
ELUCIDATING US IMPORT SUPPLY CHAIN
DYNAMICS: A SPATIAL-TEMPORAL GRAPH

NEURAL NETWORK APPROACH
by

NIKOLAY ARISTOV
Master of Applied Mathematics and Physics, Moscow Institute of Physics and Technology

(2005)

and

ZIYAN LI
Bachelor of Arts in German Literature, East China University of Political Science and Law

(2017)

SUBMITTED TO THE PROGRAM IN SUPPLY CHAIN MANAGEMENT
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE IN SUPPLY CHAIN MANAGEMENT

AT THE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2024

© Nikolay Aristov and Ziyan Li, 2024. All rights reserved.

The author hereby grants to MIT permission to reproduce and to distribute publicly paper
and electronic copies of this thesis document in whole or in part in any medium now known

or hereafter created.

Signature of Author: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Department of Supply Chain Management

May 18, 2024

Signature of Author: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Department of Supply Chain Management

May 18, 2024

Certified by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Elenna R. Dugundji, Ph.D.

Research Scientist

Certified by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Thomas Koch, Ph.D.

Postdoctoral Associate

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Prof. Yossi Sheffi

Director, Center for Transportation and Logistics
Elisha Gray II Professor of Engineering Systems
Professor, Civil and Environmental Engineering



Elucidating US Import Supply Chain Dynamics: A

Spatial-Temporal Graph Neural Network Approach

by

Nikolay Aristov

and

Ziyan Li

Submitted to the Program in Supply Chain Management
on May 18, 2024, in partial fulfillment of the

requirements for the degree of
Master of Applied Science in Supply Chain Management

Abstract

To enhance understanding of congestion points at ports and provide visibility into
the incoming goods flow into the USA, this study focuses on maritime ports, using
several ports along the East Coast of the United States as case studies. Based on
the Automatic Information System (AIS) data, containing a variety of vessel data
throughout the maritime voyage collected via radio frequency, we found all points of
ships congestion along the coast line of the USA by utilizing Density-based spatial
clustering of applications with noise (DBSCAN) algorithm, we built several predictive
models for the port congestion status of container ships.

Congestion status impacts the flow of goods, as it slows the movement of container
ships carrying incoming commodities. We analyzed historical commodity flow data
and predicted the containerized value and weight of imported commodities based on
Harmonized System (HS) codes using eXtreme Gradient Boosting (XGBoost).

Employing quantitative AIS data analysis provides insights into port congestion
dynamics and commodity flow trends, indicating the potential to improve port man-
agement and logistics visibility.

This project also proposes next steps, that will create additional value for stake-
holders in the Supply Chain industry. This study contributes to both theoretical and
practical applications in maritime logistics.
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Title: Research Scientist

Capstone Advisor: Thomas Koch, Ph.D.
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Chapter 1

Introduction

1.1 Background and Motivation

With an increasing level of international cooperation, the vulnerability of supply chains

to disruptions also grows. In the last few years, supply chains have been affected by

several global events, such as the COVID-19 pandemic and the Suez Canal obstruction,

which, in turn, led to interruptions in goods flows, increased volatility of demand

and supply, and increased costs for all participants. To reduce the negative impact

of future disruptions on supply chains in the United States and, also, to provide

greater visibility of goods flows for key stakeholders to increase cooperation between

them, on March 15, 2022, the Biden-Harris Administration and U.S. Department of

Transportation (U.S. DOT) announced the launch of a major supply chain initiative,

Freight Logistics Optimization Works (FLOW).

According to the U.S. DOT, “Freight Logistics Optimization Works (FLOW) team

at the U.S. DOT aims to help industry participants develop better and more responsive

operations strategies that will improve supply chain throughput and resilience by

sharing global ocean logistics data” (The United States Department of Transportation,

2022). One of the integral parts of supply chain networks in the USA is ocean ports.

Ports are critical nodes in international trade and global supply chain networks. Every

US$ of trade flowing through a port will directly or indirectly generate an additional

US$ 4 of global industry output (Verschuur et al., 2022). Moreover, the ports are major
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entry points for imported containers arriving in the USA. Therefore, it is impossible

to achieve a reasonable level of visibility without having the necessary information

about logistics in ports, including visibility of the quantity and timing of goods flows.

1.2 Problem Statement and Research Questions

To increase the resilience of the nationwide supply chain network, it is necessary to

have a better understanding of the processes at the most upstream part of goods

flow in the USA – the ocean ports. This understanding will give information about

the estimated arrival time of goods, as well as their category, quantity, and routing.

The information obtained may then be used by stakeholders for better planning of

transportation, allocation of resources, and ordering and sourcing of goods.

The initial problem can be split into two major parts. The first part of the problem

is the prediction of port congestion, which will give us an estimation of the goods flow

into the USA, possible delays, and the possibility to re-route flows. In this part, we will

deeply study the Automatic Information System (AIS) data, and select and compare

different statistical or machine learning models to predict berth occupation, time spent

by ships at the berth, and time spent waiting for berthing. The AIS collects vessel data

throughout the maritime voyage via radio frequency, improving safety and traceability

in global ocean logistics. The data includes Maritime Mobile Service Identity (MMSI),

which is an identification number for each vessel; dynamic geographical data, such as

longitude and latitude, that makes it possible to track the path (trajectory) of ships

in the ocean; and static vessel information, such as length and beam (Yang et al.,

2019). The International Maritime Organization’s International Convention for the

Safety of Life at Sea requires AIS to be fitted aboard international voyaging ships with

300 or more gross tonnage, and all passenger ships, regardless of size (International

Marine Organization, 2004). Besides the use of historical AIS data for estimating port

congestion and time spent by container ships on berth or prior to entering the port,

we have to consider other exogenous factors, such as delays at the transshipment ports,

congestion near the port, and supply chain disruptions during pandemics or strikes,
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which may affect the accuracy of the port’s operations predictions. We researched the

influence of these factors on the prediction model.

