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The capstone project focuses on introducing a novel cost allocation model developed for the sponsor 
company. Faced with the complexities of serving thousands of clients, the company seeks to refine its 
weight-based allocation method to accurately identify profitable clients and improve business decision-
making. Leveraging the Shapley method from cooperative game theory, the project proposes a model 
that incorporates geographic distances, weights, and other logistical factors into the cost allocation 
process. Shapley values are used to assign costs based on each client's marginal contribution to overall 
transportation costs, representing a significant advancement over the existing weight-based proportional 
method. 
             
Initial results demonstrate the model’s effectiveness in providing fair cost distribution, supported by 
various methods of analysis that quantify the improvement over the existing allocation policy. A 
divergence analysis was conducted, where the results of the divergence were captured as monetary 
values for the company. Furthermore, the model's implementation was augmented through machine 
learning, enabling predictive insights for cost allocation. This project provides improved operations and 
strategic planning capabilities and not only addresses the immediate needs of the sponsor company but 
also sets a precedent for "cost-to-serve" applications in logistics-intensive industries.   
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1. Introduction 
 
The sponsor company of the capstone project is a company focused on the manufacturing and 
commercialization of chemical solutions tailored for the construction sector. The prime objectives 
of these solutions are to reduce the costs of construction with concrete, enhance material 
properties, and rectify construction defects during the building process (Portland Cement 
Association, 2023). With the construction sector boasting sales that surpass a trillion dollars, the 
industry is currently navigating through rough waters of supply chain disruptions, inflation, and 
elevated interest rates. However, there is anticipated growth in the commercial and infrastructure 
sectors driven by legislative initiatives such as the 2021 Infrastructure Investment and Jobs Act 
and the 2022 Inflation Reduction Act (Pigott, 2023). 
  
In this context of economic distress and government fomented growth, the sponsor company is 
looking to assess its transportation cost allocation policy to better understand the cost to serve 
each of its clients. At present, the company informed that it employs a weight-based cost 
allocation approach, a methodology stemming from its contractual agreements with its dedicated 
fleet of freight contractors. Currently, and as informed by the firm, it serves thousands of clients 
in more than 6,500 locations from multiple manufacturing sites and distribution centers located in 
the US and Canada with a logistics budget of USD 44 million. By properly allocating the 
transportation costs to each client, the sponsor will be able to distinguish profitable clients from 
those that are not, assess the business performance on a client base, and develop data driven 
business decisions. 
 
Upon implementing a new cost allocation model and freight-cost pricing policy, the sponsor will 
experience a cascade of tangible benefits, primarily centered around enhanced cost visibility. By 
using a more robust method and identifying the real costs associated with serving each customer, 
the sponsor can make better informed decisions about resource allocation. A clear understanding 
of cost structures is pivotal, as it provides the lens through which profitability can be assessed 
and the total freight cost can be reduced (Dahlberg et al., 2019). This project delivers valuable 
insight to the sponsor company on how cost allocations methods affect the business, allowing for 
more precise analyses and better-informed strategic decision-making. 
 
1.1 Problem Statement  
 
Every delivery route is a puzzle. The company must balance the need for timely service with the 
backdrop of varying costs and customer profiles. Some customers, though distant from the 
manufacturing plants, are strategically located near other clients, potentially offering economies 
of scope. Conversely, some clients might be geographically closer, but may be isolated from other 
clients, leading to extended and costlier shipments. The sponsor seeks to thoroughly identify the 
cost implications of serving each customer and further unravel pricing information to develop a 
robust cost allocation policy for its customer base.  
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In an effort to achieve better customer allocation, the company is poised to revamp its current 
methodology. Presently, the approach is anchored in weight-based calculations, concentrating 
exclusively on the proportion of goods delivered to clients relative to the entire batch sent via a 
specific route. This simple rule of allocation, however, fails to consider essential cost-influencing 
elements. The cost of serving customers for the sponsor is a well-defined function of several 
interconnected factors, primarily the spatial distance from manufacturing plants to customers and 
the relative proximity of customers to one another. Moreover, factors such as delivery times, 
weight, and frequency of stops, also play a role in the overarching cost paradigm, underscoring 
the necessity for their inclusion in cost allocation. 
 
1.1 Scope Definition  
 
The current cost distribution among clients is inequitable; as a result, the sponsor is likely 
overpaying for certain routes and customers. This imbalance detrimentally impacts their logistic 
cost margins, emphasizing the necessity for a more transparent approach to freight cost 
distribution. In response, this project introduces a new allocation model that employs the Shapley 
method from cooperative game theory (Shapley, 1953). This method calculates the marginal 
contribution of each client within a delivery route, incorporating variables such as geographical 
locations, proximity to other clients, order patterns, and distinct shipment data. This approach 
aims to accurately determine the true cost of serving each client, thereby facilitating a fair and 
equitable allocation of costs. 
 
