
Enhancing Efficiency in Cell & Gene Therapy Shipments: A Pathway to Scalability

and Reliability

by

Kevin-Alexandre Jacquot

Master of Mechanical Engineering at Institut Supérieur de l’Automobile et des Transports, 2012

SUBMITTED TO THE PROGRAM IN SUPPLY CHAIN MANAGEMENT

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE IN SUPPLY CHAIN MANAGEMENT
AT THE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2024

© 2024 Kevin-Alexandre Jacquot. All rights reserved.

The authors hereby grant to MIT permission to reproduce and to distribute publicly paper and electronic

copies of this capstone document in whole or in part in any medium now known or hereafter created.

Signature of Author: __
Department of Supply Chain Management

May 10, 2024

Certified by: __
Elenna Dugundji

Research Scientist at the Center for Transportation and Logistics (CTL)
Capstone Advisor

Certified by: __

Thomas Koch

Postdoctoral Associate at the Center for Transportation and Logistics (CTL)

Capstone Co-Advisor

Accepted by: __

Prof. Yossi Sheffi

Director, Center for Transportation and Logistics

Elisha Gray II Professor of Engineering Systems

Professor, Civil and Environmental Engineering

 2

Enhancing Efficiency in Cell & Gene Therapy Shipments: A Pathway to Scalability and Reliability

by

Kevin-Alexandre Jacquot

Submitted to the Program in Supply Chain Management

on May 10, 2024 in Partial Fulfillment of the

Requirements for the Degree of Master of Applied Science in Supply Chain Management

ABSTRACT

 The logistics supporting life-saving Cell & Gene Therapy treatments, such as autologous CAR-T,
face significant challenges due to strict constraints like time sensitivity, temperature control, and
regulatory compliance. These constraints make the supply chain vulnerable to disruptions that could
result in the loss or damage of these delicate, high-value therapies during global shipments handled by
specialty couriers third-party couriers. To address this issue, a study was conducted to analyze historical
shipment data from both qualitative and quantitative perspectives. The goal was to create a model that
could predict possible disruptions by calculating "validation points" throughout the shipment process and
updating them continuously for each new input. As a result, the sponsors' planning team would be
informed in advance of any potential disruptions, allowing them to proactively reach out to their couriers
for immediate action. Although still in its early stages, the model provides more visibility into current
processes and lays the foundation for a scalable solution to be implemented in the sponsor operating
system. Additionally, this study has allowed the sponsor to review their current process with their couriers
and identify areas for improvement in terms of process, data gathering, and data quality. A proposal for
a roadmap is also included, outlining possible enhancements that could leverage Machine Learning and
AI techniques.

Capstone Advisor: Elenna Dugundji

Title: Research Scientist at the Center for Transportation and Logistics (CTL)

Capstone Co-Advisor: Thomas Koch
Title: Postdoctoral Associate at the Center for Transportation and Logistics (CTL)

 3

ACKNOWLEDGMENTS

I would like to extend my deepest gratitude to the advisory team at my sponsor’s organization for
their invaluable patience and insightful feedback throughout this project. My profound appreciation also
goes to my capstone advisors, Elenna Dugundji and Thomas Koch, whose support has been fundamental
to this endeavor.

I am thankful to the MIT staff at the CTL lab for providing me with the opportunity to fulfill my
dream of studying at this prestigious university. Special thanks are due to Pamela Siska for her meticulous
editing and review of the various drafts of this final document.

Finally, I must express my heartfelt thanks to my partner, Adélia, and her two sons, Vitoria and
Lucca, for their enduring belief in me and their steadfast support over these past five months.

 4

TABLE OF CONTENTS

1 INTRODUCTION ... 8

1.1 Motivation ... 8

1.2 Problem statement and research questions ... 9

1.3 Project goals and expected outcome .. 11

2 STATE OF THE ART ... 12

2.1 Inherent Supply Chain challenges CAR-T Therapy faces ... 12

2.1.1 End-to-End Versus Vein-to-Vein.. 12

2.1.2 Leading with Uncertainty .. 16

2.1.3 Temperature and Time: Characteristics and Challenges .. 18

2.1.4 Cell & Gene Therapy Track and Trace Necessity ... 20

2.1.5 Transportation... 21

2.2 Control Tower .. 21

3 METHODOLOGY .. 22

3.1 Data Collection .. 24

3.1.1 Process Overview .. 24

3.1.2 Data Sources .. 25

3.2 Database Construction .. 28

3.2.1 Database Development Process ... 28

3.2.2 Requirements Analysis .. 29

3.2.3 Design Phase ... 29

3.2.4 Implementation ... 33

3.2.5 Data Population ... 34

3.3 Dynamic Statistical Analysis and “Validation Points” .. 34

3.3.1 Validations Points – Objective and Calculation ... 35

3.3.2 Data Analysis ... 36

3.3.3 Central Limit Theorem .. 38

3.3.4 Utilizing Validation Points to Predict Disruptions ... 39

3.3.5 Rules for Validation Points and Alerting ... 41

4 RESULTS... 44

 5

4.1 Example ... 44

4.2 Advantage for the company .. 47

5 DISCUSSION ... 47

5.1 Implementation in Production .. 48

5.2 Current Limitations .. 48

5.2.1 Quantity of Data .. 48

5.2.2 Quality of Data .. 48

5.3 Recommendations ... 49

6 CONCLUSION ... 49

7 REFERENCES .. 51

8 APPENDIX A ... 53

8.1 Creation of the Tables ... 53

8.2 Calculate Event Calculation ... 60

8.2.1 Validation 1 ... 60

8.2.2 Validation 3 ... 63

8.2.3 Validation 4 ... 65

8.3 Populating Function for the Validation Points .. 66

8.3.1 Validation Points 1 and 2 .. 66

8.3.2 Validation Point 3 .. 68

8.3.3 Validation Points 4 .. 70

 6

LIST OF FIGURES

Figure 1: Vein to Vein Process .. 9
Figure 2: Current CAR-T cell process steps ... 13
Figure 3: Considered modals from "Apheresis Center" to "Make 1" ... 14
Figure 4: Considered modals from "Make 1" to "Make 2" ... 15
Figure 5: Considered modals from "Make 2" to "HUB" .. 15
Figure 6: Considered modals from "HUB" to "Infusion Center" ... 15
Figure 7: Therapeutic Medicine Supply Chain Uncertainty Framework ... 16
Figure 8: Cellular Therapeutics Supply Chain complexity breakdown.. 17
Figure 9: Type of Packaging Consider ... 19
Figure 10: Methodology ... 23
Figure 11: Interactions between system .. 24
Figure 12: Source and Data to be considered in the database ... 27
Figure 13: Entity-Relationship (ER) of the PoC Database ... 32
Figure 14: Validation Points .. 35
Figure 15: Folium Map of the different arcs between the Apheresis Center to the Make1 37
Figure 16: Theoretical representation of the Confidence interval on a Normal Distribution 40
Figure 17: Visual Representation of the Rules for Validation Points 1, 2 and 3 ... 43
Figure 18: Results from a historical Shipment .. 45

 7

LIST OF TABLES

Table 1: List of segregated locations and their density .. 38
Table 2: Statistical Informations of the Validation points .. 39
Table 3: Definition of the Confidence Intervals .. 41
Table 4: List of Rules ... 42
Table 5: Statistical Informations for “Location 1” .. 44

 8

1 INTRODUCTION

1.1 Motivation

CAR-T, also known as Chimeric Antigen Receptor T-cell therapy, is a groundbreaking and

personalized approach to treating specific types of lymphoma and leukemia cancers with remarkable

success rates. This form of immunotherapy works by utilizing a patient's immune system to target and

destroy cancer cells. T-cells are collected and genetically modified to express a Chimeric Antigen Receptor

(CAR) on their surface. This CAR is designed to specifically target a protein (antigen) found on the surface

of the patient's cancer cells. The CAR recognizes and binds to the cancer cells, which then triggers the

patient's immune system to fight the cancer (Papathanasiou et al., 2020).

This form of immunotherapy, part of the Cell & Gene Therapy (C>) industry, has shown

considerable progress, especially since the FDA approved the initial CAR-T therapies, Kymriah

(tisagenlecleucel) and Yescarta (axicabtagene ciloleucel) in 2017. These treatments are used for

refractory/relapsed B-cell precursor acute lymphoblastic leukemia (ALL) in patients up to 25 years old and

adult patients with relapsed or refractory diffuse large B-cell lymphoma (DLBCL) (EMA, 2018). These

treatments have inspired further research and clinical trials, including both autologous (where cells or

tissue are obtained for an individual's own use) and allogeneic (where cells or tissue are obtained for use

in others) products.

Despite the initial triumphs, there are challenges to the manufacturing and supply chain processes

of CAR-T therapies. The manufacturing process is complex, with multiple steps that are difficult to execute

and synchronize across various locations. Additionally, as we progress toward establishing CAR-T cell

therapies as pivotal options in cancer treatment, the current supply chain model can accommodate only

a limited number of patients, which creates scalability issues and necessitates substantial enhancements

(Harrison et al., 2019).

Furthermore, the prohibitive costs of developing, manufacturing, and administering CAR-T

therapies significantly influence their list prices. For instance, in Europe, Kymriah is priced around

€320,000 and Yescarta at €327,000 (Jørgensena, Hannab & Kefalasa, 2020), while in the US, they are

respectively sold for $475,000 and $373,000 (Chen, Abila & Kamel, 2021).

Moreover, regulatory directives from federal agencies (Kaiser et al., 2015) and complex

reimbursement procedures (Papathanasiou et al., 2020) further compound the challenges of CAR-T

therapies, which already involve intricate custodial procedures and substantial expenses.

 9

Our sponsor, one of the largest pharmaceutical companies globally, provides some of the CAR-T-

approved therapies. They are actively engaged in constructing a robust and expandable supply chain

model to effectively address the increasing demand.

1.2 Problem statement and research questions

As mentioned, our sponsor company distributes authorized CAR-T therapies worldwide, where

the patient is their own donor. This process is commonly called "vein to vein" (Papathanasiou et al., 2020).

It begins with the cell collection at a specialized clinic known as an apheresis center. The cells collected

through this process, referred to as apheresis (APH), are then transported to the initial manufacturing

site, "Make 1," for activation and cryopreservation. The semi-finished goods called "Cryogenic Frozen

Material" (CMAT), are then transferred to the second manufacturing site, "Make 2," where various

processes such as genetic modification, expansion, formulation, cryopreservation, and final Quality

Control/Quality Assurance (QC/QA) are conducted. The final product, known as Cryogenic Frozen Drug

Product (CDP), is then distributed directly to the infusion center, or through a hub if any are present in

the region, where the patient receives customized treatment based on their own cells (refer to Figure 1).

Figure 1: Vein to Vein Process

Vein to Vein Process

Note: Represent the Vein-to-Vein Process, from collection to application. Own work.

Currently, third-party logistics couriers known as "specialty couriers," handle the shipping

operations between facilities. However, due to the constraints presented in Figure 1 for each leg, it is

 10

crucial to closely monitor time and temperature during transit to prevent any risks of excursion, which

could lead to the loss of collected T-cells (APH) from the patient, the semi-finished goods (CMAT) or the

finished goods (CDP) before patient treatment at the infusion center.

To ensure accurate tracking of shipment statuses during transit, our sponsor utilizes a tracking

system fed with real-time data from various couriers. These data inputs are gathered from fragmented

sources, i.e. the external partners responsible for the shipments. However, the system lacks granularity

for effective planning and timely shipments and an alert management system crucial for preventing

disruptions. These disruptions, ranging from traffic congestion to airline delays due to external factors like

storms or strikes, can have lethal consequences given the criticality of the products being managed.

Consequently, the sponsoring organization has expressed concerns about the third-party logistics

providers' failure to integrate risk management into their daily operations. Despite communication of

primary shipment milestones, there is no comparison with non-shared planning, and inadequate

monitoring negatively impacts material tracking. This lack of visibility in the shipping process leads to the

sponsor and courier not being able to proactively react to shipping issues with the end user having to

report them to the sponsor upon their discovery. This poses risks of delays at critical touchpoints with

downstream ramifications.

In addition, mainly due to the specialized and relatively new nature of the Cell & Gene Therapy

industry, the sponsor has not found reliable and resilient digital Control Tower tools on the market, a

sentiment shared by other pharmaceutical companies providing the same kind of treatment. While some

entities in the C> space have begun to utilize AI (Artificial Intelligence) and ML (Machine Learning) to

process diverse data sources, these tools are still in their early stages of development and do not meet

the sponsor's requirements.

Furthermore, the sponsor foresees a five-fold increase in demand for CAR-T therapies in the

coming years. While the current have a 95% accuracy in term of time delivery, it currently requires

extensive and time-consuming manual follow-up. They recognize that their existing Tracking/Alert

Management system falls short of offering the desired level of control, leaving them vulnerable to

disruptive factors. Without proper automation, they anticipate challenges in meeting the expected

growth.

In response to all these challenges, the sponsor requires a robust alert system that can detect

events and enable their team to take proactive measures. They also seek a scalable solution that can

monitor shipments across the full vein-to-vein process, from collection to delivery, on a global scale.

 11

Moreover, the system should have a solid foundation to accommodate future enhancements, including

alternative shipping plans based on the product's location, within a short time frame.

In that context, the questions to be answered were:

• How can information be captured from multiple sources and aggregated into a unique 'source of

truth'?

• How can the entire shipment cycle be monitored, and potential disruptions predicted, while

managing constraints?"

1.3 Project goals and expected outcome

Considering the challenges highlighted above, the primary goal of this project was to craft a

scalable Proof of Concept (PoC) for our Sponsor, encompassing tracking, monitoring, and alert

functionalities. This model initiative aims to consolidate data from diverse internal and external sources

and create the foundation to harness the potential of AI and ML.

The main benefit of our project was the development of a robust solution that will support the

sponsor in their decision-making by leveraging existing data analytics capabilities, leading to better risk

mitigation, while being scalable and in adherence to regulatory and quality standards. Our Sponsor

envisions this tool as an alternative to their current system, aspiring for it to become a cornerstone of

their supply chain infrastructure. This strategic tool shall have the potential to support the success of CAR-

T therapies and any potential Cell & Gene Therapies, in both clinical and commercial stages.

Within this context, the deliverables for the Sponsor are:

• A functional POC able to:

o Record, in a dedicated database, the historical and current main events sent by the

couriers.

o Dynamically calculate “validation points” by looking at WHEN the sponsor should have

received those events.

o In case of a missing event in the time frame defined previously, send an alert for proactive

intervention.

• A detailed roadmap outlining potential future enhancements, emphasizing scalability for other

products and regions.

 12

2 STATE OF THE ART

As described in the previous chapter, shipments involving CAR-T therapies and any potential Cell

& Gene Therapies present a multifaceted set of challenges and constraints:

• Time and Temperature Sensitivity: These shipments are extremely sensitive to time and

temperature, increasing the risk of obsolescence (Meacle et al., 2016).

• High Value Shipments: Besides the significant cost associated with these therapies, they carry an

important human factor, being a potential life-saving solutions for cancer patients.

• Global Low Volume Shipments: Products are shipped unitary from several locations, concentrating

their destination to only a few manufacturing facilities around the globe (multiple-to-one), then

back to the hundreds of infusion centers, where the product originated (one-to-multiple) (Hanley

et al., 2022).