The second part of the problem is to analyze the goods flowing through the port.

There could be level, trend, and seasonality in the underlying model of goods flow;

knowing these parameters and their interrelationships will provide good visibility for

all the stakeholders in the downstream goods flow.

In that context, the research questions to be answered include:

1. What analytics could be useful for all stakeholders to increase the resilience of

supply chains and the visibility of import flows?

(a) What factors affect the type of goods imported via our principal port of

study, the Port of Boston?

(b) What is the effect of exogenous factors on congestion and goods flow

prediction?

1.3 Project Goals and Expected Outcomes

Our project focuses on the container terminals of the ports on the East Coast of the

USA (the full list of ports is presented in Table A.1). The aim of the project is to

perform a spatial-temporal analysis of the supply chain dynamics of global ocean

logistics networks. Additionally, it targets developing descriptive and predictive models

of the congestion of the ports in the scope, and of the goods flow imported through

the Port of Boston.

First, we identified the key elements and drivers of ocean networks that affect

the congestion of ports. In this research, we worked with the AIS data, in which the

timestamps along with coordinate points of vessels can help us get an insight into

the routes of vessels crossing the ocean and the actual time spent at the port and

premises.

AS part of the work we also retrieved past actual routes from AIS data. Moreover,

the AIS data gave us insider information about other points to consider in our models,
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such as straits, channels or artificial obstacles on the route, that are impacting traffic

flow.

As shown in Table 1.1, the AIS collects a variety of vessel data via radio frequency

at regular intervals throughout the voyage.

Table 1.1

Automatic Information System (AIS) Data Information

Field Name Description
MMSI Maritime Mobile Service Identity, unique nine-digit identification

number for each vessel
BaseDateTime Date and time of the AIS signal
LAT, LON Geographical coordinates of the vessel
SOG Speed over ground in knots
Draught Draught of ship
COG Course over ground in degrees from true north
IMO IMO ship identification number, a unique and permanent seven-digit

identification number
Static data Length, width, draft, etc.

Additionally, the U.S. Census Bureau’s data on import trade provides clear infor-

mation on goods imported into the US. We used the data for the Port of Boston to

analyze the goods categories and seasonality. Mapping the goods flow imported to

the Port of Boston to the Estimated Time of Arrival (ETA) could give stakeholders a

clearer view of ocean logistics and networks.

We built and compared several methodologies, such as statistics, machine learning

and neural network models, to provide a model with the highest accuracy. Moreover,

we changed the input into the model to check different scenarios’ impact on the model.

The deliverables of this project include:

1. Prediction models of the berth occupation of the terminals in the ports under

consideration.

(a) Time spent by container ships on berth and on premises.

2. Descriptive and predictive models of goods flow through the Port of Boston.
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3. Scenarios simulation of possible incidents of a pandemic, strikes, or other re-

strictions that impact the congestion and berthing time of the ships and goods

flow.

1.4 Performed Works

To achieve the project’s goals, we completed the following tasks:

Prediction models of the berth occupation of the terminals in the ports

under consideration.

1. Specified the input information required for the building of the predictive model

of port’ congestion.

2. Cleaned the AIS, Census and other datasets.

3. Built a list of potential exogenous factors affecting prediction.

4. Built different models for the congestion prediction and compared them:

(a) Statistical models

(b) Machine learning models

(c) Neural Networks

Descriptive/Predictive Model of goods flow

1. Specified the input information required for the building of the descriptive/predictive

model of goods flow.

2. Selected Census data for the Port of Boston at the monthly, quarterly, and

yearly levels.

3. Built different models for the goods flow and compared them:

(a) Statistical models

(b) Machine learning models

(c) Neural Networks

12



Chapter 2

State of the Practice

In recent research projects, several studies have delved into predicting vessels’ behaviors,

addressing challenges related to congestion and traffic flow, and optimizing port

operations. Also, besides statistical models, more advanced methodologies have been

applied in transportation research, such as Neural Networks and Transformer, which

show promising results in predicting ETA. In this section, literature regarding these

areas will be discussed.

2.1 Prediction of Port Congestion

As described in Section 1.2, the problem of congestion prediction could be separated

into several parts. At first, we have to understand the layout of the maritime network.

Then we continue with works on the prediction of traffic congestion and modeling of

the port’s operations in the immediate vicinity of the port. We also research articles

predicting the congestion of other modes of transportation, such as trains or truckloads,

which also give us insights on how to make predictions using different methods.

2.1.1 Traffic Congestion

The ability to find congestion points and predict traffic flow is crucial for accurate

ETA predictions. Analyzing historical AIS data allows us to identify anchor and
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berth areas of the port by utilizing a specially developed algorithm based on the

Density-based spatial clustering of applications with noise (DBSCAN) method (Bai

et al., 2023). This algorithm was tested on eight ports with complicated geographic

features and could be an appropriate starting point for the analysis of port ecosystems.

The algorithm itself could also be used for monitoring congestion data at the specified

ports. We utilized this algorithm to receive initial information about the maritime

network layout.

T. Zhang et al. (2023) showed that eXtreme Gradient Boosting (XGBoost) and

Shapley Additive Explanation (SHAP) could be used to predict port congestion status

and improve the prediction accuracy of time spent in port. It was also stated that

for predicting the traffic flow rate, the XGBoost algorithm had the lowest error for

hour-ahead forecasts in comparison to Holt-Winters, Transformer, and Graph Neural

Network (GNNs) (Belt, 2023). We will use this algorithm as a benchmark to compare

it with our target model.

Ma et al. (2023) used Spatio-Temporal Adaptive Graph Convolutional Networks

(STAGCN) to extract the properties of the road network topology graph. First, the

authors captured the structure of the road network traffic by using an adaptive graph

generation block, built an adaptive road network topology graph, and then fed the

result to capture spatial-temporal features of the traffic data by utilizing spatial-

temporal convolution blocks. This work tested the approach on publicly available

datasets for freeway traffic and claimed that prediction accuracy outperformed modern

baseline methods. However, the authors stated that STAGCN has limitations, as it

requires two features: traffic flow and traffic speed.