Furthermore, a machine learning model has been developed in tandem with the Shapley model 
to provide the sponsor with predictive capabilities regarding cost allocation for future scenarios 
and new clients. The capstone project does not seek to optimize delivery networks; rather, it 
prioritizes providing visibility to the customer landscape, comprehending the cost to serve clients, 
and enabling equitable cost allocation. 

 
2. State of the Literature 
 
To tackle the cost disparities and challenges of the sponsor, a new model centered around the 
Shapley method was used. To elucidate why this method was chosen, a study and comparison 
of various allocation methods is presented in this chapter. The objective is to find the most suitable 
method to replace the existing weight-based allocation system. The literature on cooperative 
game theory provides several well-established allocation solutions, among which are the Shapley 
Values (Shapley, 1953), Nucleolus (Schmeidler, 1969), and Proportional Methods. While each 
allocation framework seeks to ensure fair allocations, they are grounded in different fairness 
criteria. 
 
2.1 Traditional Allocation Methods 
 
The Shapley Value, formulated by Shapley, is a concept in cooperative game theory used to fairly 
distribute the total cost of a coalition among its participants. This method attributes a value to 
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each participant i based on their marginal contributions. This is calculated by considering all 
possible ways a coalition could form and takes the average of the marginal contributions of each 
player across these coalitions, as shown in Formula A. 
 
 

 
 

In Formula A, N is the set of all players, S is a subset of N, and c is a characteristic function 
representing the value of any coalition S. This method determines the individual impact or 
contribution of each player towards the subset S of N. Crucially, this method hinges on evaluating 
every possible permutation in which players can join the coalition, ensuring that each player's 
contribution is assessed in every conceivable way. This approach allows for equitable allocation 
of the coalition's total value among all participants. 
 
The Nucleolus, introduced by Schmeidler (1969), is a cost allocation concept that aims to 
minimize the dissatisfaction among players in a cooperative game by focusing on the excess that 
coalitions experience. The excess in a coalition is interpreted as a measure of dissatisfaction. 
Hence, the larger the excess, the more dissatisfied the coalition is. The Nucleolus is a distribution 
of cost allocations that minimizes the largest excess vector, so that no player has an incentive to 
deviate from the coalition, as shown in Formula B. 
 

 
 
In Formula B, x is a payoff vector or allocation of values, Y is the set of possible payoff vectors, 
and v is a characteristic function that describes how values are assigned to different coalitions of 
players.  
 
Proportional Methods are various allocation methods where shares of the total cost are assigned 
to each player i based on certain weights or criteria, as shown in Formula C. 
 

 
 

In Formula C, a_j is a share of the total cost C(N), and the sum of shares of all players is equal to 
1. There are different criteria used to determine a_j, but the most straightforward is the Egalitarian 
Method. With this method, as defined by Dror (1990), all players are treated equally regardless of 
their individual contributions, hence C(N) is divided equally among the players. In addition to the 
Egalitarian Method, previous studies have divided costs among players proportionally to demand, 
distance, volume, capacity, consumption, or willingness to pay (check Appendix A for further 
breakdown of the different proportional allocation schemes). 
 
It is evident that these traditional allocation methods each have distinct procedures as well as 
fairness criteria. To further reinforce the comprehension of allocation theories and judiciously 
select the most suitable method to solve the sponsor’s challenges, a systematic study of the 
existing literature on cost allocation theory was undertaken.  

Formula A : 

Formula B : 

Formula C : 
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2.2 Literature Study  
 
Searching through existing literature allowed for a deeper understanding of how allocation 
methods have evolved over time. By weaving together seminal works from renowned researchers 
such as Dror, Shapley, and Engevall, with more recent scholarly contributions, the body of 
literature maintains a balance of traditional methods and novel approaches.  
  
The literature was examined through several areas. First, the primary cost allocation method of 
each article was identified, which was either Shapley, Nucleolus, or Proportional Method. This 
provides a comprehensive view of the allocation methods most frequently used in prior research 
and studies. Next, the specific strategy for allocation was identified, such as the Core, Shapley 
Values, Demand Nucleolus, Equal Profit Method, Egalitarian Method, and others. This enables 
an understanding of the specific techniques and strategies used for cost allocation and allows for 
an assessment of whether traditional methods remain effective over newer variations or 
derivatives.  
 
Further, the main problem statement of each article was identified and classified into one of five 
broad categories: Traveling Salesman, Vehicle Routing, Horizontal Cooperation, Inventory 
Systems, and Transportation Planning. This categorization helps determine which problem types 
are previously tackled through different allocation methods. From the comprehensive analysis, a 
resulting corpus of 61 academic papers was compiled (see Appendix A). 
 