• Third-party Courier Dependence: Shipments are managed and overseen by third-party couriers

due to the global scope, resulting in reduced immediate control from the pharmaceutical

companies regarding the ongoing activities.

In this chapter we analyze the most significant works done by other professionals or scholars on

how those constraints are usually tackled in the C> market or in other markets confronted with the

same stringent requirements. We also go in more depth into the principle of the “Control Tower,” looking

at the benefits and challenges such technology can bring.

2.1 Inherent Supply Chain challenges CAR-T Therapy faces

2.1.1 End-to-End Versus Vein-to-Vein

In the previous chapter, we provided a comprehensive overview of the C> industry. This

section delineates the comprehensive lifecycle of Autologous CAR-T cell therapy, encompassing the

process from collection to administration (vein-to-vein), and underscores the distinct attributes that set

it apart from the traditional pharmaceutical supply chain (Rutherford, Barry, Campbell & Turner, 2017).

Shah (2004) describes the conventional “end-to-end” pharmaceutical supply chain structure,

which consists of established warehouses or distribution centers tasked with the storage and distribution

of manufactured drugs to retail outlets. The typical stages include primary manufacturing (production of

the active ingredient), and secondary manufacturing (assembly of the final product in SKU format),

followed by market warehouses/distribution centers, wholesalers, and ultimately retailers/hospitals.

 13

Conversely, “vein-to-vein” autologous CAR-T cell therapies are characterized by a patient-centric

supply chain model, emphasizing a bidirectional flow where the patient is pivotal. The pathway of

materials is as follows:

• Apheresis Center (Clinical site for leukapheresis or "cell collection").

• Manufacturing site for therapy production.

• Infusion Center for therapy administration.

Figure 2: Current CAR-T cell process steps

Current CAR-T cell process steps

Note: Represent the main flow of the manufacturing of CAR-T. Adapted from “Autologous CAR T-cell

therapies supply chain: challenges and opportunities?” by M. M. Papathanasiou, C. Stamatis, M. Lakelin,

S. Farid, N. Titchener-Hooker and N. Shah, 2020, Cancer Gene Therapy 27, p. 799–809. Copyright 2020 by

Springer Nature America, Inc.

Apheresis Center

The leukapheresis procedure occurs at a specialized clinical site, extracting patient blood to

separate the leucocytes, and returning the remaining blood to the patient’s circulation (Levine, Miskin,

Wonnacott, Keir, 2017). Subsequently, the sample is transported to the manufacturing site for further

 14

processing. Depending on regulatory authorization and manufacturer preference, the sample can be

transferred fresh (2ºC to 8ºC), frozen (−80 ºC), or cryopreserved (−180 ºC). In our capstone, the product

of this phase is referred to internally as APH and is shipped “fresh” using a Single-Use Credo Cube for

packaging, maintaining the product between 2ºC to 8ºC for 72 hours.

Figure 3: Considered modals from "Apheresis Center" to "Make 1"

Considered modals from "Apheresis Center" to "Make 1"

Note: Represent the modals considered from the Apheresis Center to Make 1. Own work.

Manufacturing site

At the manufacturing site, cells undergo several processes including enrichment, activation,

genetic modification, expansion, formulation, and cryopreservation, until the final therapeutic product is

prepared for hospital delivery.

A key process in CAR T cell therapy production is the genetic modification, where patient T cells

are transduced with the CAR receptor, typically through viral gene transfer systems. Quality

Control/Assurance is executed after this modification, with the final product being cryopreserved and

dispatched to the administration site. It is important to note that QC/QA might be conducted in-house or

outsourced (Papathanasiou et al., 2020).

Per our sponsor company’s protocols, manufacturing is generally executed at two distinct

facilities named “Make 1” and “Make 2.” “Make 1” involves cell enrichment and activation, resulting in

Cryogenic Frozen Material (CMAT) that is shipped in a specialized dry vapor container, keeping the

material below -150ºC for approximately 8 days. Subsequent processes including genetic modification,

expansion, formulation, cryopreservation, and QC/QA occur at “Make 2,” from whence it is then sent to

a HUB. Based on the scope of our project, we focus on the reception of the APH in one specific plant,

acting as Make 1 and Make2.

 15

Figure 4: Considered modals from "Make 1" to "Make 2"

Considered modals from "Make 1" to "Make 2"

Note: Represent the modals considered from Make 1 to Make 2. Own work.

Figure 5: Considered modals from "Make 2" to "HUB"

Considered modals from "Make 2" to "HUB"

Note: Represent the modals considered from Make 2 to Hub. Own work.

Infusion Center

Following successful release, the therapy is transported from the HUB to the hospital, where it is

thawed and administered to the patient. This step typically requires about one week of pre-conditioning

in alignment with the patient’s medical status prior to therapy administration (Papathanasiou, Stamatis,

Lakelin, Farid and Titchener-Hooker, 2020).

Figure 6: Considered modals from "HUB" to "Infusion Center"

Considered modals from "HUB" to "Infusion Center"

Note: Represent the modals considered from Hub to the Infusion Center. Own work.

 16

2.1.2 Leading with Uncertainty

In the previous section, we compared the supply chain of autologous CAR-T therapy to traditional

pharmaceuticals from the point of view of Distribution and Manufacturing. This section will elaborate on

this comparison, focusing on the uncertainty in supply and demand, again largely due to the need for a

human donor and the complex, variable nature of the product.

In 2013, Teng et al. proposed a classification framework for cellular therapies, which has been

referenced in subsequent research addressing supply chain uncertainties in the C> industry (e.g.,

Rutherford et al., 2017). In their study, Teng et al. separated these therapies into two main groups based

on the source of the cells: either one-to-one (autologous and/or allogeneic) or one-to-many (allogeneic)

using a single donor. They further categorized these based on the demand (high or low) and the method

of administration (product or procedure), using a 2x2 matrix to map out demand uncertainty and supply

uncertainty (Figure 7).

Figure 7: Therapeutic Medicine Supply Chain Uncertainty Framework

Therapeutic Medicine Supply Chain Uncertainty Framework

Note: Represent the different strategies to manage the Supply Chain of therapeutic medicine to enhance

the effectiveness and efficiency. Adapted from “An analysis of supply chain strategies in the regenerative

medicine industry—Implications for future development” by C. W. Teng, L. Foley, P. O'Neill and C. Hicks,

2013, International Journal of Production Economics 149, p. 211–225. Copyright 2013 by Elsevier B.V.

The framework identifies four key supply chain strategies according to levels of uncertainty:

 17

• Efficient Supply Chain (Push-Push): Features stable, predictable demand, focusing on economies

of scale to reduce costs, crucial for low-margin treatments.

• Responsive Supply Chain (Push-Pull): Maintains raw materials at a decoupling point until a specific

customer order or patient requirement is confirmed.

• Agile Supply Chain (Pull-Pull): Follows a make-to-order approach, initiating production only when

customer demand is confirmed, similar to autologous CAR-T therapies, where the donor is the

critical point of material decoupling.

• Risk-Hedging Supply Chain (Pull-Push): Utilizes a pull strategy in markets with unpredictable

supply, accumulating materials in anticipation of future needs.

While this framework effectively maps the uncertainties in cellular therapies, we believe that the

approach by Rutherford et al. (2017) more accurately reflects the complexities involved by examining the

entire process from start to finish:

• Incoming: Focuses on the challenges of obtaining donor material, potentially requiring specialized

donation facilities, and considering geographical limitations.

• Manufacture: Highlights the need for timely transportation to the manufacturing site, especially

important for perishable materials requiring controlled conditions.

• Outgoing: Addresses issues such as product perishability, shelf life, advanced processing needs,

tracking and tracing, chain of custody, specialized logistics, and timing of process execution.

Figure 8: Cellular Therapeutics Supply Chain complexity breakdown

Cellular Therapeutics Supply Chain complexity breakdown

 18

Note: Represent the levels of complexities from the Donation (collection and Shipment of the human

material) to the Manufacturing and Distribution back to the patient. Adapted from “The Importance of

Understanding & Designing Cellular Therapy Supply Chains” by C. Rutherford, J. Barry, J. DM. Campbell

and M. Turner, 2017, Cell and Gene Therapy Insights 3(10), p. 873–889. CC-BY-NC-ND Open Access license

by BioInsights.

This approach highlights the need for a cellular therapeutic supply chain strategy that accounts

for complexities and constraints throughout the incoming, manufacturing, and outgoing stages. Excluding

the manufacturing aspect for now, the incoming process for autologous CAR-T is considered highly

complex, while the outgoing process is somewhat less complex, mainly due to the less rigorous time

constraints.

2.1.3 Temperature and Time: Characteristics and Challenges

In preceding discussions, we have underscored the scarcity (low volume) and high cost associated

with autologous CAR-T cell therapies as primary constraints, and outlined optimal supply chain strategies

to address these challenges. This section will focus on other critical factors, namely time and temperature,

which are essential in formulating an effective supply chain model for these therapies.

Given the patient-specific customization of each therapy in the one-to-one model, the loss of any

sample or therapy becomes significantly detrimental due to its irreplaceable nature. These therapies are

subject to strict shelf-life limitations, necessitating rigorous control over the duration of processing,

storage, and transportation.

Similarly, temperature fluctuations and mishandling also present substantial risks. Owing to the

fragile nature of CAR-T cells, which are prone to damage under suboptimal conditions, it is crucial to

maintain storage and transport under precisely regulated environments. This necessitates the use of

specialized packaging systems and meticulous handling protocols.

To mitigate these risks, therapies are frequently transported using dry shippers that uphold

necessary temperature conditions throughout transport. Papathanasiou et al. (2020) advocate for

cryopreservation as a superior method owing to its flexibility in extending the transport and treatment

window compared to fresh products, which are constrained to a maximum storage duration of 24-72

hours depending on the packaging system utilized. Cryo-transport systems are capable of maintaining

both temperature and product integrity for periods of 10–14 days. Selecting an appropriate shipping

 19

package that can preserve the required temperature for the necessary duration is crucial in reducing the

risk of product loss due to mishandling.

The following are descriptions of two shipping containers used by our sponsor company,

differentiated by the type of material transported and their respective capabilities in maintaining

controlled temperatures and holding times.

Figure 9: Type of Packaging Consider

Type of Packaging Consider

Note: Represent the packaging used by the sponsor company depending on the type of products shipped.

Image on the left side from Credo CubeTM Series 4 Product Sheet, by Peli BioThermalTM, n.d.

(https://www.pelibiothermal.com/sites/default/files/202212/Credo%20Cube%20Series%204%20Produc

t%20Sheet.pdf). Copyright 2024 by Peli BioThermal Limited. Image on the right side from Advanced

Therapy ShipperTM, by Cryoport Systems, n.d. (https://cryoport.com/solutions/shipping-

systems/cryoport-express/). Copyright 2024 by Cryoport Systems, LLC.

https://www.pelibiothermal.com/sites/default/files/202212/Credo%20Cube%20Series%204%20Product%20Sheet.pdf
https://www.pelibiothermal.com/sites/default/files/202212/Credo%20Cube%20Series%204%20Product%20Sheet.pdf
https://cryoport.com/solutions/shipping-systems/cryoport-express/
https://cryoport.com/solutions/shipping-systems/cryoport-express/

 20

2.1.4 Cell & Gene Therapy Track and Trace Necessity

Another pertinent characteristic in the supply chain model of CAR-T cell therapies pertains to what

is termed Track & Trace, which involves the tracking of both samples/products and patient identification.

The global production and distribution of medicines necessitate rapid information exchange among

regulatory authorities to uphold supply chain integrity and ensure patient safety. Track and trace systems

are recognized as valuable tools in mitigating risks such as shortages and the circulation of counterfeit

medicines by offering visibility into the medicine supply chain at any given point (EMA, 2021).

On March 9, 2022, the Center for Drug Evaluation and Research (CDER) of the U.S. Food and Drug

Administration (FDA) released a revised draft guidance for industry titled Verification Systems Under the

Drug Supply Chain Security Act for Certain Prescription Drugs. This updated guidance addresses the

verification systems essential for manufacturers, repackagers, wholesale distributors, and dispensers to

comply with the Federal Food, Drug, and Cosmetic Act (FD&C Act) as amended by the Drug Supply Chain

Security Act (DSCSA). The DSCSA outlines crucial steps toward establishing an electronic, interoperable

Track & Trace system for specific prescription drugs distributed in the US. Additionally, it delineates

definitions, requirements for supply chain participants, standards for licensing wholesale drug distributors

and third-party logistics providers, and mandates manufacturers to test electronic connections with

trading partners, to be operational on November 2023.

Although autologous CAR-T cell therapies are exempt from this new regulation in both the US and

EU, this exemption does not absolve these markets from adhering to strict guidelines and compliance

requirements outlined by the US FDA and other global regulatory agencies (Meacle et al., 2016).

In the context of CAR-T cell therapies, bi-directional tracking is essential to ensure the correct

therapy reaches the right patient at the culmination of the product cycle. Efficient tracking of each product

from the Apheresis Center to the Infusion Center is crucial. Equally significant is patient identification

during cell harvesting, product release, and treatment stages. Patient-specific identity linking to the

sample is imperative for sample-specific identity requirements during cell harvesting and to ensure that

the right therapy is administered to the appropriate patient during product release and treatment.

Furthermore, addressing chain-of-custody documentation remains a challenge, necessitating the

recording of location, security, and temperature details throughout various facilities, involving diverse

personnel and organizations.

 21

2.1.5 Transportation

Time serves as a pivotal constraint that influences not only the duration between two destinations

but also dictates the selection of transportation modes, a factor hitherto unaddressed. To streamline the

complex supply network and reduce the number of hand-offs, firms within the G> sector collaborate

with premier specialty couriers services that specialize in the meticulous handling of these delicate

shipments. Additionally, the unique characteristics of the C> field previously discussed require

sophisticated management through technological innovations, process improvements, and shifts in

organizational mindset.

The transportation of C> products, such as APH or drug products, to and from manufacturing

sites often necessitates intermodal transport solutions, incorporating both ground transportation and

aviation (Yang, 2006). Commercial airlines are frequently utilized owing to their widespread availability

and extensive network. However, in instances where delays could critically impair product integrity,

charter flights may be employed to mitigate risk.

Airline disruptions are just one of several factors that contribute to delays across the entire

shipment process, often precipitating significant cascading effects and prolonged recovery times, which

can severely disrupt product timelines. To tackle these challenges, our analysis shifted from a narrow

focus on cargo shipments to a broader examination of passenger disruption recovery strategies, due to

the more readily available data in this area. The airline industry has made substantial investments in

enhancing recovery protocols following significant disruptions, primarily those caused by adverse weather

conditions. Through the utilization of advanced technology, analytical tools, dedicated control centers,

improved processes, structured recovery methodologies, mindset adjustments, and comprehensive

strategies at the industry level, airlines strive to minimize delay impacts and expedite passenger arrivals

to their destinations (Gershkoff, 2016).

2.2 Control Tower

According to Shekarian and Mellat Parast (2021), Supply Chain Resilience (SCRES) is designed to

alleviate the impact of disruptions by identifying strategic actions that enable an effective response to

incidents. Central to enhancing supply chain resilience are the principles of visibility, redundancy, and

network simplification, which collectively strengthen the ability of organizations to manage various types

of disruptions—including demand, supply, process, control, and environmental issues. Our capstone

project focuses on the latter three categories (process, control, and environmental disruptions) and aims

 22

to improve visibility through the implementation of Artificial Intelligence-driven data analytics,

encapsulated within the framework of a control tower.