We built our model based on the work of Wang et al. (2020). The work proposes

the utilization of a spatial temporal graph neural network for traffic prediction. This

algorithm can capture comprehensive spatial data, which is necessary in the maritime

network of the East Coast of the USA, where two major ports, New York / New Jersey

and Savannah, affect traffic and goods flow in the rest of the East Coast ports. This

model also captures temporal patterns by capturing sequential components.
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2.2 Analysis of Commodities

A comprehensive understanding and prediction of incoming commodities are pivotal

for the operation and development of a seaport, enabling the port to enhance the berth

operation with clearer insights into the weight and value of incoming commodities.

The weight of commodities directly impacts the port’s operations, such as crane

allocation, berth schedules, and warehouse storage requirements. On the other hand,

the value of commodities could influence operation prioritization and customs clearance.

Forecasting for both weight and value is essential for the strategic allocation of port

resources.

With limited data, time series models such as Holt-Winters and Autoregressive

Integrated Moving Average (ARIMA) are common methods to provide a promising

prediction of the value and weight of incoming commodities. However, the supply

chain disruption during the pandemic made the statistical models difficult to use to

provide accurate predictions. More advanced machine learning models are required to

apply to forecasting the value and weight of imported commodities. Several machine

learning methods are introduced to predict future trade trends, such as XGBoost

(Batarseh et al., 2019).

Furthermore, feature engineering is a necessary aspect of developing machine

learning models, influencing their performance and effectiveness. In addition to the

historical data on the commodities themselves, multiple exogenous factors have been

introduced that could influence the future trends of trade, such as product ranking and

inventory gross margin return on investment (T. Zhang et al., 2023). This research

compared several machine learning models incorporating these features, aiming to

predict quantities of goods to be imported.

We used and compared Holt-Winters, ARIMA, boosted hybrid model, and XGBoost

with different input features for forecasting commodities’ value and weight.
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Chapter 3

Methodology

In this chapter, the methodology used to conduct the research for the project is

described. We started with steps to build prediction models of congestion of the port

and ended with modelling of flow of commodities.

3.1 Introduction

We approached the prediction of congestion of ports in several steps. First, we

identified areas for the scope of our work, such as terminals, ports, waiting areas, and

congestion points, as an output of the DBSCAN algorithm. This gave us valuable

information about the maritime network layout along the US coastline. This also

allowed us later to build a graph for our Spatial Temporal Graph Neural Network

(STGNN) network.

We built several statistical models for predicting berth occupation in several

terminals and ports, as well as the number of container ships in the waiting area. This

gave us a benchmark for our STGNN model’s performance.

Next, we built, trained and tested our STGNN model, then analyzed the results

and proposed next steps to increase the value of the model for the stakeholders.

As the last step, we described the imported commodities’ time series features and

used the predicted berth occupation as a parameter for predictive models of the flow

of commodities imported through the Port of Boston.
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3.2 Constructing the Network

In this section, we describe our approach for detecting and describing points of interest

and creating nodes for the graph of the STGNN model.

3.2.1 Data Handling

We used AIS data for container ships in the vicinity of the coastline of the USA for the

years 2015 through 2023, filtered by the International Maritime Organization (IMO)

number of container ships.

3.2.2 DBSCAN

Density-based spatial clustering of applications with noise is a data clustering algorithm

introduced by Ester et al. (1996). Density-based spatial clustering of applications with

noise (DBSCAN) detects clusters of high density and treats areas of low density as

noise. This algorithm is useful as it does not require specifying a number of clusters;

therefore, it is able to find all points of interest. The algorithm relies only on two

parameters: the minimum number of points to form a cluster and the radius of a

neighborhood with respect to some point. A cluster in DBSCAN consists of a set of

core samples (which are neighbors to each other) and a set of non-core samples that

are neighbors of these core samples.

To narrow our research, we filtered data by speed over ground, assuming that ships

in anchorage and berth areas are spending some time with drift speed or on full stop

(berthed, anchored).

3.2.3 Addressing Ship Positions

For the purpose of our models and detecting ship positions, we applied several

techniques for different areas and points of interest:

1. Berthing: Some of the ports (for example, Los Angeles/Long Beach, New

York/New Jersey) have several terminals situated closely to each other and
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a complicated geometry of the berth. To address this issue, we constructed

a multi-line with coordinates of the points at the beginning and end of each

terminal’s berth and, also, points where the orientation of the berth changes.

We assumed that ships were berthing if the distance to the nearest sector of the

line was less than 60 meters. Since the heading data in AIS is sometimes not

reliable and the message frequency and time of berthing are smaller compared

to the time discrepancy of the model, which is one day, we assumed that this is

a good approximation of the ship being berthed.

2. Waiting (Anchorage) area: This area is a polygon, surrounding a manually

identified and classified cluster, that was detected by the DBSCAN algorithm.

All container ships that appeared inside the polygon were counted toward the

total number of vessels that spent some time in the area prior to entering the

port.

3. Harbor area: This area is a manually identified polygon, encompassing the water

area from the entrance to the harbor and all areas of the harbor that are open

to container ships, including terminals.

3.2.4 Building Features

To generalize the model, we analyzed the list of container ships that visited ports

in the USA. We split them into categories of operators, grouping them by major

operators (having more than 10 ships) to correspond with the terminals preferred by

each operator; the rest of the ships were considered in one group. We also grouped

ships by size (length and width). For grouping by size, we performed clustering by

applying k-means clustering (Lloyd, 1982). Apart from generalization, this allowed us

to decrease the number of features and make computations easier. For our models, we

used a 7-day history for the number of ships in the particular node and the number of

ships heading to the node. We also used date data, such as the month and day of the

week.
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3.3 Statistical and Machine Learning Models

We built several models to predict the berth and anchorage areas’ occupation for

terminals based on historical occupation. These models could be used as a benchmark

for the STGNN model.

