected the chronological order of data, essential for accurate future predictions. This 

setup, along with a 5-fold time-series cross-validation, allowed us to evaluate model 

performance effectively over various periods. combination that results in the best 

performance on our validation set, effectively balancing the model's complexity with its 

ability to generalize to new data. 

• Model Evaluation  

Evaluating the performance of XGBoost and Random Forest models, particularly in the 

context of imbalanced datasets, required careful consideration of the metrics used. In our 

project, we used Recall and F1-score as a critical metric due to the imbalance in our dataset. 

Recall measures the proportion of actual positive/negative cases that the model correctly 

identifies. The formula for recall is below. 

!"#$%&'"	)"*$++	 = 	 -./"	!"#$%&'"0
-./"	!"#$%&'"0	 + 	2$+0"	340&%&'"0 

The F1-score is a harmonic mean of precision and recall, providing a single metric to balance 

both the precision (the proportion of positive identifications that were actually correct) and 

the recall of the model. 

21 − 7*4."	 = 	2	9	 3."*&0&4:	9	)"*$++3."*&0&4:	 + 	)"*$++ 

 

4.2.4 Classification Results 

The evaluation of our model using XGBoost and Random Forest yielded the results shown in 

Figure 7.  
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Figure 7 

Confusion Matrix for the (a) XGBoost Model and (b) Random Forest Model 

   
(a)         (b) 

 

In the confusion matrix, the terms "True Positives," "True Negatives," "False Positives," and 

"False Negatives" are designated as follows: 

• True Positives (TP): These are the cases where the model correctly predicts a positive 

outcome. In the context of the labeling logic, this would be non-stockout cases that were 

correctly identified as non-stock out. Here, TP is 23,640 for XGBoost and 23,146 for 

Random Forest. 

• True Negatives (TN): These are the cases where the model correctly predicts a negative 

outcome, meaning the stockout situations that were correctly identified as stock outs. Here, 

TN is 621 for XGBoost and 628 for Random Forest. 

• False Positives (FP): These occur when the model incorrectly predicts a positive outcome 

when it is actually negative. It would be a situation where the model predicted non-stockout, 

but it was actually a stock out. Here, FP is 194 for XGBoost and 187 for Random Forest. 

• False Negatives (FN): These occur when the model incorrectly predicts a negative 

outcome when it is actually positive. It would be a situation where the model predicted a 

stock out, but it was actually non-stock out. Here, FN is 2,653 for XGBoost and 3,147 for 

Random Forest. 

Our classification models demonstrate robust predictive capabilities, with a primary focus on 

minimizing stockout events. Each model's performance is quantified by the following metrics: 
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• Positive Recall (Sensitivity): The model accurately predicts non-stockout events a high 

percentage of the time. This high recall rate indicates strong performance in ensuring 

inventory levels are deemed sufficient. 

• Negative Recall (Specificity): This metric reflects the model's accuracy in predicting actual 

stockouts. 

• Positive F1-Score: The balance between precision and recall for non-stockout predictions 

is reflected in an F1-score. This confirms the model's precision in predicting when 

inventory levels are adequate. 

• Negative F1-Score: Conversely, the negative F1-score, assessing stockout predictions, 

highlights the model's performance in this area. 

Those metrics, along with their values, are reported in the classification report for both models 

shown in Table 1. 

 

Table 1 

Classification Report Results 

Metric 
XGBoost Random Forest 

Positive Negative Positive Negative 

Precision 99% 19% 99% 17% 

Recall 90% 76% 88% 77% 

F1-score 94% 30% 93% 27% 

Overall Accuracy 89% 88% 

 

In determining the selected model, we chose to prioritize negative recall as the most important 

metric. This metric reflects the model's ability to accurately predict stockout events. Stockout 

events are critical and represent minority instances in the dataset; therefore, a higher recall for 

these events is indicative of better performance by the model in predicting scenarios that are crucial 

yet less frequent. Given that the Random Forest model demonstrates a negative recall of 77%, 

compared to the 76% of XGBoost, it is more effective in identifying true stockout events. This 

higher performance in negative recall is significant for our objectives, leading us to select the 