A prior procurement control tower, in a capstone project by Kumar & Gomez (2023), emphasized

that control towers commence operations by integrating data from multiple sources. These systems are

optimally cloud-based, leveraging real-time data to enhance transparency into supply chain activities,

disruptions, and support decision-making processes. The disruptions spurred by the Covid-19 pandemic

have accelerated investments and shifted organizational priorities toward the deployment of control

towers that manage end-to-end business processes, grounded in three foundational pillars outlined by

Siddharth (2020):

• Comprehensive, cross-organizational, proactive approaches focused on exception management.

• Fostering a culture of organizational change and learning, with a profound grasp of business

operations to react dynamically to events and optimize processes.

• A sophisticated data platform that continuously monitors transactional data from both internal

and external sources, capable of autonomously detecting issues and initiating alerts for

stakeholders.

Hofman (2014) described the structure of a multi-modal and synchronized control tower for

logistics that operates on real-time data, necessitating open data exchange. The architecture of the

control tower includes a "rules handler" skilled in spotting deviations from planned scenarios by

monitoring data changes.

Our sponsor does not have a dedicated control tower and instead, relies on the one operated by

their designated specialty couriers service provider, which, in turn, shares critical data, feeding into a

third-party system utilized by the sponsor to oversee shipments. Despite the existing data exchange

between the two entities, there remains a gap in establishing necessary "Checkpoints" and Alerts that

could preemptively address disruptions during transit.

3 METHODOLOGY

This section outlines the methodology adopted for this research, which was underpinned by an

extensive review of relevant literature and continuous consultations with our project sponsor. It was

determined that a sequential approach to addressing the research questions would optimally satisfy the

sponsor’s needs.

 23

The research began by addressing the query: "How can information be captured from multiple

sources and aggregated into a unique 'source of truth'?" This involved the creation of a centralized data

repository, primarily populated with information provided by suppliers, which served as the authoritative

reference for the development of our Proof of Concept (PoC). The construction of this PoC adhered to the

methodology illustrated in Figure 10, focusing on:

• Data Collection

• Database Construction

• Dynamic Statistical Analysis and "Validation Points"

Following the establishment of this foundational repository, the research explored this question:

"How can the entire shipment cycle be monitored, and potential disruptions predicted, while managing

constraints?" This question has been addressed through sophisticated data analysis and predictive

analytics.

Figure 10: Methodology

Methodology

Note: Represent the methodology applied. Own work.

 24

3.1 Data Collection

Initially, it was imperative to comprehend the source, relevance, and extraction methods of each

data set. This critical step involved an in-depth examination of the sponsor's existing processes and

systems.

3.1.1 Process Overview

At the Apheresis Center, practitioners schedule patient treatments through a system proprietary

to the sponsor. This information is internally processed by the sponsor's scheduling team, who generate

a unique identifier serving as the primary reference. They also designate key milestones to be met by

couriers to ensure timely delivery to the subsequent phase (Make 1) within a 48-hour window. This data

is input into a "Planning System," linked to the "Couriers App." Upon receipt of this data, the courier

planning team initiates their scheduling activities and conveys a planned schedule back to the sponsor.

This schedule then becomes the baseline for the entire process in the sponsor's system.

Figure 11: Interactions between system

Interactions between system

Note: Flow-Chart representing the communication flows between the company, the hospitals and the

couriers to manage the shipments. Own work.

 25

Figure 11 depicts a simplified schematic of the systems interactions, highlighting the varying

degrees of information consistency due to differences in integration levels with the sponsor and internal

processes of the couriers.

In the absence of unforeseen events (e.g., delays or cancellations by the Apheresis Center or the

sponsor company), couriers are expected to collect and deliver cells according to the schedule set by the

Apheresis Center and planned by the sponsor. The information flow from the courier to the tracking

system owned by the sponsor is critical for monitoring ongoing processes. The sponsor’s planning team

then needs to manually verify the existence of any discrepancies or gaps in information, and if

encountered contact the courier planning team or directly access flight information from the airline's

website.

For this study, the focus is specifically on one courier, designated as "Courier A" for the remainder

of this document.

3.1.2 Data Sources

This section delves into the principal sources of information that were utilized as the primary

"source of truth" for our Proof of Concept (PoC).

Planning System (Sponsor)

This planning system is designed to serve as the central data repository, aggregating information

from various sources, including different couriers and internal processes such as manufacturing and

distribution. While it acts as the main repository and is instrumental in planning and tracking current

shipments, it also facilitates logistics planning for couriers by providing essential details (Process ID,

Product ID, Pickup Timestamp and origin, Planned delivery time and destination, etc.). However, multiple

integrations over time have led to information duplication with slight variations in naming, complicating

data management in the event of unexpected changes. Furthermore, the system permits manual

adjustments, which can result in the loss of historical data, complicating the preservation of a shipment's

planning baseline.

Key challenges include:

• Extensive lines of mixed information from various systems,

• Replicated information under different names,

• Difficulties in extracting valuable data,

• Dual functionality for planning and tracking,

 26

• Predominantly serving as the main repository,

• Manual modifications that disrupt the “FACT_Shipment_Baseline”.

Courier App

As previously mentioned, information standardization among couriers is lacking; therefore, we

narrow our focus to data provided by Courier A. This courier sends planning details based on the sponsor's

data and updates for each shipment milestone. These updates feed directly into the sponsor's planning

and tracking systems. The data undergo manual updates during the process, which replaces older entries

with new ones. For planning purposes, Courier A provides detailed information about the shipment,

including flight departure and arrival times, which supplements the basic information provided by the

sponsor.

Throughout the shipment, Courier A utilizes real-time GPS tracking for internal purposes but

communicates only fixed milestones to the sponsor via the courier website, which include:

1. Pickup – Timestamp of cell collection at the Apheresis Center.

2. Tender to Airline – Timestamp when the product and documentation are handed over to

the airline.

3. Flight Departure – Timestamp of the flight's departure.

4. Flight Arrival – Timestamp of the flight's arrival.

5. Recovery – Timestamp when the courier retrieves the product from the airline.

6. Delivery – Timestamp when the courier delivers the product to the manufacturing site.

Key challenges include:

• Dependency of the Courier to gather the data,

• Predominantly serving as the main source of truth for the shipments information,

• Manual modifications that disrupt the “FACT_Segments_Planned”.

Tracking System

 The tracking system collects the geolocalization data from the courier. It is utilized by the

sponsor's planners to monitor ongoing shipments. Although the real-time geolocation data of the ongoing

shipment is transmitted to this system, it is not linked to the planning system which contain all the initial

planning informations. The planning team then need to manually look at both system to check the real

status of the shipment. No analytical processing is performed that could assist planners in determining

whether a shipment is delayed, on schedule, following the planned route, or has been rerouted.

 27

Key challenges include:

• Difficulty to retrieve the geolocalization from the system

• Not used in this project.

In summary, a diverse array of data circulates among various companies and systems. Besides

fundamental data concerning the product and therapy from the sponsor, Figure 12 illustrates the

aggregation of this information and its origins.

Figure 12: Source and Data to be considered in the database

Source and Data to be considered in the database

Note: Represent the main information and sources provided during the process of planning and shipment.

Own work.

Concerns about Data Integrity

It is noteworthy that the ability to manually alter data during processing, particularly in ways that

overwrite older information with newer updates, introduces "mutable" data issues. Our review has

revealed that initial planning data are often superseded by more recent information, resulting in a

disconnection between planned and actual events from both the sponsor's and Courier A's perspectives.

This issue of "data loss" could also be framed as a problem of "version control," where the absence of an

effective versioning system means only the most current data version is retained, and historical data is

lost.

This situation highlights the critical need for maintaining an audit trail, version history, or change

log to ensure data integrity and traceability.

 28

3.2 Database Construction

Following the identification of data sources, our focus shifted to the development of a database

that would structure the input data across various tables to facilitate further analysis.

3.2.1 Database Development Process

Constructing an online database encompassed several critical stages designed to ensure

robustness, security, and efficiency:

1. Requirements Analysis:

• Gather Requirements: Engage with stakeholders such as developers, business managers, and

end users to ascertain their needs.

• Define Objectives: Establish the database’s purpose, detailing the types of data it will store,

access methods, and specific performance or security criteria.

2. Design Phase:

• Conceptual Design: Develop a high-level model using Entity-Relationship (ER) diagrams to

depict data storage and entity interactions.

• Logical Design: Convert the conceptual design into a logical model, specifying the database

structure through data tables, fields, keys, and relational constraints.

3. Implementation:

• Database Creation: Utilize a Database Management System (DBMS) to establish the database

per the conceptual design.

• Data Definition: Employ Data Definition Language (DDL) within the DBMS to create tables,

relationships, constraints, and other database elements.

• Data Manipulation: Populate the database using Data Manipulation Language (DML)

commands such as INSERT, UPDATE, and DELETE.

4. Testing and Evaluation:

• Test the Database: Execute various tests to verify that the database meets all specified

requirements, including functionality, performance, and security assessments.

• Optimization: Enhance database performance through techniques such as indexing, query

optimization, and configuration adjustments.

5. Maintenance:

 29

• Monitor and Tune: Continuously monitor database performance and make necessary

adjustments to accommodate new demands or integrate additional features.

• Backup and Recovery: Establish a routine backup schedule and formulate data recovery

procedures to mitigate data loss.

• Security Updates: Implement security patches and updates to safeguard against

vulnerabilities.

6. Documentation:

• Documentation: Produce detailed documentation of the database architecture, operational

guidelines, and maintenance protocols to support future development and upkeep.

For the purposes of this Proof of Concept (PoC), only the initial three stages—Requirements

Analysis, Design Phase, and Implementation—were essential. Subsequent phases, such as "Testing and

Evaluation", are detailed in Chapter 4. Maintenance protocols are not discussed, as this PoC is not

intended for direct deployment in a production environment but rather as a replicable model.

Comprehensive documentation has been provided to the capstone partner but is not included in this

document due to its restricted and confidential nature.

3.2.2 Requirements Analysis

The sponsor's existing tracking system lacks comprehensive functionalities needed to manage

daily operations effectively, particularly in terms of alert management for preventing deviations and

delays during transit. Consequently, the PoC incorporates the following features:

• Event-Based Tracking: Chosen over real-time tracking due to current data reception limitations

and the project's focus not being on tracking technology, but rather on the alert management

system.

• Alert Management: An enhanced tracking system will be established, employing a rule-based

engine to calculate potential deviations and classify issues during transit as "validation points" for

effective alert generation.

3.2.3 Design Phase

The design phase entailed establishing a database capable of capturing essential information to

effectively replicate the sponsor company's current system and enable dynamic data analysis while

preserving data integrity. To achieve this, a framework comprising dimension tables and fact tables was

developed.

 30

In the realms of data warehousing and business intelligence, dimension tables (DIM tables) and

fact tables serve distinct purposes and play crucial roles in data analysis. These tables are typically

arranged in a star or snowflake schema, facilitating efficient data querying and reporting:

• Dimension Tables (DIM Tables)

o Purpose: Store descriptive attributes about business entities, such as time periods,

products, and customers.

o Characteristics:

▪ Descriptive: Include data such as product ID, name, category, and manufacturer.

▪ Stability: Change infrequently, usually only updated to reflect changes in business

descriptions or hierarchies.

▪ Low Volume: Contain fewer rows than fact tables, capturing only entity

characteristics.

▪ Keys: Linked to fact tables via foreign keys to establish relationships.

• Fact Tables

o Purpose: Record quantitative metrics essential for business process analysis.

o Characteristics:

▪ Numerical: Predominantly contain numerical data like counts, sums, and other

metrics.

▪ High Volume: Log extensive data amounts, recording each business event or

transaction.

▪ Keys: Feature foreign keys that match primary keys in dimension tables,

integrating descriptive data with quantitative measures.

▪ Rapid Changes: Frequently updated to incorporate new transactional data.

These tables form the structural foundation of the tracking system, allowing for comprehensive

storage and analysis of shipment processes. Dimension tables provide contextual and descriptive details

about shipments and products, whereas fact tables capture intricate transactional data, including:

• Planning Information: Establishes the baseline for shipments, facilitating comparisons with actual

events. This encompasses essential data regarding the product/therapy and planned timing and

locations.

• Tracking Process Information: Details each step of the tracking process, from ground

transportation at the origin to air and ground transportation en route to the final destination.

 31

Advanced statistical calculations will be dynamically performed and recorded, based on this

structured data. These calculations include:

• Planned Position Calculation: Determines planned positions based on the current location and

expected transit times for each journey segment.

• Alerting System: Defines conditions under which alerts are triggered, such as significant delays or

deviations from the planned route.

To visually articulate the relationships between all database components, an Entity-Relationship

(ER) diagram was constructed using "Visual Paradigm." This diagram (Figure 13) delineates the database

structure in terms of tables, fields, keys, and relational constraints, providing a clear representation of

data interactions within the system.

DIM Tables:

• DIM_Site: Static Table containing all the Sites, from the Apheresis Centers to the Infusion Centers

and the Manufacturing Site.

• DIM_Product: Static Table containing all the Product information.

• DIM_Packaging: Static Table containing all the Packaging information.

FACT Tables (populated with Historical Data):

• FACT_Shipment_Baseline: Dynamic Table containing all transactional data. Represent the main

information’s sent by the sponsor to the Courier to plan the legs of the shipment. Historical data

are used to populate this Table. In the Production environment, this table must be filled

dynamically for each new process created.

• FACT_Segments_Planned: Dynamic Table containing all the planning information transmitted by

the courier to the Sponsor Company. Historical data are used to populate this Table. In the

Production environment, this table must be filled dynamically for each new process created.

• FACT_Event: Dynamic Table containing all the events send by the Courier to the Sponsor to follow

up each shipment. Historical data are used to populate this Table. In the Production environment,

this table must be filled dynamically for each new process created.

Figure 13: Entity-Relationship (ER) of the PoC Database

Entity-Relationship (ER) of the PoC Database

Note: Represent Entity-Relationship Diagram of the PoC. Own work.

FACT Tables (containing the “Validation Points” dynamically calculated, used to alert the sponsor in

case of disruption):

• FACT_Alert_calculation_validation1_2: Table containing the Validation Points 1 & 2:

o Validation 1: Used to measure the Average time from the origin (Pickup) to a certain

event.

o Validation 2: Used to measure the Average time of a specific Event.

• FACT_Alert_calculation_validation3: Table containing the Validation Points 3, used to measure

the difference between the Real Time vs Planned (by the courier).

• FACT_Alert_calculation_validation4: Table containing the Validation Points 4, used to measure

the difference between the Real Time vs Planned (by the sponsor).

3.2.4 Implementation

With the requirements specified and the design architecture established, the construction of the

database commenced. This phase involved populating the database with the predefined historical data.

For this purpose, "SQLite" was selected as the Database Management System (DBMS), and "SQLAlchemy"

was utilized as the SQL toolkit and Object-Relational Mapping (ORM) library for the Python programming

language. Programming tasks were executed within "Google Colab".