2.3 Results of the Literature Study 
 
The literature study on cost allocation methods within supply chains and logistics showcases a 
diverse spectrum of studies spanning over four decades. Figure 1 highlights that horizontal 
cooperation emerges as the dominant theme, indicating a rising interest in the complexities and 
significance of collaboration in supply chain networks. In contrast, inventory systems have 
comparatively fewer studies in the context of cost allocation. A closer examination on the dates 
of publications reveals that the most recent studies concentrate on horizontal cooperation and 
transportation planning. Conversely, the Traveling Salesman Problem, which has foundational 
works from as early as 1983, suggests its long-standing relevance to cost allocation methods and 
theories. 
 
Problem Type Literature 

Count 
Papers Discussed 

Traveling Salesman 7 Fishburn and Pollak (1983), Dror (1990), Engevall et al. 
(1998), Engevall et al. (2004), Yengin (2012), Kimms and 
Kozeletskyi (2016), Levinger et al. (2020) 

Vehicle Routing 8 Göthe-Lundgren et al. (1996), Engevall et al. (2004), 
Krajewska et al. (2008), Crujjssen et al. (2010), Liu et al. 
(2010), Özener (2014), Zakharov and Shchegryaev (2015), 
Leenders et al. (2017) 
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Horizontal Cooperation 12 Özener and Ergun (2008), Agarwal and Ergun (2010), 
Granot et al. (2011), Lozano et al. (2013), Nguyen et al. 
(2014), Vanovermeire et al. (2015), Hezarkhani et al. 
(2015), Otero-Palencia et al. (2018), Algaba et al. (2018), 
Schulte et al. (2019), Zheng et al. (2019), Wang (2023) 

Inventory Systems 5 Wong et al. (2007), Fiestras-Janeior et al. (2012), Özener 
et al. (2013), Fang and Cho (2014), Vos and Raa (2018) 

Transportation Planning 9 Sakawa et al. (2001), Frisk et al. (2010), Massol and 
Tchung-Ming (2010), Wang et al. (2015), Flisberg et al. 
(2015), Wu et al. (2017), Gnecco et al. (2020), Bogachev et 
al. (2021), Estañ et al. (2021) 

 
Figure 1 - Overview of Literature by Problem Type 

 
Figure 2 illustrates the frequency of the different allocation strategies used in various problem 
types. These strategies fall under three main categories: Shapley, Nucleolus, and Proportional 
Methods. These categories include both traditional methods and its variants that have been 
developed over the years. For example, the Shapley category includes the Core concept, Shapley 
Values, Shapley Monotonic Path (SMP), Line Rule, and other Shapley strategy variants.  
 

Problem Type 
Count of Allocation Methods 

Shapley Nucleolus Proportional Methods 

Traveling Salesman 6 2 3 

Vehicle Routing 7 4 3 

Horizontal Cooperation 10 4 4 

Inventory Systems 4 1 2 

Transportation Planning 5 3 5 

Total 32 14 17 

 
Figure 2 - Allocation Methods by Problem Type 

 
Figure 3 offers a detailed analysis of the data presented in Figure 2, delineating the specific 
allocation strategies applied to various problem types. 
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Figure 3 - Heatmap of Allocation Strategies Used Across Literature 
 

Figures 2 and 3 indicate that the Shapley method is the predominant strategy in addressing 
logistics and supply chain cost allocation issues. This method's widespread adoption is largely 
attributed to its foundation in fairness principles, which considers the marginal contribution of each 
participant to the total incurred cost of serving all customers in a route. This approach distinctly 
contrasts with alternative methods, which typically do not connect cost allocation to an individual 
player's marginal cost. 
 
In particular, the Nucleolus method proves unsuitable for the sponsor company, primarily because 
the sponsor operates as the singular decision-maker in their transportation network. 
Consequently, the Nucleolus method's focus on the collective dissatisfaction within a network 
becomes inapplicable, as the company solely governs the decision-making process. Additionally, 
proportional methods are inadequate, failing to offer equitable solutions for customers due to their 
disregard for the myriad factors influencing costs, such as distances, weights, volumes, and time.  
 
Consequently, the Shapley method emerges as the most suitable for cost allocation within the 
sponsor’s network. It adeptly calculates each client’s unique cost contribution, taking into account 
crucial factors that influence the sponsor’s logistical cost function. This approach effectively 
highlights the true impact of each client on the costs associated with every delivery shift. 
Therefore, the concept of Shapley values has been adopted as the primary strategy to effectively 
tackle the challenges faced by the sponsor company. However, to ensure that this is the most 
suitable allocation method chosen for the sponsor company, it is imperative to establish a metric 
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that quantifies the deviation between the Shapley method and the current weight-based allocation 
method. 
 