3.3.1 Random Forest Regression

Random Forest, or Random Decision Forest, is a method to perform classification or

regression by constructing and combining multiple decision trees. This method was

introduced by Ho (1995).

We applied these methods to predict congestion at every terminal in the scope of

our work.

3.3.2 Long Short-Term Memory (LSTM) Networks

Long Short-Term Memory (LSTM) Networks are one of the most widely known and

commonly used methods for dealing with time series, as introduced by Hochreiter

and Schmidhuber (1997). This technique is commonly used for forecasting and is well

documented. More information can be found in Staudemeyer and Morris (2019).

We applied this method to predict congestion at all modeled terminals.

3.3.3 XGBoost

This method is discussed in Section 3.5.5 We applied this method to predict congestion

at all modeled terminals.

3.4 Spatial Temporal Graph Neural Network

For the purpose of this work, we used the Spatial Temporal Graph Neural Network

(STGNN). This is a subclass of the more general class of Graph Neural Network

(GNNs), which are used to predict traffic intensity due to their ability to utilize spatial
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information. The framework for our model was proposed by Wang et al. (2020) and

was used to predict road traffic.

3.4.1 Layers

The framework consists of four layers: a GNNs layer to capture spatial information,

a Gated Recurrent Unit (GRU) layer to capture local temporal dependencies, a

transformer layer to capture global temporal dependencies, and a multi-layer feed-

forward network to output predictions.

Graph Neural Network Layer

For modeling spatial dependency, the framework used the Graph Neural Network

Layer:

𝑋𝑜𝑢𝑡 = f( ̃︀𝐷−1/2 ̃︀𝐴 ̃︀𝐷−1/2𝑋𝑖𝑛𝑊 )

where f is a non-linear activation function, allowing it to capture more complex

patterns; and matrix W contains the parameters to be learned.

For the purpose of our work, we used ̃︀𝐴 as the refined adjacency matrix, defined

by equation: ̃︀𝐴 = 𝐴+ 𝐼𝑁

where 𝐴 is the adjacency matrix that maps the connections between nodes; and

𝐼𝑁 is the 𝑁 -dimensional identity matrix. We defined adjacency matrix 𝐴 as:

𝐴𝑖𝑗 =

⎧⎪⎨⎪⎩exp(−𝑑2𝑖𝑗/𝜎
2), if 𝑖 ̸= 𝑗

0, otherwise

where 𝑑𝑖𝑗 is a distance between two nodes (see definition of nodes in section 3.4.2);

and 𝜎 is the standard deviation of the distances. Lastly, we have the refined degree

matrix: ̃︀𝐷𝑖𝑖 =
∑︁ ̃︀𝐴𝑖𝑗
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Gated Recurrent Unit Layer

This layer is used to capture temporal dependencies. GRU was introduced by Cho

et al. (2014). This layer applies to each node individually and the parameters of GRUs

for all the nodes are shared with each other. The GRU operation at time 𝑡 for node 𝑣𝑖

can be expressed as:

𝑧𝑡 = 𝜎𝑧(𝑊𝑧
̃︀𝑋𝑡[𝑖, :] + 𝑈𝑧

̃︀𝐻𝑡−1[𝑖, :] + 𝑏𝑧),

𝑟𝑡 = 𝜎𝑟(𝑊𝑟
̃︀𝑋𝑡[𝑖, :] + 𝑈𝑟

̃︀𝐻𝑡−1[𝑖, :] + 𝑏𝑟),

̃︀𝐻𝑡[𝑖, :] = tanh (𝑊ℎ
̃︀𝑋𝑡[𝑖, :] + 𝑈ℎ(𝑟𝑡 ⊙ 𝑈ℎ

̃︀𝐻𝑡−1[𝑖, :]) + 𝑏ℎ),

𝐻𝑡[𝑖, :] = (1− 𝑧𝑡) * ̃︀𝐻𝑡−1[𝑖, :] + 𝑧𝑡 ⊙ ̃︀𝐻𝑡[𝑖, :].

where ⊙ is the element-wise multiplication, 𝑊𝑧, 𝑊ℎ, 𝑈𝑧, 𝑈𝑟, 𝑈ℎ are the parameters to

be learned and 𝐻𝑡[𝑖, :] is the output of the GRU layer and the hidden representation

of the current time step. 𝜎𝑧 and 𝜎𝑟 are sigmoid functions.

Transformer Layer

The GRU layer models local temporal dependency. For our problem, temporal infor-

mation should also be modeled globally. To deal with this, we utilized a transformer

layer (Vaswani et al., 2017). This layer stacks all layers derived from the previous

layer and applies transformations to the stacked matrix. Given that the transformer

ignores the relative position in the sequence, we used positional encoding determined

by

𝑒𝑡 =

⎧⎪⎨⎪⎩sin(𝑡/100002𝑖/𝑑𝑚𝑜𝑑𝑒𝑙), if t = 0, 2, 4...

𝑐𝑜𝑠(𝑡/100002𝑖/𝑑𝑚𝑜𝑑𝑒𝑙), otherwise.

This gives us

𝐻 ′
𝑡[𝑖, :] = 𝐻𝑡[𝑖, :] + 𝑒𝑡

Next, we applied a one-layered transformer-based encoder with a normalization

layer to the encoder’s inputs.
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The output of the transformer layer was used as the input of the Prediction Layer.

Prediction Layer

As a final layer, we used a multi-layer feed-forward network. This network uses the

output 𝐻𝜐𝑖
𝑜𝑢𝑡|𝜐𝑖 ∈ 𝑉 of the transformer layer to make predictions for the number of

ships at nodes.