SQLite

From their homepage (https://www.sqlite.org/about.html), SQLite is recognized for its

lightweight, self-contained characteristics, making it an ideal choice for applications that necessitate a

straightforward, efficient, and minimally configured database solution. Unlike traditional DBMSs such as

MySQL or PostgreSQL, SQLite operates without the need for a separate server process. It interacts directly

with disk files, simplifying the data management process. Key features of SQLite include:

• Serverless Architecture: SQLite functions without a dedicated server process, integrating

seamlessly with applications that access the database directly from the file system.

• Zero Configuration: Requiring no initial setup or ongoing administration, SQLite is designed for

ease of deployment and use.

• Cross-Platform Compatibility: Available on multiple operating systems such as Windows, macOS,

Linux, and various embedded systems, SQLite supports a wide range of applications.

• Compact Size: Known for its minimal resource requirements, SQLite is particularly well-suited for

devices with limited hardware capabilities, including mobile phones and embedded systems.

https://www.sqlite.org/about.html

 34

SQLAlchemy

SQLAlchemy is not a standalone DBMS but serves as a comprehensive SQL toolkit and ORM library

for Python. It enhances database interaction by abstracting complex SQL operations into Python-based

objects and operations (SQLAlchemy Homepage, https://www.sqlalchemy.org/). Notable attributes of

SQLAlchemy include:

• SQL Toolkit: Offers a robust suite of enterprise-level persistence patterns, ensuring efficient and

high-performing database access.

• ORM Layer: Facilitates database operations through Python classes and objects, significantly

simplifying the development process by abstracting raw SQL queries.

• Database Agnostic: Compatible with various database systems, including SQLite, PostgreSQL,

MySQL, Oracle, and MS SQL Server, SQLAlchemy provides a uniform interface across these

platforms.

• Flexibility: Accommodates a broad spectrum of use cases, from simple applications to complex

systems, supporting both high-level ORM techniques and direct SQL scripting.

SQLAlchemy serves as a powerful tool that simplifies database management for Python

developers, offering both high-level ORM functionalities and low-level SQL capabilities.

3.2.5 Data Population

Finally, the database tables, including DIM_Site, DIM_Product, DIM_Packaging,

FACT_Shipment_Baseline, FACT_Segments_Planned, and FACT_Event, are populated extensively using

data templates structured in Excel. Dynamic tables such as FACT_Alert_calculation_validation1_2,

FACT_Alert_calculation_validation3, and FACT_Alert_calculation_validation4 are updated dynamically

with each process to ensure real-time accuracy and responsiveness. The Python scripts used for creating

and populating these tables are detailed in Appendix A, providing a comprehensive guide to the technical

implementation of the database.

3.3 Dynamic Statistical Analysis and “Validation Points”

With the database established, we delved into the operational capabilities of our Proof of Concept

(PoC). This section describes the objectives and methodologies behind the validation points, the data

analysis and processing conducted on these points, and details the rules these dynamic statistical markers

follow to forecast potential disruptions in the CAR-T cell therapy supply chain.

https://www.sqlalchemy.org/

 35

3.3.1 Validations Points – Objective and Calculation

As previously outlined, the tables FACT_Alert_calculation_validation1_2, 3, and 4 encompass four

principal validation points:

• Validation Point 1: Measures the average time from the origin (Pickup) to a specific event.

• Validation Point 2: Calculates the average duration of a specific event.

• Validation Point 3: Assesses the difference between the actual time and the planned time (by the

courier).

• Validation Point 4: Determines the discrepancy between the actual time and the planned time (by

the sponsor).

These validation points were designed to identify specific moments when the sponsor should

ideally receive event notifications from the courier within a predetermined confidence interval, based on

the event's criticality. If no notification is received by this designated time, the system issues an alert to

the sponsor’s planning team indicating a potential disruption. Conversely, if an event is reported before

reaching the validation point threshold, the system acknowledges the milestone and shifts focus to the

subsequent event. Figure 14 displays the calculated set of validation points.

Figure 14: Validation Points

Validation Points

Note: Represent the list of the 15 validation points created. The “N/A” are due to a lack of information or

redundancy. Own work.

These points were computed across all processes, yielding a total of 15 "checkpoints" to monitor

whether the shipment adheres to the original plan or begins to deviate.

 36

Validations 1 and 2 were computed for each actual event received—Validation 1 focusing on the

time from the origin to a specific event, and Validation 2 on the duration of that event. Conversely,

Validations 3 and 4 compare the actual times of events against their planned times, providing a binary

true/false output—for instance, determining whether a pickup occurred on time.

The “N/A” represent points where no calculation were possible. For the Pickup event for example,

we cannot calculate Vaidation 1 or 2, as pickup is already our point of origin. For the Tender to Airline and

Recovery, as we don’t receive the planning information relative to both event, we cannot calculate

validation points 3 and 4. Although for the Tender to Airline we could calculate validation 2 but it’s value

would be equal to validation 1 as it will be the time between the Tender to Airline and the Pickup events.

Finally, for both Flight Departure and Flight Arrival, as we don’t have the information planned by the

sponsor referent to both event, we cannot calculate validation 4.

These calculations are executed through queries within the newly established database. The

Python code utilized for these calculations is included in Appendix A.

3.3.2 Data Analysis

With the database populated with historical shipment information and calculated validation

points, we initiated data analysis. The first step involved extracting data from specific tables for detailed

examination. For illustration, we focus on the table FACT_Alert_calculation_validation1_2, containing

validation points 1 and 2. The extraction process is structured as follows:

1. Check the Status “Confirmed” – Our dataset distinguishes between "Confirmed" and "Job

Cancelled" statuses, with no "Ongoing" status present. We concentrate on completed processes

to evaluate our PoC and propose the inclusion of an "Ongoing" status in future enhancements in

consultation with our sponsor.

2. Check the kind of product “APH” – Initially, our database includes shipment data from the

Apheresis Center to Make 1 (APH Product) and back to the patient (CDP, which is the final

product). This study focuses on the Apheresis leg, which is considered the most critical leg due to

the stringent time (< 2 days) and temperature (between 2ºC and 8ºC) constraints.

3. Check for Potential Negativity – It is crucial to ensure all validation points are positive. Negative

values indicate data transfer errors between the courier and the sponsor, such as events being

recorded out of sequence (e.g., "recovery" logged before "Flight Arrival"). These discrepancies,

 37

potentially due to manual or systemic errors, are under joint investigation to determine their root

causes.

We created this last criterion in our query due to the fact that we encounter this discrepancy in

the historical data. To allow more visibility to the capstone partner, we created a second query where we

extract all the processes having negative values. With this information, the sponsor planning team is able

to investigate with the couriers what has happened and review the process if necessary.

These queries are automated within the database, allowing planners easy access to this

information for subsequent analysis. The final step involves clustering shipments by city of origin instead

of Apheresis Center (can have several in the same city) to manage data scale without overly segmenting.

Figure 15 displays a Folium Map showing the dispersion of processes across different cities (Green point)

to the Manufacturing Facility “Make 1” (Blue point), with the width of arcs representing the density of

shipments from each city.

Figure 15: Folium Map of the different arcs between the Apheresis Center to the Make1

Folium Map of the different arcs between the Apheresis Center to the Make1

Note: Represent the many-to-one flows from the Apheresis Center to the Make1. The width of each arc

represents the volume of therapies over the year. Own work.

Table 1 presents the density of shipments from each location, highlighting cities with statistically

significant process volumes.

 38

Table 1: List of segregated locations and their density

List of segregated locations and their density

Note: Represent the density of therapies per location throughout the year. The green locations are the

ones with a quantity superior to 25-30 therapies per year. Own work.

This scarcity of analyzable data underscores the need for a larger dataset, given the narrow focus

of this study on a single product, within one country, from one courier, in a specific year, coupled with the

generally low volume of CAR-T treatments in the market.

3.3.3 Central Limit Theorem

We predicated our analysis on the assumption that our data are continuous, implying that our

variables can assume any value within a specified range. This contrasts with discrete variables, which

adopt distinct, separated values. Further, we assumed that infinite sampling of all continuous datasets

converges to a normal distribution, a phenomenon attributed in part to the Central Limit Theorem (CLT).

The Central Limit Theorem is a cornerstone concept in statistics that describes the distribution

behavior of the sum (or average) of a large number of random variables, irrespective of the original

distribution of these variables. It describes that when a sufficiently large sample size is drawn from any

population with a finite level of variance, the mean of the sample will approximate a normal distribution.

This normalization holds true regardless of the population distribution's shape. The application of the CLT

is predicated on several conditions:

• Independence: Each random variable (e.g., individual measurements within the sample) must be

independent.

• Sample Size: The sample size must be sufficiently large. Although there is no strict rule defining

"large," it is commonly accepted that a sample size of 30 or more is adequate for the CLT to apply.

• Finite Variance: The population from which samples are drawn must exhibit a finite mean and

variance.

 39

Given that these conditions were met in our dataset, we utilized the CLT to assert that:

• The sampling distribution of the sample means trends towards a normal distribution, even if the

original data are not normally distributed.

• This predictability (that the sample mean is normally distributed) facilitates further statistical

analyses and hypothesis testing that rely on normality.

• The standard deviation of the sampling distribution, known as the standard error, diminishes as

the sample size increases.

3.3.4 Utilizing Validation Points to Predict Disruptions

With the necessary data in hand, we began to predict potential disruptions. Assuming our samples

across segregated locations are normally distributed, Table 2 presents all relevant statistical data for all

locations.

Table 2: Statistical Informations of the Validation points
Statistical Informations of the Validation points

Note: Represent the statistical information regarding the main validation points. Own work.

Confidence Interval (CI)

To calculate the confidence interval (CI) for a sample mean under the assumption of normal

distribution, the formula used is based on the T-distribution, suitable when the population standard

deviation is unknown. The formula is as follows:

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = �̅� ± 𝑡 ∗ (
𝑠

√𝑛
)

where:

 40

• �̅� is the sample mean (“mean" in our table).

• 𝑡 is the t-score from the t-distribution for the desired confidence level and degrees of freedom

(𝑛 − 1).

• 𝑠 is the sample standard deviation (std in our table)

• 𝑛 is the sample size (“count” in our table)

•
𝑠

√𝑛
 is the standard error of the mean.

Choosing the Confidence Level

The selected confidence level, typically 90%, 95%, or 99%, influences the t-score and consequently

the width of the confidence interval. A higher confidence level necessitates a broader interval to

encompass the true population parameter with greater certainty. Figure 16 shows a representation of the

confidence interval on a theoretical normal distribution.

Figure 16: Theoretical representation of the Confidence interval on a Normal Distribution

Theoretical representation of the Confidence interval on a Normal Distribution

Note: Represent a randomly generated normal distribution and the confidence interval. Own work.

The calculated confidence intervals provide the Lower and Upper Bounds essential for

establishing the rules for each validation level:

𝐿𝑜𝑤𝑒𝑟 𝐵𝑜𝑢𝑛𝑑 𝐶𝐼 = �̅� − 𝑡 ∗ (
𝑠

√𝑛
)

𝑈𝑝𝑝𝑒𝑟 𝐵𝑜𝑢𝑛𝑑 𝐶𝐼 = �̅� + 𝑡 ∗ (
𝑠

√𝑛
)

 41

These bounds are instrumental in defining the thresholds for each validation point, thereby

facilitating the detection and management of potential disruptions in the supply chain.

3.3.5 Rules for Validation Points and Alerting

 We have formulated operational rules to define the application of upper and lower bounds for

Validation Points 1, 2, and 3 to predict and promptly initiate alerts to the sponsor. These rules are essential

for preserving the integrity of the supply chain and ensuring timely responses to potential disruptions.

Definition of which CI

Not all events carry the same level of criticality within the process. For instance, a delay in "Flight

Departure" poses more significant consequences than a delay in the preceding "Tender to Airline" step.

Although these events are interdependent, their impact on the process's overall completion varies. Thus,

specific confidence intervals are designated for each event to appropriately size the range around the

mean, which will trigger an alert in the event of significant disruptions. The following outlines the CI

applications for main events:

Table 3: Definition of the Confidence Intervals

Definition of the Confidence Intervals

Note: Represent the Confidence Interval CI defined for each Validation Points. Own work.

 Below are the main comments for each main event:

1. Pickup: This event utilizes Validation Point 3, which compares the actual pickup time to

the planned time by the courier. We employ a 1σ upper bound to allow a margin for the

information transmission from the courier to the sponsor.

2. Tender to Airline: This event is monitored using Validation Point 1. Given the variability of

this event due to numerous exogenous factors (e.g., arrival times, desk crowding), a 2σ

upper bound is utilized as the predictor.

 42

3. Flight Departure: Critical for timely follow-up, a 1σ upper bound is employed for all three

validation points to quickly alert and respond to any delays, cancellations, or reroutings.

4. Flight Arrival: Dependent on the prior event, disruptions during flight (e.g., rerouting or

landing delays) are not visible through geolocation as no data is transmitted in-flight.

Therefore, a 1σ upper bound for all three validation points is used for enhanced visibility.

5. Recovery: Following the protocols set for "Tender to Airline," and with confirmation that

the material was on-boarded, a 2σ upper bound suffices for monitoring this event.

6. Delivery: With all three validation points available for this final event, a 1σ upper bound

is deemed most appropriate.

Definition of the treshold

When multiple validation points apply to the same event, it is crucial to define a threshold that

considers variations in starting points and standard deviations, which could affect accuracy:

• Validation Point 1 computes the CI from the pickup event onward, not recalculating for

subsequent events unless there is a significant delay.

• Validation Point 2 ecalculates the CI after each event, using the timestamp from the previous

event and the historical duration data. This can lead to discrepancies if an event is confirmed

much earlier than planned.

• Validation Point 3 is more straightforward, calculating the CI around a pre-planned timestamp.

For events with multiple applicable validation points, the chosen threshold is the lowest upper

bound value that exceeds the originally planned value. For events like Flight Departure, Flight Arrival, and

Delivery this method ensures responsiveness. For Recovery, historical averages of the event time are used

instead of planned values. The table below presents the final rules.

Table 4: List of Rules

List of Rules

Note: Represent the list of the final Rules to be applied in the PoC for each Validation Points. Own work.

 43

Also, Figure 17 helps visualize the range of each validation point’s interval. This graph

demonstrates the overlap and interactions between the intervals of Validation Points 1, 2, and 3,

illustrating how these interactions impact the timing of alerts. This visualization aids in understanding the

sequential dependency and priority among the validation points.

Figure 17: Visual Representation of the Rules for Validation Points 1, 2 and 3

Visual Representation of the Rules for Validation Points 1, 2 and 3

Note: Represent the Rules used to send an alert based on the values of Validation Points 1, 2 and 3. The

left side represent a “No Alert” situation, where the real Event occured before the minimum Next Upper

Bound, then still in the Confidence Interval. The Right side of the figure represent an “Alert” situation. In

this case, no Real Event is received until the first upper bound being reached. In this case, an Alert would

have been send. Own work.

These rules facilitate a layered approach to monitoring and alerting, using the interplay between

sequential validation points to optimize the accuracy and timeliness of alerts. The strategy ensures that

potential disruptions are flagged as soon as deviations from expected timelines are detected, thereby

enabling proactive management of the supply chain.