2.4 Kullback-Leibler Divergence 
 
The Kullback-Leibler (KL) divergence is a measure from information theory that provides a 
quantitative measure of how one probability distribution diverges from a second, reference 
probability distribution, as shown in Formula D. 
 

                             
 
The KL divergence provides a singular numeric indicator that captures the divergence between 
the allocation distributions as generated by the Shapley method and those produced by the 
proportional method. This metric is beneficial for comparing how different methods distribute value 
among elements, such as allocating benefits among participants in a cooperative game (Kullback 
and Leibler, 1951).  
 
Within the KL divergence theory, a KL value nearing 0 signifies a strong similarity (or minimal 
divergence) between the distributions, and a measure approaching 1 indicates a pronounced 
difference. As highlighted in Formula D, the logarithmic nature of the equation ensures that if the 
two allocation distributions P and Q are the same, the logarithm yields a value of 1, resulting in a 
KL value of 0, thus denoting that both distributions are identical. Conversely, largely divergent 
distributions will have an upper limit KL value of 1. This framework makes it feasible to 
quantitatively determine the extent of agreement or disparity in the allocations made by two 
allocation methods, which considers fairness and efficiency in resource distribution. 

 
3. Project Methodology 
 
To address the sponsor company’s challenges of inequitable cost allocation, the following steps 
were pursued: 
  

1. Data Exploration: This an initial step to comprehend the dataset provided, including its 
topology and characteristics of the sponsor’s delivery network.  
 

2. Data Cleaning: The data is then cleaned and refined so that it can be used for the model.  
 

3. Shapley Model Development: A model is developed to derive the Shapley value of each 
client within each route or delivery shift. 
 

4. Model Execution: The working model is applied to a single factory test case. 
 

Formula D : 



 

   11 

5. Model Testing and Evaluation: Upon successful model execution, the model is 
deployed across the entire network of factories. Analysis is conducted to characterize 
customers and understand freight dynamics. 

 

6. Divergence Analysis: The output of the model is evaluated against the sponsor’s 
existing allocation method. Divergence analysis is performed to assess the impact of the 
Shapley method versus the proportional method. 

 

7. Machine Learning Model: A machine learning model is developed to predict whether the 
Shapley model or the existing weight-based model is more suitable for certain clients on 
specific delivery shifts. For customers unsuitable with the proportional method, guidance 
is given on how to properly charge these customers with respect to the divergence 
between the Shapley model and the existing weight-based model. 
 

8. Allocation Policy Development: The Shapley model, machine learning algorithm, and 
obtained results is synthesized into a tailored allocation policy. 

 

 
 

Figure 4 - Project Methodology Overview 

 
4. Data Management and Model Development 
 
4.1 Data Exploration and Cleaning 
 
Prior to constructing the Shapley Model to address the challenges faced by the sponsor company, 
a thorough understanding of the underlying data is essential. An initial exploration revealed that 
the dataset contains 139,528 entries detailing 25,390 trips and 39,506 stops from June 2021 to 
July 2023. Each entry provides comprehensive details including information on shifts, deliveries, 
stops, locations, contractors, costs, trailers, and products. 
 
After exploring the dataset, the data was subsequently cleaned to prepare it for use in the Shapley 
model. Upon review, the data appears to be correctly formatted according to their intended uses, 
such as date in date-time format, or costs and coordinates as numerical values. Further, missing 
and zero values were checked in the dataset. Analysis revealed that 8 rows of data were missing, 
representing a delivery shift with missing data values. Additionally, 3,529 rows contained zero 
values for the weight or volume of products shipped, hinting that these products were not 
delivered. Consequently, rows with zero weight or volume delivered were dropped as well. The 
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missing data and zero values represent 2.53% of the entire dataset, hence the rows were dropped 
rather than handled with imputation. 
 
After exploring and cleaning the dataset, important portions of the dataset had to be refined and 
extracted in meaningful ways for the model to run. The model's objective is to calculate the 
Shapley value for each client on every delivery route. This process involves several key steps: 
first, the dataset is segmented into smaller subsets that are filtered to each factory; subsequently, 
a distance matrix for each factory subset is generated; and finally, the results for each factory are 
used to compute the Shapley values for each client. These steps are depicted visually through a 
process map in Figure 5 and will be discussed further in the next subsections.  
 

 
 

Figure 5 - Project Process Map 
 

4.1.1 Factory Filtration 
 
The primary dataset covers routes originating from the distinct factories of the sponsor company. 
To streamline and enhance the efficiency of calculating Shapley values, the master dataset was 
partitioned into separate segments, where each segment represents a specific factory of origin. 
Among these factory segments, the largest network comprises 19,436 entries, while the smallest 
network has merely 2 entries. On average, each factory network has 8,707 entries. The volume 
of data corresponding to each factory is illustrated in Figure 6. 
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Figure 6 – Number of Rows for Each Factory Dataset 

 
 
4.1.2 Distance Matrix 
 
Upon segmenting the master dataset by factory, a distance matrix for each segment was 
constructed. This matrix calculates all possible distances between every client serviced by each 
respective factory using the Euclidean method. This approach computes the geometric distance 
between two points, as indicated by the Euclidean distance equation in Formula E. 
 