Random Forest model for this project. 
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4.3 Feature Importance Analysis 

After training our model, we conducted a feature importance analysis to determine which 

variables most significantly influence the predictions. This step was vital for understanding the 

dynamics that affect demand forecasting and inventory management, offering insights that could 

inform future data collection and feature engineering efforts. For this analysis, we employed SHAP 

(SHapley Additive exPlanations), a cutting-edge approach that provides a detailed and 

interpretable explanation of the contribution of each feature to the model's predictions. SHAP 

values, based on the concept of game theory, attribute the prediction output to each feature's 

contribution, offering a fair distribution of the prediction among all features. 

Using SHAP, we identified not only the most influential features but also the direction and 

magnitude of their impact on the model's predictions. This granular insight into feature importance 

helped us understand the complex relationships and interactions between features in our dataset, 

guiding strategic decisions regarding inventory management. For instance, if SHAP analysis 

revealed that promotional activities or certain economic indicators significantly influence demand 

predictions, we adjusted our inventory strategies accordingly to better align with these findings. 

 

Figure 8 

SHAP Summary Plot 

 
 

Figure 8 presents the SHAP summary plot, which highlights the five most influential features 

that impact the model's predictive accuracy for stockout and non-stockout events. This graph 

clearly indicates that 'safety_stock' is the dominant feature influencing the predictions. In the 

subsequent step, we explored opportunities to optimize the target inventory levels. This step 

involved fine-tuning the safety stock across stock-keeping units (SKUs) and sites.  
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5. Results & Managerial Insights 

In this chapter, we present the results of our sensitivity analysis, focusing on its implications 

for business operations, particularly inventory management. Next, we examine specific SKUs and 

facility sites identified in the sensitivity analysis, which have the potential for improvement. This 

examination includes a detailed discussion of the "landslide effect" observed in inventory levels 

due to seasonal transitions. We conclude with our proposed recommendations for setting target 

inventory levels. These recommendations were designed to minimize excessive safety stock while 

simultaneously enhancing service levels, thereby optimizing overall operational efficiency. 

 

5.1 Sensitivity Analysis  

The objective of our sensitivity analysis was to evaluate the robustness of our inventory model 

against demand uncertainty under varying safety stock scenarios. This analysis was crucial for 

refining inventory strategies by identifying the optimal balance between minimizing stockouts and 

reducing inventory holding costs. 

Our approach involved examining scenarios where the initial model prediction indicated no 

stockout (positive label where Demand <= Safety Stock + Forecast). Keeping other feature values 

constant, we systematically adjusted the safety stock levels. These adjustments included reductions 

in increments of 5%, 10%, 15%, up to 30%, as well as increases by 5%, 10%, up to 30%. We then 

applied these scenarios to the pre-trained XGBoost model to predict the likelihood of stockouts. 

We measured sensitivity by observing changes in the service level, defined as the proportion of 

non-stockout instances (positive label) relative to the total instances. This metric served as our 

primary indicator of how sensitive service levels are to changes in safety stock. SKUs and sites 

where minor reductions in safety stock resulted in only slight declines in service levels were 

identified as candidates for inventory optimization. These results suggest that safety stock could 

be reduced without significantly increasing the risk of stockouts. Conversely, SKUs and sites 

where small increases in safety stock significantly improved service levels were marked as critical 

for service level optimization. 