 44

4 RESULTS

In this chapter, we detail the results derived from applying the Proof of Concept (PoC) to a

practical scenario. This will include an illustrative example to contextualize the outcomes and enumerate

the primary benefits of this project for our sponsor company.

4.1 Example

For demonstrative purposes, we selected a real case involving a shipment from "Location 1,"

which is the most active site in our database. The calculation of the validation points for this specific

location is presented in Table 5.

Table 5: Statistical Informations for “Location 1”
Statistical Informations for “Location 1”

Note: Represent the list of all the newly calculated validation points for “Location 1”. Own work.

Figure 18 provided compare the calculated validation points during the shipment to a dynamically

recalculated baseline, which also serves as our comparison standard. The "Real" section displays the

actual shipment times in minutes. The "Validation Points" section illustrates the historical calculation of

these delays, and the "Recalculated Time" shows the original timestamps sent during planning alongside

the new points recalculated based on the validation point values.

Pickup Event

Tracing the sequence of events from the company's perspective, we observe that the Validation

Point 3 for the Pickup event indicates an on-time pickup as planned by Courier A. Historically, this event

has never been delayed, aligning with sponsor records that often adjust delivery times in their systems to

reflect actual timings, explaining the zero discrepancy. However, an examination of the originally planned

 45

time by the Sponsor reveals a 20-minute delay, not triggering an alert due to the loss of the original

planned time by the courier.

Figure 18: Results from a historical Shipment

Results from a historical Shipment

Note: Represent the calculation done for a real historical process. The first quadrant “Real” show the real

time calculated for each validation points. They are compared to the dynamically calculated validation

points, in the quadrant of the same name. Finally, we show the timestamp considered for each calculation.

Own work.

Tender to Airline Event

For the Tender to Airline event, historical data indicates it typically takes 85 minutes from material

collection to delivery to the airline. However, in this instance, it took 190 minutes, with the event received

two hours later than expected. An alert would have been triggered at the calculated alert time of "2023-

02-20 16:45:00", based on the original Pickup Timestamp due to the absence of event confirmation.

Flight Departure Event

Continuing to the Flight Departure, we analyze:

 46

• Validation 1: Theoretical point from Pickup to Flight Departure is 269 minutes, leading to the

timestamp "2023-02-20 21:49:00".

• Validation 2: Normally, the duration between this and the preceding event is about 185 minutes,

recalculating the timestamp to "2023-02-20 21:35:00".

• Validation 3: Historically, flights on this route are delayed by approximately 25 minutes. Due to

the courier missing the original flight and booking the next available one, the new planned

timestamp is "2023-02-21 07:16:00", with a threshold of "2023-02-21 07:41:00" based on

Validation 3.

The lowest threshold rule specifies using the Validation 2 timestamp "2023-02-20 21:35:00" which

is also superior to the timestamp received from the previous event, as the alert trigger. Unfortunately, in

this process, the flight departed significantly later at "07:26:00" on the 21st.

Flight Arrival Event

For the Flight Arrival event, the delays caused by replanning are evident, with the recalculated

validation points indicating significant deviations from historical norms. If no information had been

received by "2023-02-21 09:55:00", an alert would have been triggered. The actual event was reported at

"09:39:00", thus no alert was issued.

Recovery Event

Proceeding to the Recovery event, the recalculated timestamps for Validation Points 1 and 2 were

set for "2023-02-21 01:36:00" and "2023-02-21 12:57:00", respectively. Since Validation Point 1's

timestamp predates the latest event, Validation Point 2's timestamp is adopted as the new threshold. The

actual event occurred at "2023-02-21 12:30:00", which is 27 minutes prior to our established threshold,

thus no alert was warranted.

Delivery Event

Transitioning to the final Delivery event, the recalculated timestamps for Validation Points 1, 2,

and 3 were "2023-02-21 02:17:00", "2023-02-21 13:11:00", and "2023-02-22 01:05:00". The timestamp

for the last validation point was derived by adding a 65-minute historical upper bound of delays to the

originally planned timestamp of "2023-02-21 00:00:00" by the courier. As the last event received was at

"2023-02-21 12:30:00", the new threshold was established at "2023-02-21 13:11:00". The final event was

recorded at "2023-02-21 13:00:00", 11 minutes before the threshold, hence no alert was issued, and the

 47

product arrived before the adjusted planned time. Additionally, the shipment was delivered precisely at

the time it was replanned during transit, indicating no delay according to Validation Point 4.

Conclusion

Upon reviewing this case with the sponsor company, it was noted that although the company had

been informed of the delays, the notifications were only received post facto. Furthermore, the Key

Performance Indicators (KPIs) used to assess the courier's performance recorded the status as "on-time",

without any noted reason for delay. Despite the shipment ultimately arriving on time, it is recommended

that a field be designated to report any delays during transit, irrespective of their impact on the final

delivery time. This data could be instrumental in future assessments of the reliability of flights departing

from this specific airport, particularly in terms of their punctuality.

In conclusion, this example demonstrates that while several timestamps were adjusted due to the

initial delays, the utilization of various types of validation points—particularly Validation Point 2—enables

effective monitoring and management of shipments. This approach not only accommodates discrepancies

between initially planned and actual event timings but also aids in predicting the receipt of subsequent

timestamps, thereby enhancing control over the shipment process.

4.2 Advantage for the company

Through several example analyses, it became apparent that many shipments, although arriving

on time, experienced unreported delays. The PoC provides significant benefits to the sponsor, including:

• Enhanced Visibility: The sponsor gains improved oversight of ongoing processes through timely

alerts.

• Analytical Opportunities: New data generated allows for detailed analysis of each lane, assessing

the probability of event occurrences.

• Centralized Information: Simplifies investigations into discrepancies.

• Increased Resilience: Better visibility of courier-sent information enhances operational resilience.

5 DISCUSSION

This chapter aims to reflect on the prospective implementation of this solution in a production

environment, acknowledging its current limitations, and to consider the broader implications of the

findings presented.

 48

5.1 Implementation in Production

As previously detailed in "Chapter 2 – State of the Art," the pharmaceutical sector is subject to

stringent regulations, which also govern the integration of systems within companies. All systems

integrations must comply with specific regulatory standards (e.g., CFR Part 21) and adhere to rigorous

internal cybersecurity policies. Consequently, from the project's inception, it was established that

implementation in production was beyond the scope of this project, necessitating collaboration across

various teams and compliance with specialized requirements.

5.2 Current Limitations

Throughout the project, and as underscored in this document, we have encountered significant

limitations concerning both the quantity and quality of data.

5.2.1 Quantity of Data

The primary issues identified regarding data quantity include:

• Total Quantity of Processes/Year: The data pertaining to the number of shipments per year is

relatively sparse, primarily due to the specialized nature of the therapy involved, which is

expensive and not yet broadly adopted. As the prevalence of this therapy increases, it is expected

that the volume of data available for analysis will also grow, providing a more robust dataset.

• Segregation: The project demonstrated a need to segregate data according to various criteria

such as origin, destination, and number of legs, which has significantly increased the data

requirements. For instance, only 10% of origins in the analyzed dataset were considered

statistically significant (with more than 25-30 shipments, as suggested by the Central Limit

Theorem). While additional historical data from the company could be incorporated into this PoC,

it is clear that more granular segregation exponentially increases the volume of data required.

5.2.2 Quality of Data

A critical concern highlighted is the absence of an audit trail for planning data. This deficiency

hinders the PoC's ability to predict future events accurately, as original timestamps are often overwritten

during the process, thereby directly impacting the sponsor's reliance on data integrity. The current

practice of tracking changes through email threads to verify the authenticity of stored data is inadequate.

In some instances within our project, this issue has led to the commingling of altered and authentic data,

 49

affecting the accuracy of calculated validation points. An incorrect validation point could result in an

unnecessarily broad confidence interval when a narrower one might be more appropriate.

Furthermore, the project uncovered discrepancies in the sequence of event data received in some

processes. This issue is currently under investigation in collaboration with one of the couriers to ascertain

whether these discrepancies are systemic or procedural.

5.3 Recommendations

To enhance the functionality of this PoC when implemented in a production setting, it is

recommended to add an "ongoing" status to the current list of statuses. This addition would help track

and analyze processes in real-time, providing a more dynamic and responsive system.

The discussions outlined in this chapter provide a comprehensive understanding of the challenges

faced by the company in terms of data quality and quantity, as well as the quality of service provided by

specialty couriers. These insights are crucial for refining the solution and ensuring its successful integration

into production environments, aligning with regulatory standards and the company's operational needs.

6 CONCLUSION

In the realm of supply chain management, visibility and resilience are paramount, particularly

when the stakes involve patient lives. In such high-stakes environments, 99% accuracy is insufficient; the

pharmaceutical industry strives for absolute perfection. Despite couriers generally delivering shipments

on time, there is a conspicuous deficiency in visibility and resilience throughout the process. This shortfall

undermines confidence in the process and, by extension, the third-party logistics (3PL) providers involved.

This Proof of Concept (PoC) addresses these challenges by recalculating expected delays between

events based on historical data and alerting the sponsor to potential delays as they occur. It has not only

facilitated the sponsor in identifying risks in real-time but has also prompted a review of their processes,

highlighting numerous potential enhancements in both procedures and data recording.

However, the project also underscored the difficulty in amassing sufficient data to accurately

predict these points. Given the highly specialized and low-volume nature of the therapy involved,

accumulating adequate data across all origin locations could take years. This challenge could be mitigated

by a significant increase in demand or by expanding the scope to include other products and extending

the analysis over a longer timeframe.

 50

With an enriched dataset, this PoC could unlock new capabilities, such as integrating real-time

external services to access flight information and status updates. This enhancement would not only

improve the accuracy of future event predictions but also enable the calculation of alternative routing

scenarios. By continuously monitoring and evaluating the current status of shipment routings—taking into

account traffic conditions, weather forecasts, transit times, and flight statuses—the system could

proactively adapt routes in response to changing conditions or unexpected events. Such adaptive routing

strategies could be further refined through the application of advanced machine learning tools, which

leverage historical data to optimize routing decisions dynamically.

Moreover, this situation accentuates the critical need for robust mechanisms such as audit trails,

version histories, or change logs to ensure data integrity and traceability. These tools are essential for

maintaining the accuracy and reliability of the data, which in turn supports the resilience and

responsiveness of the supply chain.

In conclusion, while the PoC has demonstrated significant potential to enhance supply chain

visibility and resilience, its effectiveness is contingent on the availability of comprehensive, high-quality

data. As the project moves forward, expanding the data pool and integrating sophisticated analytical tools

will be crucial in realizing the full potential of this initiative, ensuring that every shipment not only arrives

on time but is also traceably managed every step of the way.

 51

7 REFERENCES

Chen, Y.J., Abila, B., & Kamel, Y.M. (21 January 2023). CAR-T: What Is Next? National Library of Medicine.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9913679/#:~:text=Kymriah%20(tisagenlecleucel)
%20and%20Yescarta%20(,diffuse%20large%20B%2Dcell%20lymphoma

European Medicines Agency (EMA). (2018). First two CAR-T cell medicines recommended for approval in
the European Union. https://www.ema.europa.eu/en/news/first-two-car-t-cell-medicines-
recommended-approval-european-union

European Medicines Agency (EMA). (2021). Interoperability of track and trace systems: key to public
health protection. https://www.ema.europa.eu/en/news/interoperability-track-trace-systems-
key-public-health-protection

Food and Drug Administration (FDA). (2015). Kymriah, Approved Risk Evaluation and Mitigation Strategies
(REMS).
https://www.accessdata.fda.gov/scripts/cder/rems/index.cfm?event=indvremsdetails.page&rems
=368

Food and Drug Administration (FDA). (2015). Yescarta, Approved Risk Evaluation and Mitigation Strategies
(REMS).
https://www.accessdata.fda.gov/scripts/cder/rems/index.cfm?event=IndvRemsDetails.page&RE
MS=375

Gerhkoff, I. (2016). Shaping the future of airline disruption management (IROPS). Amadeus.
https://amadeus.com/documents/en/airlines/white-paper/shaping-the-future-of-airline-
disruption-management.pdf

Hanley, P. J., Bersenev, A., & Gustafson, M. P. (2022). Delivering externally manufactured cell and gene
therapy products to patients: Perspectives from the academic center experience. Cytotherapy,
24(1), 16–18. https://doi.org/10.1016/j.jcyt.2021.09.010

Harrison, R.P., Zylberberg E., Ellison, S., & Levine, B.L. (2019). Chimeric antigen receptor – T cell therapy
manufacturing: modelling the effect of offshore production on aggregate cost of goods.
Cytotherapy, 21, 224-233. https://pubmed.ncbi.nlm.nih.gov/30770285/

Hofman, W. (2014). Control Tower Architecture for Multi – and Synchromodal Logistics with Real Time
Data. LS 2014 – 5th International Conference – Information Systems, Logistics and Supply Chain.
https://www.researchgate.net/publication/274192485_Control_Tower_Architecture_for_Multi_-
_and_Synchromodal_Logistics_with_Real_Time_Data

Jørgensena, J., Hannab, E., & Kefalasa, P. (2020). Outcomes-based reimbursement for gene therapies in
practice: the experience of recently launched CAR-T cell therapies in major European countries.
Journal of Market Access & Health Policy 2020, VOL. 8.
https://doi.org/10.1080/20016689.2020.1715536

Kaiser, A.D., Assenmacher, M., Schröder, B., Meyer, M., Orentas, R., Bethke, U., & Dropulic, B. (2015).
Towards a commercial process for the manufacture of genetically modified T cells for therapy.
Cancer Gene Therapy 22, 72–78. https://www.nature.com/articles/cgt201478

Kumar, B., & Gomez P. (2023). Procurement Control Tower: Proof of Concept through Machine Learning
and Natural Language Processing. [Graduate capstone, Massachusetts Institute of Technology].
Supply Chain Management. http://dspace.mit.edu/handle/1721.1/7582

Levine, B.L., Miskin, J., Wonnacott, K., & Keir, C. (2017). Global manufacturing of CAR T cell therapy.
Molecular Therapy - Methods & Clinical Development, 4, 92–101.
https://doi.org/10.1016/j.omtm.2016.12.006

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9913679/#:~:text=Kymriah%20(tisagenlecleucel)%20and%20Yescarta%20(,diffuse%20large%20B%2Dcell%20lymphoma
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9913679/#:~:text=Kymriah%20(tisagenlecleucel)%20and%20Yescarta%20(,diffuse%20large%20B%2Dcell%20lymphoma
https://www.ema.europa.eu/en/news/first-two-car-t-cell-medicines-recommended-approval-european-union
https://www.ema.europa.eu/en/news/first-two-car-t-cell-medicines-recommended-approval-european-union
https://www.ema.europa.eu/en/news/interoperability-track-trace-systems-key-public-health-protection
https://www.ema.europa.eu/en/news/interoperability-track-trace-systems-key-public-health-protection
https://www.accessdata.fda.gov/scripts/cder/rems/index.cfm?event=indvremsdetails.page&rems=368
https://www.accessdata.fda.gov/scripts/cder/rems/index.cfm?event=indvremsdetails.page&rems=368
https://www.accessdata.fda.gov/scripts/cder/rems/index.cfm?event=IndvRemsDetails.page&REMS=375
https://www.accessdata.fda.gov/scripts/cder/rems/index.cfm?event=IndvRemsDetails.page&REMS=375
https://amadeus.com/documents/en/airlines/white-paper/shaping-the-future-of-airline-disruption-management.pdf
https://amadeus.com/documents/en/airlines/white-paper/shaping-the-future-of-airline-disruption-management.pdf
https://doi.org/10.1016/j.jcyt.2021.09.010
https://pubmed.ncbi.nlm.nih.gov/30770285/
https://www.researchgate.net/publication/274192485_Control_Tower_Architecture_for_Multi_-_and_Synchromodal_Logistics_with_Real_Time_Data
https://www.researchgate.net/publication/274192485_Control_Tower_Architecture_for_Multi_-_and_Synchromodal_Logistics_with_Real_Time_Data
https://doi.org/10.1080/20016689.2020.1715536
https://www.nature.com/articles/cgt201478
http://dspace.mit.edu/handle/1721.1/7582
https://doi.org/10.1016/j.omtm.2016.12.006