3.4.2 Building the Graph Neural Network

For our model, we used three types of nodes:

1. Ports

2. Waiting zones of ports

3. Terminals in ports

Ports represent physical ports like Boston or New York and are connected by bidirec-

tional edges. Each port is linked by a unidirectional edge to the port’s waiting zone,

which represents a zone where container ships could wait for berthing. The waiting

zone, in turn, has a unidirectional edge to every terminal in port. Terminals in the

port are connected bidirectionally to each other (representing the possibility of the

ship using several terminals) and to the port node, representing entering and exiting

the port. Edges are represented in the model by an adjacency matrix defined by the

physical distance between nodes.

3.5 Predictive Models of Commodities through the

Port of Boston

3.5.1 Data Handling

We began the analysis of commodities imported into the Port of Boston from the

importation dataset by 2-digit Harmonized System (HS) code from 2003 to 2023.
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The HS code is utilized by the World Customs Organization as a system of six-digit

codes to categorize commodities (Pierce & Schott, 2012). We selected the top five

commodities by filtering containerized value and weight, in order to capture the trend,

seasonality and other nonlinear relationships and build predictive models.

3.5.2 Holt-Winters Exponential Smoothing

In the analysis of time series data, Holt-Winters is a common statistical approach for

forecasting seasonality. In this study, we employ a Python package to automatically

find the optimal combination of data, trend and seasonal smoothing factors.

The equations below show how the Holt-Winters model works (Winters, 1960):

�̂�𝑡,𝑡+𝜏 = (�̂�𝑡 + 𝜏 �̂�𝑡)𝐹𝑡+𝜏−𝑃

�̂�𝑡 = 𝛼(
𝑥𝑡

𝐹𝑡−𝑃

) + (1− 𝛼)(�̂�𝑡−1 + �̂�𝑡−1)

�̂�𝑡 = 𝛽(�̂�𝑡 − �̂�𝑡−1) + (1− 𝛽)�̂�𝑡−1

𝐹𝑡 = 𝛾(
𝑥𝑡

�̂�𝑡
) + (1− 𝛾)𝐹𝑡−𝑃

where

𝑥𝑡 : Actual demand in period 𝑡

�̂�𝑡,𝑡+𝜏 : Forecast for time 𝑡+ 𝜏 made during time 𝑡

𝐹𝑡 : Multiplicative seasonal index appropriate for period 𝑡

𝑃 : Number of time periods within the seasonality

𝛼 : Data smoothing factor 𝛼 ∈ [0, 1]

𝛽 : Trend smoothing factor 𝛽 ∈ [0, 1]

𝛾 : Seasonal change smoothing factor 𝛾 ∈ [0, 1]

3.5.3 ARIMA Model

When facing non-stationary time series data, an Autoregressive Integrated Moving

Average (ARIMA) model provides better performance than Holt-Winters. It is
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composed of the following models:

• Autoregressive models (AR) forecast a time series’ future values based on its

past value, assuming the current value is a linear function of its previous values

plus a random error term.

• The integrated portion (I) is used to make the time series’ values stationary.

• Moving average models (MA) forecast future values of a time series based on

its past forecast errors, assuming the current value is a linear function of past

forecast errors plus a random error term. (Hyndman & Athanasopoulos, 2018)

In this study, we used the Python package auto-arima to automatically determine

the order of autoregressive terms, moving average terms, and seasonal AR, MA, and

differencing parameters.

3.5.4 Boosted Hybrid Model

The Boosted Hybrid model is a hybrid approach that synergizes a linear regression

model that discerns normal variables correlated with the target values, such as Fourier,

lags, and leads, subsequently refining the prediction by training on the residuals with

other exogenous or less common variables to capture the peaks or troughs within the

dataset.

Given the highly oscillated historical data on imported commodities, we saw a

great possibility of applying the boosted hybrid model to significantly enhance the

precision of predicting the value and weight of imported goods.

In the context of linear regression, variables such as lags and specific holiday effects

were considered. For example, we took Christmas as a one-hot encoded feature1 to

mitigate seasonal impacts on the observed data. We also delineated the unseasonalized

data through its autocorrelation, partial autocorrelation, and lags, thus enabling a

clearer analysis.
1One-hot encoded feature is a widely-used method of transferring categorical variables to binary

vectors.
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After calculating the residuals from the first model, we applied the RandomForest

model to train the residuals by features such as month of year and holiday months.

3.5.5 XGBoost

eXtreme Gradient Boosting (XGBoost) presents a scalable and efficient solution for

tree ensemble learning, consisting of multiple decision trees to form robust predictive

models. The XGBoost algorithm assigns scores of i-th leaf of each decision tree and

sums up these scores for the corresponding leaves to achieve the final prediction. To

optimize the performance of the model, XGBoost minimizes the following regularized

objective function (Chen & Guestrin, 2016):

ℒ(𝜑) =
∑︁
𝑖

𝑙(𝑦𝑖, 𝑦𝑖) +
∑︁
𝑘

Ω(𝑓𝑘)

Ω(𝑓) = 𝛾𝑇 +
1

2
𝜆‖𝑤‖2

where

𝑙 : a differentiable convex loss function that measures the difference between actual

data 𝑦𝑖 and prediction 𝑦𝑖

Ω : penalty of the complexity of the model

𝑓𝑘 : function corresponding to an independent tree structure and leaf weights 𝑤

𝑇 : the number of leaves in the tree

𝜆 : additional regularization term smoothing the final learned rate to avoid over-

fitting

3.6 Error Measures

To evaluate the performance of commodity models, Mean Absolute Percentage Error

(MAPE), Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) have

been applied. The smaller the values are, the better the performance is. For congestion

models we utilized Symmetric Mean Absolute Percentage Error (SMAPE), as it works
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better with series due to having a lot of 0 and 1 values.