                                                      𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒	𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 	.(𝑥! − 𝑥")! + (𝑦! − 𝑦")! 
 
The creation of distance matrices between clients is a pivotal element of the analysis, serving as 
an essential component in the computation of Shapley values. The Shapley value of a client 
represents the marginal cost of adding a client into a route. Consequently, the distance factor 
plays a significant role in influencing this cost. 
 
It is important to note that the Euclidean distance serves as a proxy for the traveled distance 
between routes, representing a lower bound of the actual distance traveled. Consequently, it does 
not fully capture the true distances covered in practice. This simplification was adopted for ease 
of use. Ideally, incorporating the actual traveled distances would have provided a more accurate 
measure, but this information was unavailable during the development of this project. 
 
4.2 Shapley Model 
 
Following the development of distance matrices for each factory dataset, these matrices were 
integrated into the Shapley model, which was implemented in Python. This model is responsible 
for calculating the Shapley value for each client on each route originating from each factory. This 
enables the determination of the actual cost attributed to a client within a route and the allocation 
of costs across the network accordingly.  
 

Formula E : 
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The Shapley model incorporates several critical functions. First, it includes a distance function 
that determines the relative distance between clients, utilizing the data from the distance matrices. 
Second, it features a logistic cost function that computes the logistic costs for covering each 
distance, comprising both a fixed stop cost and a variable distance cost based on the data 
provided by the sponsor. Additionally, the model encompasses a game accumulated cost function 
that calculates the costs associated with running permutations of the network excluding the client 
for whom the marginal value is sought. This function is instrumental in determining the marginal 
cost of a client i for a given permutation p by calculating the difference between the cost of the 
route permutation with the inclusion of the client and without it, as illustrated by Formula F. 
 
                                𝑀𝑎𝑟𝑔𝑖𝑛𝑎𝑙	𝐶𝑜𝑠𝑡($,&) = 𝑇𝑜𝑡𝑎𝑙	𝑅𝑜𝑢𝑡𝑒	𝐶𝑜𝑠𝑡($()) − 𝐺𝑎𝑚𝑒	𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑	𝐶𝑜𝑠𝑡()) 
 
Ultimately, the model employs Formula F to find the marginal cost of each client for a given 
permutation. The Shapley value of a given client is then computed by taking the average of the 
marginal contributions across all permutations, which is done for every client on every route. This 
analysis is conducted across all factory datasets and the results are exported as new Excel files 
containing Shapley value information.  
 
In a similar fashion, another model was developed to calculate a client's marginal distance within 
a route, rather than their marginal cost. Since the distances are known to the model through the 
distance matrices, an additional feature was implemented to calculate which portion of the 
distance was contributed by the addition of each client. Since only distance is considered, the 
computed marginal distances for each client on every route are relevant for further analysis, 
including the allocation of carbon emissions across routes. 
 
Given the inherent complexity of the sponsor’s networks, certain factories pose greater challenges 
in computing Shapley values than others. Factory H presents the highest computational 
challenge, with over 13 shipment points within a single route. Given the necessity of calculating 
every possible client permutation in a route, this equates to 13 factorial or 6.23 billion permutations 
to assess to calculate the respective Shapley values. Conversely, Factory D, with a more 
manageable dataset and over 8 factorial permutations comprising 7,001 rows, represents one of 
the lowest complexity levels for computation outside the trivial case of Factory L. Details on the 
complexity of datasets in relation to model computation are provided in Figure 7. 

 
Figure 7 – Number of Shipment Points for Each Factory Dataset 

Formula F : 
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With the Factory D dataset exhibiting one of the lowest complexities, the model was initially tested 
with this factory dataset alone. Following the successful error-free computation of Shapley values 
for each client on each shift from Factory D, the Shapley model was then deployed across the 
entire network of factories. For computational optimization, routes larger than 10 shipment points 
were filtered out, representing only 0.86% of the data (check Appendix B for further details on 
data filtration). The results obtained from the model are discussed in the following section. 
 
5. Results 
 
5.1 Shapley Values 
 
Following the successful deployment of the Shapley model across the network of factories, 
distinct Excel files were generated for each factory containing the Shapley values of each client. 
The data in these files were aggregated on two levels. First, each row represents a delivery point 
and second, they are further grouped by the number of products. This aggregation process yields 
smaller factory dataset files, each including the Shapley values of each client. Figure 8 
summarizes the overall outputs of the Shapley model. 
 