 

5.1.1 Results of Sensitivity Analysis  

The sensitivity analysis yielded the results shown in Figure 9.  
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Figure 9 

Sensitivity Analysis Result (value: # sku_site) 

 
 

The sensitivity analysis reveals compelling insights into the resilience of the inventory model 

and its response to varying safety stock levels. At a reduction of 30% in safety stock, the overall 

service level drops to 93.5%, with significant decreases in the number of SKU_sites maintaining 

service levels above 95%, 97%, and 98.5%. Conversely, as safety stock increases, there is a 

noticeable improvement in service levels. At a 30% increase in safety stock, the overall service 

level peaks at 96.7%, and the number of SKU_sites achieving higher service thresholds also rises, 

with those maintaining above a 98.5% service level reaching 68, doubling the baseline figure. 

These findings underscore the impact of safety stock levels on service performance. It is clear 

that while reductions in safety stock can lead to cost savings, they also heighten the risk of service 

level degradation. This is particularly evident as the number of SKU_sites with over 95% service 

level falls below the baseline when safety stock is decreased. On the flip side, increasing safety 

stock has a substantial effect on achieving service excellence, with incremental improvements as 

safety stock levels rise. For instance, there is an increase in SKU_sites with a service level above 

97% and 98.5% with each step-up in safety stock, showcasing a positive correlation between safety 

stock increments and service level enhancements. The analysis presents a strong case for strategic 

safety stock management as a lever for service level optimization. 
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5.1.2 Managerial Insights  

Our sensitivity analysis facilitated the identification of key inventory adjustments to enhance 

service levels without disclosing specific SKU_sites, preserving confidentiality. We determined 

that increasing safety stock by 6,000 units, spread across a select group of 24 locations, could 

elevate the overall service level to 96.7%. This strategic augmentation of safety stock, executed 

across carefully chosen points in the supply chain, targets areas where a slight buffer can 

significantly bolster service robustness. 

Conversely, the analysis pinpointed 27 locations where the current safety stock may exceed 

actual requirements, suggesting an opportunity for inventory right-sizing. By aligning safety stock 

more closely with demand patterns, the company stands to decrease carrying costs and reduce the 

likelihood of overstock scenarios, thereby optimizing inventory levels. This balance between 

increasing safety stock in critical areas and reducing excess in others is key to achieving a lean and 

responsive supply chain that aligns with market demands and operational goals. 

 

5.2 Revelation of “Landslide Effect”  

The analysis of inventory fluctuations throughout seasonal transitions led us to identify a 

phenomenon we have termed the "landslide effect." This effect poses a challenge for the 

sponsoring company, as it experiences inventory imbalances during seasonal shifts. Specifically, 

as the company moves from a low to a high demand season, it finds itself with an excess of 

inventory. Conversely, when transitioning from a high to a low season, there is a pronounced 

decrease in service levels due to insufficient inventory (see Figure 10).   
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Figure 10 

Illustration of Landslide Effect  

 
This landslide effect stems from a misalignment in the company's inventory model, which is 

traditionally backward-looking, basing safety stock targets on past demand over the replenishment 

lead time. However, the company's current method, which is forward-looking, sets safety stock 

targets based on anticipated future demand. This discrepancy leads to premature adjustments in 

inventory levels. During the high season, the forward-coverage, Days of Supply (DOS) model 

starts to reduce safety stock too early, as its projections begin to include more of the low season's 

lower demand. This results in inadequate inventory levels while still in the peak season, leading to 

suboptimal service outcomes. 

Furthermore, the forward-coverage DOS approach does not sufficiently consider the trade-offs 

between inventory savings and the cost implications of stockouts. Without a nuanced evaluation, 

inventory levels are adjusted without strategic foresight. Adding to the complexity, many 

practitioners struggle to accurately quantify the cost of stockouts and typically default to setting 

high service level targets, often in collaboration with supply chain partners. These targets tend to 

remain fixed across different seasons, which inadvertently contributes to the landslide effect. This 

outcome, clearly undesirable, necessitates a refined approach to setting inventory targets—one that 

remains sensitive to seasonal demand fluctuations and the associated service level implications. 
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5.3 Recommended Approach to Set Target Inventory Level 

To address the challenges presented by the landslide effect, we propose an alternative approach 

for the sponsoring company to set target inventory levels that leverages the appropriate 

nonstationary calculations for safety stock targets in their planning systems. While a sophisticated 

solution may involve complex mathematical modeling, a more straightforward, yet effective, 

strategy is available by applying a Days of Supply (DOS) methodology with some modifications. 