 52

Meacle, F., Salkin, J., Rice, M., & Harris, I. (2016). Key considerations of cell and gene therapy cold chain
logistics. Cell and Gene Therapy Insights, 2(2), 223–236. https://doi.org/10.18609/cgti.2016.025

Patil, S. (2020). Supply chain control tower: orchestrate and drive visibility and valuable automated
insights. Deloitte consulting. Supply Chain Control Tower | Deloitte US.
https://www2.deloitte.com/content/dam/Deloitte/us/Documents/process-and-operations/us-
supply-chain-control-tower-orchestrate-and-drive-visibility-and-valuable-automated-insights.pdf

Papathanasiou, M.M., Stamatis, C., Lakelin, M., Farid, S., & Titchener-Hooker, N. (2020). Autologous CAR
T-cell therapies supply chain: challenges and opportunities? Cancer Gene Therapy 27, 799–809.
https://www.nature.com/articles/s41417-019-0157-z

Rutherford, C., Barry, J., Campbell, J., & Turner, M. (2017). The Importance of Understanding & Designing
Cellular Therapy Supply Chains. Cell and Gene Therapy Insights, 3(10), 873-889.
https://doi.org/10.18609/cgti.2017.087

Shah, N. (2004). Pharmaceutical supply chains: key issues and strategies for optimisation. Computers &
chemical engineering. 28(6-7) 929–941. https://www.sciencedirect.com/science/article/-
pii/S0098135403002333?via%3Dihub

Shekarian, M., & Mellat Parast, M. (2021). An Integrative approach to supply chain disruption risk and
resilience management: A literature review. International Journal of Logistics Research and
Applications, 24(5), 427–455. https://doi.org/10.1080/13675567.2020.1763935

Teng, C.W., Foley, L., O'Neill, P., & Hicks, C. (2013). An analysis of supply chain strategies in the
regenerative medicine industry - Implications for future development. International Journal of
Production Economics, 149, 211-225. https://www.sciencedirect.com/science/article/-
pii/S0925527313002752

U.S. Department of Health and Human Services, Food and Drug Administration (FDA), Center for Drug
Evaluation and Research (CDER), Center for Biologics Evaluation and Research (CBER) & Office of
Regulatory Affairs (ORA). (2022). Verification Systems Under the Drug Supply Chain Security Act for
Certain Prescription Drugs. https://www.fda.gov/regulatory-information/search-fda-guidance-
documents/verification-systems-under-drug-supply-chain-security-act-certain-prescription-drugs

Yang, X. (2006). Choosing Transportation Alternatives for Highly Perishable Goods: A Case Study on
Nuclear Medicine. [Graduate theses, Massachusetts Institute of Technology]. Engineering Systems
Division. http://dspace.mit.edu/handle/1721.1/7582

https://doi.org/10.18609/cgti.2016.025
https://www2.deloitte.com/content/dam/Deloitte/us/Documents/process-and-operations/us-supply-chain-control-tower-orchestrate-and-drive-visibility-and-valuable-automated-insights.pdf
https://www2.deloitte.com/content/dam/Deloitte/us/Documents/process-and-operations/us-supply-chain-control-tower-orchestrate-and-drive-visibility-and-valuable-automated-insights.pdf
https://www.nature.com/articles/s41417-019-0157-z
https://doi.org/10.18609/cgti.2017.087
https://www.sciencedirect.com/science/article/-pii/S0098135403002333?via%3Dihub
https://www.sciencedirect.com/science/article/-pii/S0098135403002333?via%3Dihub
https://doi.org/10.1080/13675567.2020.1763935
https://www.sciencedirect.com/science/article/-pii/S0925527313002752
https://www.sciencedirect.com/science/article/-pii/S0925527313002752
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/verification-systems-under-drug-supply-chain-security-act-certain-prescription-drugs
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/verification-systems-under-drug-supply-chain-security-act-certain-prescription-drugs
http://dspace.mit.edu/handle/1721.1/7582

 53

8 APPENDIX A

8.1 Creation of the Tables

Define the DIM_Site Table

class DIM_Site(Base):

 __tablename__ = "DIM_Site"

 Site_account_ID = Column("Site_account_ID", String, primary_key = True)

 Site_name = Column("Site_name", String)

 Site_account_record_type = Column("Site_account_record_type", String)

 Site_address = Column("Site_address", String)

 Site_city = Column("Site_city", String)

 Site_state = Column("Site_state", String)

 Site_country = Column("Site_country", String)

 Site_region = Column("Site_region", String)

 Site_zip = Column("Site_zip", String)

 Site_account_time_zone = Column("Site_account_time_zone", String)

 Site_category = Column("Site_category", String)

 Site_global_ID = Column("Site_global_ID", Integer)

 Site_group_ID = Column("Site_group_ID", String)

 Site_hashed_ID = Column("Site_hashed_ID", String)

 Site_latitude = Column("Site_latitude", String)

 Site_longitude = Column("Site_longitude", String)

 def __init__(self, Site_account_ID, Site_name, Site_account_record_type, Site_address,

Site_city, Site_state, Site_country, Site_region, Site_zip, Site_account_time_zone,

Site_category, Site_global_ID, Site_group_ID, Site_hashed_ID, Site_latitude, Site_longitude):

 self.Site_account_ID = Site_account_ID

 self.Site_name = Site_name

 self.Site_account_record_type = Site_account_record_type

 self.Site_address = Site_address

 self.Site_city = Site_city

 self.Site_state = Site_state

 self.Site_country = Site_country

 self.Site_region = Site_region

 self.Site_zip = Site_zip

 self.Site_account_time_zone = Site_account_time_zone

 self.Site_category = Site_category

 self.Site_global_ID = Site_global_ID

 self.Site_group_ID = Site_group_ID

 self.Site_hashed_ID = Site_hashed_ID

 self.Site_latitude = Site_latitude

 self.Site_longitude = Site_longitude

 54

Define the DIM_Product Table

class DIM_Product(Base):

 __tablename__ = "DIM_Product"

 Product_ID = Column("Product_ID", String, primary_key = True)

 Protocol = Column("Protocol", String)

 Product_step_type = Column("Product_step_type", String)

 Product_weight = Column("Product_weight", Integer)

 Product_weightUnits = Column("Product_weightUnits", String)

 Product_storage_temperature = Column("Product_storage_temperature", String)

 Product_storage_condition = Column("Product_storage_condition", String)

 def __init__(self, Product_ID, Protocol, Product_step_type, Product_weight,

Product_weightUnits, Product_storage_temperature, Product_storage_condition):

 self.Product_ID = Product_ID

 self.Protocol = Protocol

 self.Product_step_type = Product_step_type

 self.Product_weight = Product_weight

 self.Product_weightUnits = Product_weightUnits

 self.Product_storage_temperature = Product_storage_temperature

 self.Product_storage_condition = Product_storage_condition

Define the DIM_Packaging Table

class DIM_Packaging(Base):

 __tablename__ = "DIM_Packaging"

 Packaging_ID = Column("Packaging_ID", String, primary_key = True)

 Packaging_name = Column("Packaging_name", String)

 Packaging_empty_weight = Column("Packaging_empty_weight", Integer)

 Packaging_weightUnits = Column("Packaging_weightUnits", String)

 Packaging_storage_temperature = Column("Packaging_storage_temperature", String)

 Packaging_temp_expiry = Column("Packaging_temp_expiry", String)

 Packaging_tempUnits = Column("Packaging_tempUnits", String)

 def __init__(self, Packaging_ID, Packaging_name, Packaging_empty_weight,

Packaging_weightUnits, Packaging_storage_temperature, Packaging_temp_expiry,

Packaging_tempUnits):

 self.Packaging_ID = Packaging_ID

 self.Packaging_name = Packaging_name

 self.Packaging_empty_weight = Packaging_empty_weight

 self.Packaging_weightUnits = Packaging_weightUnits

 self.Packaging_storage_temperature = Packaging_storage_temperature

 self.Packaging_temp_expiry = Packaging_temp_expiry

 self.Packaging_tempUnits = Packaging_tempUnits

Define the FACT_Shipment_Baseline Table (Table created by the Sponsor Company for the Courier)

class FACT_Shipment_Baseline(Base):

 __tablename__ = "FACT_Shipment_Baseline"

 55

 Join_ID = Column("Join_ID", String, primary_key = True)

 Product_ID = Column("Product_ID", String, ForeignKey("DIM_Product.Product_ID"))

 Protocol = Column("Protocol", String, ForeignKey("DIM_Product.Protocol"))

 Product_step_type = Column("Product_step_type", String,

ForeignKey("DIM_Product.Product_step_type"))

 Packaging_ID = Column("Packaging_ID", String, ForeignKey("DIM_Packaging.Packaging_ID"))

 Packaging_name = Column("Packaging_name", String, ForeignKey("DIM_Packaging.Packaging_name"))

 Origin_site_ID = Column("Origin_site_ID", String, ForeignKey("DIM_Site.Site_account_ID"))

 Origin_site_name = Column("Origin_site_name", String, ForeignKey("DIM_Site.Site_name"))

 Origin_site_account_record_type = Column("Origin_site_account_record_type", String,

ForeignKey("DIM_Site.Site_account_record_type"))

 Origin_site_account_time_zone = Column("Origin_site_account_time_zone", String,

ForeignKey("DIM_Site.Site_account_time_zone"))

 Destination_site_ID = Column("Destination_site_ID", String,

ForeignKey("DIM_Site.Site_account_ID"))

 Destination_site_name = Column("Destination_site_name", String,

ForeignKey("DIM_Site.Site_name"))

 Destination_site_account_record_type = Column("Destination_site_account_record_type", String,

ForeignKey("DIM_Site.Site_account_record_type"))

 Destination_site_account_time_zone = Column("o Destination_site_account_time_zone ", String,

ForeignKey("DIM_Site.Site_account_time_zone"))

 Collection_appointment_tz = Column("Collection_appointment_tz", DateTime)

 Planned_collection_end_tz = Column("Planned_collection_end_tz", DateTime)

 Collection_expiry_tz_planned = Column("Collection_expiry_tz_planned", DateTime)

 Collection_delivery_tz_planned = Column("Collection_delivery_tz_planned", DateTime)

 Collection_pickup_tz_planned = Column("Collection_pickup_tz_planned", DateTime)

 def __init__(self, Join_ID, Product_ID, Protocol, Product_step_type, Packaging_ID,

Packaging_name, Origin_site_ID, Origin_site_name, Origin_site_account_record_type,

Origin_site_account_time_zone, Destination_site_ID, Destination_site_name,

Destination_site_account_record_type, Destination_site_account_time_zone,

Collection_appointment_tz, Planned_collection_end_tz, Collection_expiry_tz_planned,

Collection_delivery_tz_planned, Collection_pickup_tz_planned):

 self.Join_ID = Join_ID

 self.Product_ID = Product_ID

 self.Protocol = Protocol

 self.Product_step_type = Product_step_type

 self.Packaging_ID = Packaging_ID

 self.Packaging_name = Packaging_name

 self.Origin_site_ID = Origin_site_ID

 self.Origin_site_name = Origin_site_name

 self.Origin_site_account_record_type = Origin_site_account_record_type

 self.Origin_site_account_time_zone = Origin_site_account_time_zone

 self.Destination_site_ID = Destination_site_ID

 self.Destination_site_name = Destination_site_name

 self.Destination_site_account_record_type = Destination_site_account_record_type

 56

 self.Destination_site_account_time_zone = Destination_site_account_time_zone

 self.Collection_appointment_tz = Collection_appointment_tz

 self.Planned_collection_end_tz = Planned_collection_end_tz

 self.Collection_expiry_tz_planned = Collection_expiry_tz_planned

 self.Collection_delivery_tz_planned = Collection_delivery_tz_planned

 self.Collection_pickup_tz_planned = Collection_pickup_tz_planned

Define the FACT_Segments_Planned Table

class FACT_Segments_Planned(Base):

 __tablename__ = "FACT_Segments_Planned"

 idx = Column('idx', Integer, primary_key=True, autoincrement=True)

 Join_ID = Column("Join_ID", String, ForeignKey("FACT_Shipment_Baseline.Join_ID"))

 Ref_hawb = Column("Ref_hawb", String)

 Ref_mawb = Column("Ref_mawb", String)

 Product_step_type = Column("Product_step_type", String,

ForeignKey("DIM_Product.Product_step_type"))

 Quantity_of_Legs = Column("Quantity_of_Legs", String)

 Merge_ID = Column("Merge_ID", String)

 Status = Column("Status", String)

 Detail_weight = Column("Detail_weight", String)

 Detail_weightUnits = Column("Detail_weightUnits", String)

 Detail_quantity = Column("Detail_quantity", String)

 Detail_quantityUnits = Column("Detail_quantityUnits", String)

 Detail_packageDescription = Column("Detail_packageDescription", String)

 Origin_consigneeName_pickups = Column("Origin_consigneeName_pickups", String,

ForeignKey("DIM_Site.Site_account_ID"))

 Origin_SiteType_pickups = Column("Origin_SiteType_pickups", String,

ForeignKey("DIM_Site.Site_account_record_type"))

 Origin_zip_pickups = Column("Origin_zip_pickups", String, ForeignKey("DIM_Site.Site_zip"))

 Origin_city_pickups = Column("Origin_city_pickups", String, ForeignKey("DIM_Site.Site_city"))

 Origin_country_pickups = Column("Origin_country_pickups", String,

ForeignKey("DIM_Site.Site_country"))

 Segments_deliveryType = Column("Segments_deliveryType", String)

 Segments_flightNumber = Column("Segments_flightNumber", String)

 Segments_trailerNumber = Column("Segments_trailerNumber", String)

 Segments_localAgreedDateTime_pickups = Column("Segments_localAgreedDateTime_pickups",

DateTime)

 Segments_addressAndContacts_locationName_pickups =

Column("Segments_addressAndContacts_locationName_pickups", String)

 Segments_localAgreedDateTime_deliveries = Column("Segments_localAgreedDateTime_deliveries",

DateTime)

 Segments_addressAndContacts_locationName_deliveries =

Column("Segments_addressAndContacts_locationName_deliveries", String)

 57

 Segments_addressAndContacts_consigneeName_deliveries =

Column("Segments_addressAndContacts_consigneeName_deliveries", String,

ForeignKey("DIM_Site.Site_account_ID"))