Average Number 
of Rows 

Total Number 
of Rows 

Minimum Number 
of Rows 

Maximum Number 
of Rows 

6,496 97,442 1,495 (Factory K) 15,409 (Factory M) 
 

Figure 8 – Summary Statistics of Shapley Model Output 
 
Collectively, the data points from the model output files total to 97,444 Shapley values. The 
Shapley values highlight which clients have low marginal contributions on each shift, which 
ultimately helps in crafting an allocation policy for the sponsor company. However, given the 
vastness of the entire dataset, it becomes challenging to derive further meaningful insights directly 
from these values. Therefore, these results will be visualized to obtain a clearer understanding of 
the Shapley data. 
 
5.1.1 Factory Analysis 
 
It is first essential to gauge the relative contribution of each client within various factory networks. 
To this end, histograms of Shapley values were generated for each factory, elucidating the overall 
distribution of the Shapley values of clients served. Overall, the distributions of Shapley values 
are positively skewed across most factories, indicating that most clients have a relatively low 
marginal contribution, with a few accounting for significantly higher contributions. Contrastingly, 
factories like Factory E display a more even spread of Shapley values. 
 
In addition, factories such as Factory J and O exhibit distributions where certain clients possess 
exceptionally high Shapley values. This may be due to the fact that these clients’ routes have 
very few shipment points with far distances and varying weights. For instance, in Factory J, the 
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shift 59492ORS serves only two clients, where client 5562806 has the highest recorded Shapley 
value in the entire Factory J network and also has a weighted distance tenfold greater than the 
other client in the shift. Additional insights into the distribution patterns of Shapley values across 
different types of factories are detailed in Figure 9.  
 

 
 

 
 

Figure 9 – Histogram of Shapley Values Across Factories 
 

Figure 9 highlights different types of Shapley distributions for the sponsor company’s factories 
(check Appendix C for the distribution across all factories). A Shapley distribution that Factory A 
follows has lower and more evenly distributed Shapley values, which hints that clients are located 
closer to the factory. However, a Shapley distribution for Factory F shows a more dispersed 
distribution of Shapley values, where certain clients may purchase more products or delivery 
trucks are filled with greater volumes. This is even more apparent for Factories J and O where 
the range of Shapley values are significantly wider among clients. The overall Shapley 
distributions reveal that there are certain customers on routes that have disproportionately high 
Shapley values potentially due to contrasting factors such as volume, distance, or weight. 
 
In addition to understanding the Shapley value distribution of each factory, it is imperative to 
concurrently examine the geographical distribution and dispersion of clients relative to each 
factory. The inclusion of clients situated at far distances can significantly influence routes, thereby 
disproportionately escalating costs for other clients on the same shift. Allocating costs is a zero-

Histogram of Factory A Histogram of Factory F 

Histogram of Factory J Histogram of Factory O 
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sum game, where the gain of one party directly corresponds to the loss of another. Under the 
sponsor’s proportional allocation method, clients closer to factories could essentially be 
subsidizing the additional expenses incurred by other clients significantly located further away, 
especially if the volume sold to distant locations is inversely proportional to the total distance 
traveled.  
 
Figure 10 provides a visual representation of such scenarios, pinpointing clients considered 
outliers. These outliers are identified based on the empirical rule, specifically those whose 
locations lie beyond two standard deviations from the mean, as indicated by their labelled 
positions on the maps. It is evident that there are outliers across the factories' distribution 
networks that may possibly exert a disproportionate influence on the cost allocation for other 
clients along the same route (check Appendix D for visualization of all factory locations). 
 
 

  

 
 

Figure 10 – Geographical Visualization of Clients Across Factories 
 

 

Locations in Factory A Network 
 

Locations in Factory F Network 

Locations in Factory J Network 
 

Locations in Factory O Network 
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5.1.2 Carbon Emissions 
 
In addition to the Shapley values and geographic distances of locations across the network, the 
carbon emissions across the networks could also be assessed. This is achieved by computing 
the ratio of each client's marginal distance on a given route, multiplied by the route's carbon 
emissions. The marginal distance is calculated using the Shapley concept but focuses on the 
marginal distance rather than the marginal cost of each client on a route. Figure 11 highlights the 
Scope 3 emissions (transportation and distribution) across the sponsor company’s factories. 

 
 

Figure 11 – Carbon Emissions Across Factories 
 
Analyzing the Shapley model results provide insights into decision making for cost allocation. 
Nevertheless, just focusing on Shapley values and geographical distances do not encapsulate 
the entirety of the cost allocation paradigm. Excluding clients solely based on their low Shapley 
values or far geographic distances would be an oversimplification. Thus, a more robust approach 
entails a comparative analysis between the current weight-based proportional method and the 
Shapley method at the shift level. This approach would enable a detailed understanding of the 
necessity to employ the Shapley method for specific clients and routes, facilitating a more 
equitable and precise allocation of costs. To this end, the Kullback-Leibler divergence is used to 
quantify the divergence between the two allocation methods. 
 