This practical solution consists of the following steps: 

1. Average Forecast Calculation: Begin by calculating the average demand forecast for a 

future period starting from time t+1 to t+T, where t signifies a given time period and T 

denotes the replenishment lead time. 

2. DOS Conversion to Safety Stock Units: Utilize this average forecast to translate the DOS 

target into a quantifiable safety stock unit target for the period t+T. 

3. Planned-Order Release Determination: Employ the safety stock unit target to ascertain 

the planned-order release at time t. 

Adopting this strategy, although not strictly optimal during seasonal transitions, significantly 

mitigates the misalignments that arise from a forward-coverage DOS method. While there might 

be minor discrepancies during these transition phases, they are generally less consequential than 

those produced by the current approach. 

Implementing this new methodology necessitates a shift in perspective for practitioners. It is 

important to recognize that while the current forward-coverage approach may still be relevant for 

reporting inventory metrics, it should be adjusted for calculating inventory targets. The 

recommended approach aligns more closely with the cyclic nature of demand, smoothing the 

transition between seasons and maintaining service levels without succumbing to the pitfalls of 

the landslide effect. 

 

5.4 Limitations  

In this capstone project, the focus was specifically narrowed down to a particular brand and size 

within the entire range of products. Across all products, the current business model utilizes the 

Forward Coverage Inventory Model, assuming that the days of forward coverage are equal to the 

replenishment or delivery lead time, which is considered a fixed value. It is important to note that 

this study does not consider lead time variability. Additionally, the multi-echelon inventory 
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optimization problem is not addressed in our research; instead, our analysis concentrates on two 

layers of distribution. These limitations provide some avenues for future work or the company 

needs to consider these when implementing the models  
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6. Conclusion 

This capstone project optimizes target inventory level for a leading global Fast Moving 

Consumer Goods (FMCG) company. Faced with the dual challenge of preventing stockouts and 

minimizing the costs associated with excess inventory, this project employed machine learning 

techniques to set optimal target inventory levels, enhancing overall service levels. 

Our primary deliverable was a robust machine learning model that accurately predicts stockout 

events for each stock keeping unit (SKU) and warehouse (site) combination. Achieving an 

impressive 91% accuracy, evaluated by f1-score and recall, this model leverages Random Forest 

technique. Furthermore, we conducted comprehensive sensitivity analyses to understand the 

correlations between service levels and varying inventory scenarios, leading to substantial strategic 

insights. 

The sensitivity analysis unveiled significant opportunities for inventory optimization by 

identifying potential overstocks and understocks across various SKU_sites. We discovered the 

"landslide effect," a critical challenge during seasonal transitions that leads to mismatches in 

inventory levels. This phenomenon was effectively addressed by a new inventory setting approach 

we proposed, which focuses on backward demand data instead of future forecast to set safety stock 

targets, steering clear of the intrinsic flaw of forward-looking inventory method.  

Moving forward, we recommend that the sponsoring company adopt the modified Days of 

Supply (DOS) approach to recalibrate safety stock levels based on retrospective demand forecasts 

rather than prospective estimates. This shift will help in smoothing out the inventory levels 

throughout the seasonal cycles, thereby maintaining higher service levels and reducing 

unnecessary stock holding costs. Continuous improvement of the machine learning models and 

further exploration into predictive analytics are suggested to keep enhancing the accuracy of 

stockout predictions and overall inventory management efficiency. 

This project not only achieved its aim of refining inventory management practices but also 

provided a scalable model for the FMCG industry to follow, combining advanced analytical 

techniques with practical inventory management solutions to tackle complex supply chain 

challenges.  
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