𝑀𝐴𝑃𝐸 =
100%

𝑁

𝑁∑︁
𝑖=1

|𝑦𝑖 − 𝑦𝑖
𝑦𝑖

|

𝑅𝑀𝑆𝐸 =

⎯⎸⎸⎷ 1

𝑁

𝑁∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖)2

𝑀𝐴𝐸 =
1

𝑁

𝑁∑︁
𝑖=1

|𝑦𝑖 − 𝑦𝑖|

𝑆𝑀𝐴𝑃𝐸 =
100

𝑛

𝑁∑︁
𝑖=1

|𝐹𝑡 − 𝐴𝑡|
(|𝐴𝑡|+ |𝐹𝑡|)/2
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Chapter 4

Results

This section is dedicated to the results of the statistical and machine learning models

we built to meet our research objectives.

Initially, DBSCAN was employed to categorize areas based on density. Then

Random Forest Regressor, LSTM, XGBoost and STGNN were applied to predict

the number of vessels in each area. We also explored statistical models, boosted

hybrid models and XGBoost to predict the containerized value and weight of imported

commodities.

We present the outcomes and findings derived from these models.

4.1 Congestion Points

We performed initial clustering by utilizing the DBSCAN algorithm for the AIS data

set, which contains data about ships’ movements along the US coastline for the period

from January 1, 2015, to September 30, 2023. We filtered the original data only by

container ships and Speed Over Ground of less than 5 km per hour (meaning, that

a ship could drift with a flow and not be anchored). This clustering limited the set

of points we needed to consider for building our model. We started the algorithm

by using a radius of 10 km and a minimum sample size of 100 as parameters. This

allowed us to identify all container ship ports along the US coastline. However, it

didn’t allow us to have more detailed information. We also saw that we should reduce
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the radius for the detection of port terminals in complicated areas. By decreasing

these numbers to 2 km and 100, we were able to identify all terminals in New York /

New Jersey ports, for example, but we still needed more precise clustering for ports

with complicated berth geometry and narrow separation of terminals (for example,

Los Angeles/ Long Beach). However, the analysis identified all ports with container

terminals in the USA and congestion points such as, for example, the bridge near

Annapolis on the way to the Port of Baltimore. We could also clearly see increasing

and decreasing congestion in ports over time.

By performing statistical analysis of AIS data for the Boston port area (berth,

anchorage areas), we observed no seasonal or time effect. We confirmed with port

authorities that the only reason, except for some unrelated to the port (like technical

issues or rescheduling), for ship timing in the wait area is traffic inside the harbor.

By performing initial clustering with parameters (SOG/Number of Vessels/Radius

km) and plotting the centroid of clusters onto a map, we identified points of interest

for our research. We were also able to see an increase in the density of such points in

2021-2022, which corresponds to the actual situation with container ships around the

USA. Points of interest identified could be split into three major groups:

1. Waiting zone area – the area outside the port where ships could spend several

hours before entering the port area.

2. Port/berth area – actual mooring (berthing) points

3. Points in front of an obstacle in the way of a ship, like a bridge or channel.

While these points are not directly related to port activities, they could cause a

delay for the vessel en route.

While we were not able to confirm with authorities that the waiting area identified

is officially designated as an anchorage, it can serve as an initial proxy to collect

historical data on ships entering the waiting pattern. DBSCAN clustering provided

good identification of the berth area. However, in ports with challenging geometries,

like New York/New Jersey and Los Angeles/Long Beach, it is complicated to identify
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a specific terminal for the ship. The analysis of AIS data showed that relying on the

status of the ship field is also not feasible, as there are many cases when the crew

forgot to switch it from one status to another.

To approach the problem of vessel berth identification, we chose points at the end

of each berth and the change in geometry of each terminal/port included in this work.

Apart from coordinate identification, this gave us the direction (heading) of the berth.

By using both coordinates and headings, we were able to identify the mooring of

ships by calculating the distance between the ship and berth line and comparing the

heading of the ship with the berth direction. The analysis of AIS data showed that

some of the ships have problems transmitting the correct heading, so our approach is

to detect the start time and end time of berthing by filtering ships with a distance less

than the width of the ship berthing. We assume the possible error is not more than

10-15 minutes, which is not affecting our model, as we have a discrepancy of 1 day.

4.2 Congestion Prediction Models

We built several models for the terminals under consideration to predict congestion at

them. These models were used as benchmarks for our Spatial Temporal Graph Neural

Network model. As an input for the models, we used the number of vessels at the

berth per day at terminals, the number of ships heading to the particular terminal

from other terminals in the model in the last 7 days, and, additionally, time series

categories like month and day of the week. As an output, we predicted the number of

vessels in terminals. By analyzing benchmarking models, we used such error metrics

as MAE, MAPE and SMAPE.

Although Random Forest Regression achieved the smallest prediction error, the

features it relied on appear to have no meaningful relationship with the predicted

outcomes. In this case, the chosen features shared coincidentally similar values with

the target variable, leading to misleadingly low error rates. Therefore, we excluded

this model from comparison.

The comparative results of all methods by terminal can be found in Table A.2.
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The Table 4.1 displays three different terminals with different winning models. To

understand this phenomenon, additional research into the differences between terminals

and of incoming traffic should be conducted. This further study could reveal additional

insights into improving the models.

Table 4.1

Errors by Terminals, Models

Port Terminal Model MAE MAPE SMAPE

APM Terminals
LSTM 1.57 37.64 47.08
STGNN 1.52 55.16 41.05
XGBoost 0.52 12.28 12.82

Port Liberty Bayonne
Terminal

LSTM 0.70 50.68 84.62
STGNN 0.51 37.75 45.18
XGBoost 0.67 58.92 54.50

The Red Hook
Container Terminal

LSTM 0.36 57.94 158.42
STGNN 1.39 79.62 147.71
XGBoost 0.94 72.32 146.14

Note. In bold shown the best error per terminal

4.3 Commodities

Based on the import data by 2-digit HS code from 2003 to 2023, we first took a look at

the five highest-value commodities imported during that period by the Port of Boston.