 Segments_addressAndContacts_SiteType_deliveries =

Column("Segments_addressAndContacts_SiteType_deliveries", String,

ForeignKey("DIM_Site.Site_account_record_type"))

 Segments_addressAndContacts_zip_deliveries =

Column("Segments_addressAndContacts_zip_deliveries", String, ForeignKey("DIM_Site.Site_zip"))

 Segments_addressAndContacts_city_deliveries =

Column("Segments_addressAndContacts_city_deliveries", String, ForeignKey("DIM_Site.Site_city"))

 Segments_addressAndContacts_country_deliveries =

Column("Segments_addressAndContacts_country_deliveries", String,

ForeignKey("DIM_Site.Site_country"))

 def __init__(self, Join_ID, Ref_hawb, Ref_mawb, Product_step_type, Quantity_of_Legs,

Merge_ID, Status, Detail_weight, Detail_weightUnits, Detail_quantity,

 Detail_quantityUnits, Detail_packageDescription, Origin_consigneeName_pickups,

Origin_SiteType_pickups, Origin_zip_pickups, Origin_city_pickups, Origin_country_pickups,

 Segments_deliveryType, Segments_flightNumber, Segments_trailerNumber,

Segments_localAgreedDateTime_pickups, Segments_addressAndContacts_locationName_pickups,

Segments_localAgreedDateTime_deliveries,

 Segments_addressAndContacts_locationName_deliveries,

Segments_addressAndContacts_consigneeName_deliveries,

Segments_addressAndContacts_SiteType_deliveries, Segments_addressAndContacts_zip_deliveries,

 Segments_addressAndContacts_city_deliveries,

Segments_addressAndContacts_country_deliveries):

 self.Join_ID = Join_ID

 self.Ref_hawb = Ref_hawb

 self.Ref_mawb = Ref_mawb

 self.Product_step_type = Product_step_type

 self.Quantity_of_Legs = Quantity_of_Legs

 self.Merge_ID = Merge_ID

 self.Status = Status

 self.Detail_weight = Detail_weight

 self.Detail_weightUnits = Detail_weightUnits

 self.Detail_quantity = Detail_quantity

 self.Detail_quantityUnits = Detail_quantityUnits

 self.Detail_packageDescription = Detail_packageDescription

 self.Origin_consigneeName_pickups = Origin_consigneeName_pickups

 self.Origin_SiteType_pickups = Origin_SiteType_pickups

 self.Origin_zip_pickups = Origin_zip_pickups

 self.Origin_city_pickups = Origin_city_pickups

 self.Origin_country_pickups = Origin_country_pickups

 self.Segments_deliveryType = Segments_deliveryType

 self.Segments_flightNumber = Segments_flightNumber

 self.Segments_trailerNumber = Segments_trailerNumber

 58

 self.Segments_localAgreedDateTime_pickups = Segments_localAgreedDateTime_pickups

 self.Segments_addressAndContacts_locationName_pickups =

Segments_addressAndContacts_locationName_pickups

 self.Segments_localAgreedDateTime_deliveries = Segments_localAgreedDateTime_deliveries

 self.Segments_addressAndContacts_locationName_deliveries =

Segments_addressAndContacts_locationName_deliveries

 self.Segments_addressAndContacts_consigneeName_deliveries =

Segments_addressAndContacts_consigneeName_deliveries

 self.Segments_addressAndContacts_SiteType_deliveries =

Segments_addressAndContacts_SiteType_deliveries

 self.Segments_addressAndContacts_zip_deliveries =

Segments_addressAndContacts_zip_deliveries

 self.Segments_addressAndContacts_city_deliveries =

Segments_addressAndContacts_city_deliveries

 self.Segments_addressAndContacts_country_deliveries =

Segments_addressAndContacts_country_deliveries

Define the FACT_Event Table

class FACT_Event(Base):

 __tablename__ = "FACT_Event"

 idx = Column('idx', Integer, primary_key=True, autoincrement=True)

 Join_ID = Column("Join_ID", String, ForeignKey("FACT_Shipment_Baseline.Join_ID"))

 Product_step_type = Column("Product_step_type", String,

ForeignKey("DIM_Product.Product_step_type"))

 Merge_ID = Column("Merge_ID", String, ForeignKey("FACT_Segments_Planned.Merge_ID"))

 Event_location = Column("Event_location", String)

 Event_desc = Column("Event_desc", String)

 Event_timestamp = Column("Event_timestamp", DateTime)

 def __init__(self, Join_ID, Product_step_type, Merge_ID, Event_location, Event_desc,

Event_timestamp):

 self.Join_ID = Join_ID

 self.Product_step_type = Product_step_type

 self.Merge_ID = Merge_ID

 self.Event_location = Event_location

 self.Event_desc = Event_desc

 self.Event_timestamp = Event_timestamp

Define the FACT_Alert_calculation_validation1_2 table

class FACT_Alert_calculation_validation1_2 (Base):

 __tablename__ = 'FACT_Alert_calculation_validation1_2'

 id = Column(Integer, primary_key=True)

 Merge_ID = Column(String)

 Status = Column("Status", String, ForeignKey("FACT_Segments_Planned.Status"))

 Origin_city_pickups = Column("Origin_city_pickups", String,

ForeignKey("FACT_Segments_Planned.Origin_city_pickups"))

 59

 TenderEvent_Validation_1 = Column(Integer)

 FlightDepartureEvent_Validation_1 = Column(Integer)

 FlightArrivalEvent_Validation_1 = Column(Integer)

 RecoveryEvent_Validation_1 = Column(Integer)

 DeliveryEvent_Validation_1 = Column(Integer)

 DeltaFDtoTender_Validation_2 = Column(Integer)

 DeltaFAtoFD_Validation_2 = Column(Integer)

 DeltaRecoverytoFA_Validation_2 = Column(Integer)

 DeltaDeliverytoRecovery_Validation_2 = Column(Integer)

 def __init__(self, Merge_ID, Status, Origin_city_pickups, TenderEvent_Validation_1,

FlightDepartureEvent_Validation_1, FlightArrivalEvent_Validation_1, RecoveryEvent_Validation_1,

DeliveryEvent_Validation_1,

 DeltaFDtoTender_Validation_2, DeltaFAtoFD_Validation_2,

DeltaRecoverytoFA_Validation_2, DeltaDeliverytoRecovery_Validation_2):

 self.Merge_ID = Merge_ID

 self.Status = Status

 self.Origin_city_pickups = Origin_city_pickups

 self.TenderEvent_Validation_1 = TenderEvent_Validation_1

 self.FlightDepartureEvent_Validation_1 = FlightDepartureEvent_Validation_1

 self.FlightArrivalEvent_Validation_1 = FlightArrivalEvent_Validation_1

 self.RecoveryEvent_Validation_1 = RecoveryEvent_Validation_1

 self.DeliveryEvent_Validation_1 = DeliveryEvent_Validation_1

 self.DeltaFDtoTender_Validation_2 = DeltaFDtoTender_Validation_2

 self.DeltaFAtoFD_Validation_2 = DeltaFAtoFD_Validation_2

 self.DeltaRecoverytoFA_Validation_2 = DeltaRecoverytoFA_Validation_2

 self.DeltaDeliverytoRecovery_Validation_2 = DeltaDeliverytoRecovery_Validation_2

Define the FACT_Alert_calculation_validation3 table

class FACT_Alert_calculation_validation3 (Base):

 __tablename__ = 'FACT_Alert_calculation_validation3'

 id = Column(Integer, primary_key=True)

 Merge_ID = Column(String)

 Status = Column("Status", String, ForeignKey("FACT_Segments_Planned.Status"))

 Origin_city_pickups = Column("Origin_city_pickups", String,

ForeignKey("FACT_Segments_Planned.Origin_city_pickups"))

 PickupEvent_Validation_3 = Column(Integer)

 FDEvent_Validation_3 = Column(Integer)

 FAEvent_Validation_3 = Column(Integer)

 DeliveryEvent_Validation_3 = Column(Integer)

 def __init__(self, Merge_ID, Status, Origin_city_pickups, PickupEvent_Validation_3,

FDEvent_Validation_3, FAEvent_Validation_3, DeliveryEvent_Validation_3):

 self.Merge_ID = Merge_ID

 self.Status = Status

 self.Origin_city_pickups = Origin_city_pickups

 self.PickupEvent_Validation_3 = PickupEvent_Validation_3

 60

 self.FDEvent_Validation_3 = FDEvent_Validation_3

 self.FAEvent_Validation_3 = FAEvent_Validation_3

 self.DeliveryEvent_Validation_3 = DeliveryEvent_Validation_3

Define the FACT_Alert_calculation_validation4 table

class FACT_Alert_calculation_validation4 (Base):

 __tablename__ = 'FACT_Alert_calculation_validation4'

 id = Column(Integer, primary_key=True)

 Join_ID = Column(String)

 Product_step_type = Column("Product_step_type", String,

ForeignKey("DIM_Product.Product_step_type"))

 PickupEvent_Validation_4 = Column(Integer)

 DeliveryEvent_Validation_4 = Column(Integer)

 def __init__(self, Join_ID, Product_step_type, PickupEvent_Validation_4,

DeliveryEvent_Validation_4):

 self.Join_ID = Join_ID

 self.Product_step_type = Product_step_type

 self.PickupEvent_Validation_4 = PickupEvent_Validation_4

 self.DeliveryEvent_Validation_4 = DeliveryEvent_Validation_4

8.2 Calculate Event Calculation

8.2.1 Validation 1

Functions to calculate TenderEvent_Validation_1

def Tender_Validation_1(session, Merge_ID):

 try:

 # Query to retrieve event timestamp from FACT_Event table

 event_tender_confirmed = session.query(FACT_Event.Event_timestamp)\

 .filter(FACT_Event.Merge_ID == Merge_ID)\

 .filter(FACT_Event.Event_desc == 'Tendered to Airline')\

 .scalar()

 # Query to retrieve Collection_pickup_tz_planned from FACT_Segments_Planned table

 event_tender_planned = session.query(FACT_Event.Event_timestamp)\

 .filter(FACT_Event.Merge_ID == Merge_ID)\

 .filter(FACT_Event.Event_desc == 'Pickup Confirmed')\

 .scalar()

 # Perform calculation if both values are not None

 if event_tender_confirmed is not None and event_tender_planned is not None:

 Tender_Validation_1 = (event_tender_confirmed - event_tender_planned).total_seconds()

 else:

 Tender_Validation_1 = None

 61

 return Tender_Validation_1

Functions to calculate FlightDepartureEvent_Validation_1

def FlightDeparture_Validation_1(session, Merge_ID):

 try:

 # Query to retrieve event timestamp from FACT_Event table

 event_FlightDeparture_confirmed = session.query(FACT_Event.Event_timestamp)\

 .filter(FACT_Event.Merge_ID == Merge_ID)\

 .filter(FACT_Event.Event_desc == 'Flight Departed')\

 .scalar()

 # Query to retrieve Collection_pickup_tz_planned from FACT_Segments_Planned table

 event_tender_planned = session.query(FACT_Event.Event_timestamp)\

 .filter(FACT_Event.Merge_ID == Merge_ID)\

 .filter(FACT_Event.Event_desc == 'Pickup Confirmed')\

 .scalar()

 # Perform calculation if both values are not None

 if event_FlightDeparture_confirmed is not None and event_tender_planned is not None:

 FlightDeparture_Validation_1 = (event_FlightDeparture_confirmed -

event_tender_planned).total_seconds()

 else:

 FlightDeparture_Validation_1 = None

 return FlightDeparture_Validation_1

Functions to calculate FlightArrivalEvent_validation1

def FlightArrival_Validation_1(session, Merge_ID):

 try:

 # Query to retrieve event timestamp from FACT_Event table

 event_FlightArrival_confirmed = session.query(FACT_Event.Event_timestamp)\

 .filter(FACT_Event.Merge_ID == Merge_ID)\

 .filter(FACT_Event.Event_desc == 'Flight Arrived')\

 .scalar()

 # Query to retrieve Collection_pickup_tz_planned from FACT_Segments_Planned table

 event_tender_planned = session.query(FACT_Event.Event_timestamp)\

 .filter(FACT_Event.Merge_ID == Merge_ID)\

 .filter(FACT_Event.Event_desc == 'Pickup Confirmed')\

 .scalar()

 # Perform calculation if both values are not None

 if event_FlightArrival_confirmed is not None and event_tender_planned is not None:

 FlightArrival_Validation_1 = (event_FlightArrival_confirmed -

event_tender_planned).total_seconds()

 else:

 FlightArrival_Validation_1 = None

 return FlightArrival_Validation_1

 62

Functions to calculate RecoveryEvent_Validation_1

def Recovery_Validation_1(session, Merge_ID):

 try:

 # Query to retrieve event timestamp from FACT_Event table

 event_Recovery_confirmed = session.query(FACT_Event.Event_timestamp)\

 .filter(FACT_Event.Merge_ID == Merge_ID)\

 .filter(FACT_Event.Event_desc == 'Retrieved from Airline')\

 .scalar()

 # Query to retrieve Collection_pickup_tz_planned from FACT_Segments_Planned table

 event_tender_planned = session.query(FACT_Event.Event_timestamp)\

 .filter(FACT_Event.Merge_ID == Merge_ID)\

 .filter(FACT_Event.Event_desc == 'Pickup Confirmed')\

 .scalar()

 # Perform calculation if both values are not None

 if event_Recovery_confirmed is not None and event_tender_planned is not None:

 Recovery_Validation_1 = (event_Recovery_confirmed -

event_tender_planned).total_seconds()

 else:

 Recovery_Validation_1 = None

 return Recovery_Validation_1

Functions to calculate DeliveryEvent_Validation_1

def Delivery_Validation_1(session, Merge_ID):

 try:

 # Query to retrieve event timestamp from FACT_Event table

 event_Delivery_confirmed = session.query(FACT_Event.Event_timestamp)\

 .filter(FACT_Event.Merge_ID == Merge_ID)\

 .filter(FACT_Event.Event_desc == 'Delivered')\

 .scalar()

 # Query to retrieve Collection_pickup_tz_planned from FACT_Segments_Planned table

 event_tender_planned = session.query(FACT_Event.Event_timestamp)\

 .filter(FACT_Event.Merge_ID == Merge_ID)\

 .filter(FACT_Event.Event_desc == 'Pickup Confirmed')\

 .scalar()

 # Perform calculation if both values are not None

 if event_Delivery_confirmed is not None and event_tender_planned is not None:

 Delivery_Validation_1 = (event_Delivery_confirmed -

event_tender_planned).total_seconds()

 else:

 Delivery_Validation_1 = None

 return Delivery_Validation_1

 63

8.2.2 Validation 3

Functions to calculate PickupEvent_Validation_3

def pickup_event_validation_3(session, Merge_ID,

Segments_addressAndContacts_locationName_pickups):

 try:

 # Ensure Merge_ID ends with '_3'

 if not Merge_ID.endswith('_3'):

 return None

 # Query to retrieve event timestamp from FACT_Event table

 event_pickup_confirmed = session.query(FACT_Event.Event_timestamp)\

 .filter(FACT_Event.Merge_ID == Merge_ID)\

 .filter(FACT_Event.Event_desc == 'Pickup Confirmed')\

 .scalar()