5.2 Divergence Analysis 
 
A Python script was developed to calculate the Kullback-Leibler (KL) divergence for each shift 
within each factory dataset, thereby facilitating an objective comparison of allocation methods at 
the shift level. To accomplish this, two types of ratios from each client are required: the Weight 
Ratio and the Shapley Ratio. The Weight Ratio of a client is defined as the quotient of the client's 
weight on the shift to the total weight of the shift, representing the proportion of the total shift 
weight that is allocated to the client. Similarly, the Shapley Ratio is computed by dividing the 
client’s Shapley value by the aggregate of Shapley values across the shift, reflecting the client's 
proportional contribution to the total value assessed via the Shapley method. The summation of 
these ratios across a shift must equal 1, indicating a distribution among all delivery points. These 
distributions serve as inputs to compute the KL divergence, which clearly highlights the difference 
between the allocation distributions from the Shapley method and the proportional method for 
each shift. 
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The results of the Python script revealed that the delivery shifts across factories have a modest 
yet significant divergence between the Shapley method and weight-based proportional method. 
This is further reinforced through Figure 11, where the computed average KL divergence value 
across all factories is 0.175.  
 

 
 

Figure 11 – Average KL Value for Each Factory Dataset 
 
The general KL divergence across factory networks exhibits a positive skew. Approximately half 
of all shifts across the networks demonstrate a divergence of 10% or less when comparing the 
Shapley and weight-based proportional methods. Figure 12 offers a more detailed visual 
representation of this distribution. Consequently, a threshold of 10% is established to guide the 
decision on whether to utilize the Shapley method or not. For cases in which the KL divergence 
surpasses this threshold, the adoption of the Shapley allocation approach is recommended for 
the shift. On the other hand, where the KL divergence is below the threshold, the existing weight-
based proportional method remains preferable. 
 

  
 

Figure 12 – Distribution of KL Divergence Across Factory Shifts 

Average KL 
Value: 0.175 
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Understanding this divergence is crucial, not only for its criticality in identifying situations where 
the Shapley method proves beneficial, but also for its practical implications in monetization By 
applying the insights gained from KL divergence, it is possible to systematically evaluate whether 
clients are potentially overcharged or undercharged under the current system. This quantitative 
assessment allows to explore a more equitable cost allocation policy that aligns closer to the 
actual value provided by the logistics network to each client. 
 
5.3 Monetization 
 
Building on the insights from the KL divergence analysis, the dynamics of monetization within the 
context of resource allocation are explored. Allocation across distribution networks is inherently 
representative of a zero-sum game. This asserts that the total amount of resources available for 
distribution is fixed; thus, any increment in allocation to one client necessarily results in a 
decrement to another. This finite nature of resources necessitates judicious management to 
ensure fair and efficient distribution.  
 
Inequitable allocation can inadvertently foster biases in managerial decision-making. Such biases 
could manifest in favoring certain clients with additional resources to secure their deliveries, 
potentially at the expense of other clients. For instance, this could lead to scenarios where clients 
located further away are systematically undercharged, receiving a cost allocation smaller than 
what is fair, especially for distant customers buying small amount of products. Further, closer 
clients might find themselves overcharged and essentially subsidizing the gains accorded to the 
more distant clients. 
 
These biases can distort the overall efficiency and fairness of the allocation system. They 
undermine the principle of equitable resource distribution based on actual use or contribution, as 
outlined by the Shapley method, which aims to distribute costs more accurately based on the 
marginal contribution of each client to the collective cost.  
 
5.3.1 Cost Divergence 
 
To address inefficiencies in the current allocation method, the cost divergence between the 
Shapley method and the weight-based method is calculated. Understanding the cost divergence 
is crucial for ascertaining the gains or losses associated with each allocation method, which in 
turn facilitates the determination of which customers are undercharged or overcharged from an 
accounting perspective. 
 
To calculate the cost divergence, it is imperative to find the allocation cost of each method. This 
is initiated by obtaining the Shapley and weight ratios for each client on each route, as done 
previously when deriving KL divergence. These ratios are indicative of the preference for each 
allocation method, with a higher Shapley ratio suggesting a greater suitability for Shapley 
allocation, and vice versa. The allocation costs are then calculated by multiplying the freight cost, 
obtained from the master data for each client on each route, with their respective allocation ratios. 
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This procedure results in freight costs for both the allocation methods as shown in Formulas G 
and H. 
 