The most valuable commodity (total containerized value in USD) during the past

20 years was identified by HS Code 84 (Nuclear Reactors, Boilers, Machinery, Etc.).

In the analysis of the targeted value, a heatmap revealed a pronounced correlation

between commodity 84 (Nuclear Reactors, Boilers, Machinery, Etc.) and commodity

39 (Plastics And Articles Thereof) with a pairwise correlation coefficient of 0.88. The

heatmap 4-1 graphically shows the interrelationship among the observed variables.

After communication with Port of Boston, it emerged that within the Boston area,

the observed strong correlation between commodities classified by HS code 84 and 39

may stem from their use in the medical sectors, such as medical laboratory equipment,
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Figure 4-1

Heatmap of Value Correlation Coefficient

dialysis machines, plastic labware or plastic components for medical devices. This

correlation is likely influenced by the demand from hospitals and medical facilities.

So, we decided to aggregate these two commodities to see a general feature.

On the other hand, the commodity with the highest weight, classified under HS

Code 22 (Beverages, Spirits, and Vinegar), has exhibited a stable trend and clear

seasonality over the past 20 years. We utilized these two datasets as case studies to

elucidate the analytical outcomes.

4.3.1 Statistical Models

We employed Holt-Winters and Autoregressive Integrated Moving Average (ARIMA)

methodologies to analyze the time series data. The data was partitioned into 75%

for training and 25% for testing. Figure 4-2 and Figure 4-3 demonstrate the robust
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outcomes of the Holt-Winters and Auto ARIMA models, with the red line depicting

actual data and the blue line representing predicted data.

Figure 4-2

Holt-Winters and Auto ARIMA models’ Result of Sum Containerized Value of Com-
modity Identified by HS Code 84 and 39

(a) Holt-Winters Model Result (b) Auto ARIMA Model Result

Figure 4-3

Holt-Winters and Auto ARIMA models’ Result of Sum Containerized Weight of
Commodity Identified by HS Code 22

(a) Holt-Winters Model Result (b) Auto ARIMA Model Result
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4.3.2 Boosted Hybrid

As described in Section 3.5.4, a two-tiered hybrid modeling approach comprised ridge

regression for time steps and lagged variables, and a Random Forest Regressor to train

on the residuals derived from the first model. As depicted in Figure 4-4, the boosted

hybrid model yields relatively more accurate predictions for the sum containerized

values of commodities 84 and 39, where the gray line denotes the actual data, the

blue line indicates the training data, and the red line signifies the predictions for the

testing data.

Figure 4-4

Boosted Hybrid Model for Aggregated Value of Commodity Identified by HS Code 84
and 39

However, based on the output graph, the model failed to capture the downturn in

the period around 2020 and the rebound after 2022. This trend is likely attributed

by the impact of pandemic and its recovery phase, which also contributed to the

fluctuations of carrier rates. Carrier rates are the fees that shippers pay to carriers for

the transportation of goods from one location to another. One indicator that can reflect

changes in carrier rates is the increasing percentage rate of Earnings Before Interest

and Taxes (EBIT) among major ocean carriers (Ezinna et al., 2022). This reflects the

profitability of ocean carriers due to elevated shipping costs paid by shippers. The

changes in carrier rates can significantly affect the demand for shipping services, as
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shippers may alter their logistics mode based on the cost of transportation.

Therefore, we included the increasing percentage rate of EBIT of the main ocean

carriers as an input feature to the second model being used for training the residuals,

to help the model capture the downturn and rebound during the pandemic period.

Due to the limited accessible open-source data regarding the increasing rate of EBIT

of main ocean carriers, Figure 4-5 illustrates the performance of the updated model

starting in 2014.

Figure 4-5

Boosted Hybrid Model with EBIT for Aggregated Value of Commodity Identified by HS
Code 84 and 39

On the other hand, we also analyzed commodities with the highest weight: HS

Code 22 Beverages, Spirits and Vinegar. With the same approach, liquids’ weight

showed a more stable trend and seasonality. Figure 4-6 shows the boosted hybrid

model for the weight of beverages.

4.3.3 XGBoost

In order to fully harness all the time series features derived from the observed target

dataset, considering the assumption of monthly seasonality throughout a year, we

first constructed an initial set of features. This included lagged values ranging from

1 to 12 months and moving averages ranging from 2 to 12 months. An original
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Figure 4-6

Boosted Hybrid Model for Weight of Commodity Identified by HS Code 22

XGBoost has been trained with both the initial set of values and additional time

features, such as month, year, day of the week, and day of the month. To mitigate

the risk of overfitting, we evaluated the importance of all the input features and

identified the most influential lagged and moving average features. The model was

then refined by retraining exclusively with these most influential features and fine-

tuned by early stopping at the 50th round, thereby enhancing the model’s robustness

and generalization.

Figure 4-7 and Figure 4-8 present the performance of the XGBoost as applied to

case studies concerning the aggregated value of commodities identified by HS Code 84

and 39 and the weight of commodities identified by HS Code 22, where the gray line

represents the actual observed data, the blue line represents the fitted data on the

training dataset, and the red line represents the predicted data on the testing dataset.

4.3.4 Error Measurements

As described in Section 3.6, error measurements MAE, RMSE and MAPE are applied

to evaluate the performance of the above-mentioned models. Table 4.2 presents

the results, where aggregated value represents the aggregated containerized value of

commodities identified by HS Code 84 and 39, and weight represents the containerized
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Figure 4-7

XGBoost Model for Aggregated Value of Commodity Identified by HS Code 84 and 39

Figure 4-8

XGBoost Model for Weight of Commodity Identified by HS Code 22

weight of commodities identified by HS Code 22.
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Table 4.2

Results of Error Measurements

Aggregated Value Weight
Methods MAE RMSE MAPE MAE RMSE MAPE

Holt-Winters 20.74 26.18 36.78% 1.72 2.20 18.48%
Auto ARIMA 21.96 27.78 39.71% 3.90 4.24 44.48%

Boosted Hybrid 11.96 16.93 18.03% 2.17 2.73 22.87%
XGBoost 10.15 12.54 17.09% 1.62 2.02 16.33%

Note. The data presented in the MAE and RMSE columns are expressed in
units of 106. Boosted Hybrid Model for aggregated containerized value is
with the feature EBIT.
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Chapter 5

Conclusion

In this chapter, we summarize the key findings from our research on the congestion

of ports and imported flow of commodities. We also propose recommendations for

future research or practical applications.