 # Query to retrieve Collection_pickup_tz_planned from FACT_Segments_Planned table

 shipment_planned_pickup =

session.query(FACT_Segments_Planned.Segments_localAgreedDateTime_pickups)\

 .filter(FACT_Segments_Planned.Merge_ID == Merge_ID)\

 .filter(FACT_Segments_Planned.Segments_addressAndContacts_locationName_pickups.is_(No

ne))\

 .scalar()

 # Perform calculation if both values are not None

 if event_pickup_confirmed is not None and shipment_planned_pickup is not None:

 pickup_event_validation_3 = (event_pickup_confirmed -

shipment_planned_pickup).total_seconds()

 else:

 pickup_event_validation_3 = None

 return pickup_event_validation_3

Functions to calculate FDEvent_Validation_3

def FD_event_validation_3(session, Merge_ID, Segments_addressAndContacts_locationName_pickups):

 try:

 # Ensure Merge_ID ends with '_3'

 if not Merge_ID.endswith('_3'):

 return None

 # Query to retrieve event timestamp from FACT_Event table

 event_FD_confirmed = session.query(FACT_Event.Event_timestamp)\

 .filter(FACT_Event.Merge_ID == Merge_ID)\

 .filter(FACT_Event.Event_desc == 'Flight Departed')\

 .scalar()

 # Query to retrieve Collection_pickup_tz_planned from FACT_Segments_Planned table

 shipment_planned_FD =

session.query(FACT_Segments_Planned.Segments_localAgreedDateTime_pickups)\

 .filter(FACT_Segments_Planned.Merge_ID == Merge_ID)\

 64

 .filter(FACT_Segments_Planned.Segments_deliveryType == 'air')\

 .scalar()

 # Perform calculation if both values are not None

 if event_FD_confirmed is not None and shipment_planned_FD is not None:

 FD_event_validation_3 = (event_FD_confirmed - shipment_planned_FD).total_seconds()

 else:

 FD_event_validation_3 = None

 return FD_event_validation_3

Functions to calculate FAEvent_Validation_3

def FA_event_validation_3(session, Merge_ID,

Segments_addressAndContacts_locationName_deliveries):

 try:

 # Ensure Merge_ID ends with '_3'

 if not Merge_ID.endswith('_3'):

 return None

 # Query to retrieve event timestamp from FACT_Event table

 event_FA_confirmed = session.query(FACT_Event.Event_timestamp)\

 .filter(FACT_Event.Merge_ID == Merge_ID)\

 .filter(FACT_Event.Event_desc == 'Flight Arrived')\

 .scalar()

 # Query to retrieve Collection_pickup_tz_planned from FACT_Segments_Planned table

 shipment_planned_FA =

session.query(FACT_Segments_Planned.Segments_localAgreedDateTime_deliveries)\

 .filter(FACT_Segments_Planned.Merge_ID == Merge_ID)\

 .filter(FACT_Segments_Planned.Segments_deliveryType == 'air')\

 .scalar()

 # Perform calculation if both values are not None

 if event_FA_confirmed is not None and shipment_planned_FA is not None:

 FA_event_validation_3 = (event_FA_confirmed - shipment_planned_FA).total_seconds()

 else:

 FA_event_validation_3 = None

 return FA_event_validation_3

Functions to calculate DeliveryEvent_Validation_3

def delivery_event_validation_3(session, Merge_ID,

Segments_addressAndContacts_locationName_deliveries):

 try:

 # Ensure Merge_ID ends with '_3'

 if not Merge_ID.endswith('_3'):

 return None

 # Query to retrieve event timestamp from FACT_Event table

 event_delivery_confirmed = session.query(FACT_Event.Event_timestamp)\

 .filter(FACT_Event.Merge_ID == Merge_ID)\

 .filter(FACT_Event.Event_desc == 'Delivered')\

 65

 .scalar()

 # Query to retrieve Collection_pickup_tz_planned from FACT_Segments_Planned table

 shipment_planned_delivery =

session.query(FACT_Segments_Planned.Segments_localAgreedDateTime_deliveries)\

 .filter(FACT_Segments_Planned.Merge_ID == Merge_ID)\

 .filter(FACT_Segments_Planned.Segments_addressAndContacts_locationName_deliveries.is_

(None))\

 .scalar()

 # Perform calculation if both values are not None

 if event_delivery_confirmed is not None and shipment_planned_delivery is not None:

 delivery_event_validation_3 = (event_delivery_confirmed -

shipment_planned_delivery).total_seconds()

 else:

 delivery_event_validation_3 = None

 return delivery_event_validation_3

8.2.3 Validation 4

Functions to calculate PickupEvent_Validation_4

def pickup_event_validation_4(session, Join_ID, Product_step_type):

 try:

 # Query to retrieve event timestamp from FACT_Event table

 event_pickup_confirmed = session.query(FACT_Event.Event_timestamp)\

 .filter(FACT_Event.Join_ID == Join_ID)\

 .filter(FACT_Event.Product_step_type == Product_step_type)\

 .filter(FACT_Event.Event_desc == 'Pickup Confirmed')\

 .scalar()

 # Query to retrieve Collection_pickup_tz_planned from FACT_Shipment_Baseline table

 baseline_collection_pickup_tz_planned =

session.query(FACT_Shipment_Baseline.Collection_pickup_tz_planned)\

 .filter(FACT_Shipment_Baseline.Join_ID == Join_ID)\

 .filter(FACT_Shipment_Baseline.Product_step_type == Product_step_type)\

 .scalar()

 # Perform calculation if both values are not None

 if event_pickup_confirmed is not None and baseline_collection_pickup_tz_planned is not

None:

 pickup_event_validation_4_result = (event_pickup_confirmed -

baseline_collection_pickup_tz_planned).total_seconds()

 else:

 pickup_event_validation_4_result = None

 return pickup_event_validation_4_result

 66

Functions to calculate DeliveryEvent_Validation_4

def delivery_event_validation_4(session, Join_ID, Product_step_type):

 try:

 # Query to retrieve event timestamp from FACT_Event table

 event_delivery_confirmed = session.query(FACT_Event.Event_timestamp)\

 .filter(FACT_Event.Join_ID == Join_ID)\

 .filter(FACT_Event.Product_step_type == Product_step_type)\

 .filter(FACT_Event.Event_desc == 'Delivered')\

 .scalar()

 # Query to retrieve Collection_pickup_tz_planned from FACT_Shipment_Baseline table

 baseline_collection_delivery_tz_planned =

session.query(FACT_Shipment_Baseline.Collection_delivery_tz_planned)\

 .filter(FACT_Shipment_Baseline.Join_ID == Join_ID)\

 .filter(FACT_Shipment_Baseline.Product_step_type == Product_step_type)\

 .scalar()

 # Perform calculation if both values are not None

 if event_delivery_confirmed is not None and baseline_collection_delivery_tz_planned is

not None:

 delivery_event_validation_4_result = (event_delivery_confirmed -

baseline_collection_delivery_tz_planned).total_seconds()

 else:

 delivery_event_validation_4_result = None

 return delivery_event_validation_4_result

8.3 Populating Function for the Validation Points

8.3.1 Validation Points 1 and 2

Function to populate FACT_Alert_calculation_validation1_2 table

def populate_FACT_Alert_calculation_validation1_2(Session):

 # Set to store unique Merge_ID values

 unique_merge_ids = set()

 # Query FACT_Segments_Planned to get Merge_ID and

Segments_addressAndContacts_locationName_pickups

 segments_Planned_data = session.query(

 FACT_Segments_Planned.Merge_ID,

 FACT_Segments_Planned.Status,

 FACT_Segments_Planned.Origin_city_pickups,

 FACT_Segments_Planned.Segments_addressAndContacts_locationName_pickups

).all()

 67

 # Iterate over each row in FACT_Segments_Planned to populate

FACT_Alert_calculation_validation1_2

 for Merge_ID, Status, Origin_city_pickups, Segments_addressAndContacts_locationName_pickups

in segments_Planned_data:

 # Only process entries with Merge_ID ending with '_3'

 if Merge_ID.endswith('_3'):

 # Check if Merge_ID is already processed

 if Merge_ID in unique_merge_ids:

 #print(f"Merge_ID {Merge_ID} already processed, skipping...")

 continue

 #print(f"Processing Merge_ID {Merge_ID}")

 # Calculate TenderEvent_Validation_1

 Tender_Validation_1_result = Tender_Validation_1(session, Merge_ID)

 # Calculate FlightDepartureEvent_Validation_1

 FlightDeparture_Validation_1_result = FlightDeparture_Validation_1(session, Merge_ID)

 # Calculate FlightArrivalEvent_Validation_1

 FlightArrival_Validation_1_result = FlightArrival_Validation_1(session, Merge_ID)

 # Calculate RecoveryEvent_Validation_1

 Recovery_Validation_1_result = Recovery_Validation_1(session, Merge_ID)

 # Calculate DeliveryEvent_Validation_1

 Delivery_Validation_1_result = Delivery_Validation_1(session, Merge_ID)

 # Calculate DeltaFDtoTender_Validation_2

 if Tender_Validation_1_result is not None and FlightDeparture_Validation_1_result is

not None:

 DeltaFDtoTender_Validation_2_result = FlightDeparture_Validation_1_result -

Tender_Validation_1_result

 else:

 DeltaFDtoTender_Validation_2_result = None

 # Calculate DeltaFAtoFD_Validation_2

 if FlightDeparture_Validation_1_result is not None and

FlightArrival_Validation_1_result is not None:

 DeltaFAtoFD_Validation_2_result = FlightArrival_Validation_1_result -

FlightDeparture_Validation_1_result

 else:

 68

 DeltaFAtoFD_Validation_2_result = None

 # Calculate DeltaRecoverytoFA_Validation_2

 if FlightArrival_Validation_1_result is not None and Recovery_Validation_1_result is

not None:

 DeltaRecoverytoFA_Validation_2_result = Recovery_Validation_1_result -

FlightArrival_Validation_1_result

 else:

 DeltaRecoverytoFA_Validation_2_result = None

 # Calculate DeltaDeliverytoRecovery_Validation_2

 if Recovery_Validation_1_result is not None and Delivery_Validation_1_result is not

None:

 DeltaDeliverytoRecovery_Validation_2_result = Delivery_Validation_1_result -

Recovery_Validation_1_result

 else:

 DeltaDeliverytoRecovery_Validation_2_result = None

 # Create FACT_Alert_calculation object and add to session

 entry = FACT_Alert_calculation_validation1_2(

 Merge_ID=Merge_ID, Status=Status, Origin_city_pickups=Origin_city_pickups,

 TenderEvent_Validation_1 = Tender_Validation_1_result,

 FlightDepartureEvent_Validation_1 = FlightDeparture_Validation_1_result,

 FlightArrivalEvent_Validation_1 = FlightArrival_Validation_1_result,

 RecoveryEvent_Validation_1 = Recovery_Validation_1_result,

 DeliveryEvent_Validation_1 = Delivery_Validation_1_result,

 DeltaFDtoTender_Validation_2 = DeltaFDtoTender_Validation_2_result,

 DeltaFAtoFD_Validation_2 = DeltaFAtoFD_Validation_2_result,

 DeltaRecoverytoFA_Validation_2 = DeltaRecoverytoFA_Validation_2_result,

 DeltaDeliverytoRecovery_Validation_2 = DeltaDeliverytoRecovery_Validation_2_result)

 session.add(entry)

 # Add Merge_ID to the set of seen values

 unique_merge_ids.add(Merge_ID)

 # Commit the session to save the changes to the database

 session.commit()

8.3.2 Validation Point 3

Function to populate FACT_Alert_calculation_validation3 table

def populate_FACT_Alert_calculation_validation3(Session):

 69

 # Set to store unique Merge_ID values

 unique_merge_ids = set()

 # Query FACT_Segments_Planned to get Merge_ID and

Segments_addressAndContacts_locationName_pickups

 segments_Planned_data = session.query(

 FACT_Segments_Planned.Merge_ID,

 FACT_Segments_Planned.Status,

 FACT_Segments_Planned.Origin_city_pickups,

 FACT_Segments_Planned.Segments_deliveryType,

 FACT_Segments_Planned.Segments_addressAndContacts_locationName_pickups,

 FACT_Segments_Planned.Segments_addressAndContacts_locationName_deliveries).all()

 # Iterate over each row in FACT_Segments_Planned to populate

FACT_Alert_calculation_validation3

 for Merge_ID, Status, Origin_city_pickups, Segments_deliveryType,

Segments_addressAndContacts_locationName_pickups,

Segments_addressAndContacts_locationName_deliveries in segments_Planned_data:

 # Only process entries with Merge_ID ending with '_3'

 if Merge_ID.endswith('_3'):

 # Check if Merge_ID is already processed

 if Merge_ID in unique_merge_ids:

 #print(f"Merge_ID {Merge_ID} already processed, skipping...")

 continue

 # Calculate PickupEvent_Validation_3

 pickup_event_validation_3_result = pickup_event_validation_3(session, Merge_ID,

Segments_addressAndContacts_locationName_pickups)

 # Calculate FDEvent_Validation_3

 FD_event_validation_3_result = FD_event_validation_3(session, Merge_ID,

Segments_deliveryType)

 # Calculate FAEvent_Validation_3

 FA_event_validation_3_result = FA_event_validation_3(session, Merge_ID,

Segments_deliveryType)

 # Calculate DeliveryEvent_Validation_3

 delivery_event_validation_3_result = delivery_event_validation_3(session, Merge_ID,

Segments_addressAndContacts_locationName_deliveries)

 # Create FACT_Alert_calculation object and add to session

 entry = FACT_Alert_calculation_validation3(

 70

 Merge_ID=Merge_ID, Status=Status, Origin_city_pickups=Origin_city_pickups,

PickupEvent_Validation_3 = pickup_event_validation_3_result,

 FDEvent_Validation_3 = FD_event_validation_3_result, FAEvent_Validation_3 =

FA_event_validation_3_result,

 DeliveryEvent_Validation_3 = delivery_event_validation_3_result)

 session.add(entry)

 # Add Merge_ID to the set of seen values

 unique_merge_ids.add(Merge_ID)

 # Commit the session to save the changes to the database

 session.commit()

8.3.3 Validation Points 4

Function to populate FACT_Alert_calculation_validation4 table

def populate_FACT_Alert_calculation_validation4(Session):

 # Query FACT_Shipment_Baseline to get Join_ID and Product_step_type

 shipment_baseline_data = session.query(FACT_Shipment_Baseline.Join_ID,

FACT_Shipment_Baseline.Product_step_type).all()

 # Iterate over each row in FACT_Shipment_Baseline to populate

FACT_Alert_calculation_validation4

 for Join_ID, Product_step_type in shipment_baseline_data:

 # Calculate PickupEvent_Validation_4

 pickup_event_validation_4_result = pickup_event_validation_4(session, Join_ID,

Product_step_type)

 # Calculate DeliveryEvent_Validation_4

 delivery_event_validation_4_result = delivery_event_validation_4(session, Join_ID,

Product_step_type)

 # Create FACT_Alert_calculation_validation4 object and add to session

 entry = FACT_Alert_calculation_validation4(Join_ID=Join_ID,

Product_step_type=Product_step_type,

 PickupEvent_Validation_4=pickup_event_validati

on_4_result,

 DeliveryEvent_Validation_4=delivery_event_vali

dation_4_result)

 session.add(entry)

 # Commit the session to save the changes to the database

 session.commit()