5.1 Congestion Points

DBSCAN showed good results in the initial determining areas of our models. However,

it is possible to take further steps to automate terminals’ and waiting areas’ precise

detection. This could also help with historical changes of the zones and automatic

calculations of metrics, especially with all ongoing infrastructure projects for increasing

the capacity of the ports.

5.2 Prediction Models for Congestion

To increase prediction capability, it would be helpful to incorporate additional data.

First, it is necessary to have information about ships departing from the destination

ports outside the USA, as this gives more precise information for the first port of

entry. Also, missing information about the Panama Canal does not allow a correct

diagnosis of goods flow disruptions. Additionally, research should be conducted to

understand why models perform differently across various terminals in the system -
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some models excel with certain terminals while performing poorly with others.

Another improvement may lie in knowing data about port operations, such as

port yard utilization and the ability to serve ships quickly. This information could be

obtained directly from the ports or could be received indirectly by other means.

Another valuable approach for stakeholders would be to utilize dynamic graph

neural networks to predict potential ship diversion and changes in routes. There are

several works addressing changes in graphs, for example, Z. Zhang et al. (2022) or Li

et al. (2023)

5.3 Prediction Models for Commodities

In this study, we proposed different statistical and machine learning models to address

the prediction problem of commodities’ containerized value and weight. We applied

Holt-Winters, ARIMA, boosted hybrid and XGBoost models to capture the trend and

seasonality in the historical observed datasets.

5.3.1 Conclusion

According to the error measurements, XGBoost presented the best performance

compared to other methodologies, with the least MAE, RMSE and MAPE. In our

approach to building the XGBoost model, we intentionally selected the most influential

features among lagged values and simple moving averages. However, as shown in

the fitted data on the training dataset in Figure 4-7 and Figure 4-8, there is a great

possibility of overfitting.

In summary, the input features utilized in the applied models in this study were

mostly derived from historical observations. This indicates that the above-mentioned

models are robust and general enough to apply across various ports and commodities.

As stated in Section 2.2, the capability to predict the containerized value and weight

of incoming commodities with relative precision enables port authorities to allocate

human resources, crane utilization and warehouse capacity more effectively.
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5.3.2 Future Research

As discussed in Section 5.3, there is a need to refine the input features used in the

XGBoost model to improve its reliability. Although the current model included only

the most important features ranked from lagged data and moving averages, the fit

to the training dataset still suggested overfitting. To address this, more fine-tuning

methods could be tested to reduce overfitting.

On the other hand, the case of the boosted hybrid model of aggregated containerized

value with and without EBIT indicated that more exogenous variables could be

considered when training the non-linear model targeting the residuals derived from

the linear model.

We plan to integrate the results of congestion points into the current models for

commodities. This will help improve the accuracy of the prediction for the value and

weight of incoming shipments, taking into account the potential congestion situation

near the port or along the shipping routes.
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Appendix A

Tables

Table A.1

List of Ports in ST-GNN Model

Port Terminal Model Notation
New York / New Jersey APM Terminals NY_APM
New York / New Jersey Maher Terminals NY_Maher
New York / New Jersey The Red Hook Container Terminal NY_Redhook
New York / New Jersey Port Newark Container Terminal NY_Newark
New York / New Jersey Port Liberty Bayonne Terminal NY_LibertyBayonne
New York / New Jersey Port Liberty New York Terminal NY_LibertyNewYork
Boston Conley Terminal Boston_Terminal
Savannah The Port of Savannah Savannah_Terminal
Norfolk Norfolk International Terminals Norfolk_Terminal
Baltimore The Seagirt Marine Terminal Baltimore_Terminal
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Table A.2

Errors by Terminals, Models

Port Terminal Model MAE MAPE SMAPE

The Seagirt Marine
Terminal

LSTM 0.94 33.55 33.73
STGNN 1.27 30.81 40.51
XGBoost 0.34 16.25 14.13

Conley Terminal
LSTM 0.81 48.48 112.21
STGNN 1.08 61.74 105.13
XGBoost 0.81 55.55 110.25

Norfolk International
Terminals

LSTM 1.36 39.97 42.15
STGNN 1.27 48.41 39.27
XGBoost 0.43 14.03 13.17

APM Terminals
LSTM 1.57 37.64 47.08
STGNN 1.52 55.16 41.05
XGBoost 0.52 12.28 12.82

Port Liberty Bayonne
Terminal

LSTM 0.70 50.68 84.62
STGNN 0.51 37.75 45.18
XGBoost 0.67 58.92 54.50

Port Liberty New York
Terminal

LSTM 0.77 69.084 149.64
STGNN 1.18 69.53 120.01
XGBoost 0.84 58.44 116.91

Maher Terminals
LSTM 1.57 39.42 36.33
STGNN 2.35 34.28 45.64
XGBoost 0.78 16.57 17.48

Port Newark Container
Terminal

LSTM 1.52 37.00 54.60
STGNN 3.98 52.36 74.45
XGBoost 0.39 9.47 15.98

The Red Hook
Container Terminal

LSTM 0.36 57.94 158.42
STGNN 1.39 79.62 147.71
XGBoost 0.94 72.32 146.14

The Port of Savannah
LSTM 3.20 33.70 43.31
STGNN 1.98 26.35 24.37
XGBoost 2.01 21.25 24.06

Note. In bold shown the best error per terminal
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