 
 

𝑪𝒐𝒔𝒕𝑾𝒆𝒊𝒈𝒉𝒕'𝑩𝒂𝒔𝒆𝒅 = 𝐶𝑜𝑠𝑡,-./012 ∗
3./012!"#$%&
3./012'(#)&

           𝑪𝒐𝒔𝒕𝑺𝒉𝒂𝒑𝒍𝒆𝒚 = 𝐶𝑜𝑠𝑡,-./012 ∗
819:;.<	>9;?.!"#$%&
819:;.<	>9;?.'(#)&

 

 
Subsequently, the cost divergence between the two methods is calculated by subtracting the cost 
of the Shapley allocation from the cost of the weight-based allocation. The detailed results of the 
cost divergence for each factory are illustrated in Figure 13. Notably, the highest divergence is 
observed at the Factory M, aligning with its status as the factory with the largest dataset among 
the factories. 

 
 

Figure 13 – Cost Divergence of Allocation Methods Across Factories 
 
The total cost divergence across all factories amounts to a total monetary value of $12,973,695 
over 2 years. This corresponds to $6,486,847.50 per year. This amount represents the potential 
financial benefit that could be realized if allocation were conducted more equitably, ensuring that 
customers are charged more accurately. 
 
5.3.2 Client Charges 
 
To further analyze the landscape of how clients are charged, the results from the cost divergence 
across factories can be utilized. This allows for the assessment of whether clients are charged 
fairly within each shift. To determine if a client is charged equitably, each client’s Shapley ratio is 
subtracted from their weight ratio. A positive value indicates that the client is overcharged under 
the weight allocation method, whereas a negative value denotes that the client is undercharged 
and should be allocated a larger cost under the Shapley method. 
 
To calculate the unfair excess amount paid by overcharged clients, the average cost divergence 
is divided by the number of overcharged clients within a factory. Similarly, to determine the 
subsidy enjoyed by undercharged clients, the cost divergence is divided by the number of 
undercharged clients within a factory, as shown in Formulas I and J. 
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From Formulas I and J, it is worth noting that while the cost divergence is the same for both the 
overcharged and undercharged customers, the total amount of overcharged and undercharged 
customers is not necessarily the same, which leads to varying average excesses and subsidies. 
Applying this function across the datasets of factories enables the determination of how each 
customer is charged for every shift. This identifies whether each customer is overcharged or 
undercharged within a shift, and ultimately what constitutes a fair value to charge them to ensure 
equitable allocation. Figure 14 displays the excess amounts paid by overcharged clients and the 
subsidies enjoyed by undercharged clients across factories. Understanding these charges not 
only facilitates the determination of how to fairly assess the cost to serve each client across shifts 
but also identifies opportunities to gain additional profits.  
 

 
 

Figure 14 – Average Client Excess and Undercharge Trends Across Factories Over Time: 
Proportional vs. Shapley Methods 

By combining the Shapley values, cost divergence, and client charges, a more equitable 
allocation, fairer charges, and increased profitability can be achieved. In addition, to further 
enhance this framework and ultimately craft a robust allocation policy, a proposal of a machine 
learning model has been developed to predict the propensity of whether a client should follow a 
Shapley or proportional weight-based allocation.  

 
6. Machine Learning 
 
In the previous section, the delivery network and orders were thoroughly characterized. This 
section focuses on developing a machine learning model to predict whether a new order from a 
known client should follow either the proportional method or the Shapley method for cost 
allocation. If an order is predicted to follow the proportional method, the volume or weight quoted 

Formula I : Formula J : 
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can be used as a proxy for the allocation. However, this does not apply if the proportional method 
varies excessively compared to the Shapley method. Accurate forecasting is crucial due to the 
significant impact of cost allocation on profitability. By correctly charging for costs, the sponsor 
company ensures that all clients bear the true logistics expenses incurred in serving them. 
 
6.1 Feature Selection and Engineering 
 
At the time of quotation, the sponsor does not necessarily know the specific shipment that will 
deliver the order, meaning there is no information on the number of customers or their respective 
locations. As a result, the features available for a machine learning model are limited. The known 
features at the time of quoting an operation include the network where the customer is located, 
the distance from the shipment to the delivery point, the date, and the amount and quantity of the 
product being quoted. 
 
Besides these available features, a centrality feature was proposed to improve model 
performance. The rationale behind this feature is that if a given client X has many other clients 
nearby, these nearby clients are likely to be served on a future route. For the machine learning 
model, centrality is defined as the average distance from client X to the Z closest historic 
customers. The centrality of each customer within each network was calculated using different 
numbers of neighboring customers Z: 25, 50, 75, and 100. 
 
Additionally, factories are recognized as a crucial feature for the model, helping to account for 
varying parameters among networks. One-hot encoding was applied to represent each factory as 
a numerical feature. 
 
Conclusively, the features used for the machine learning model are the operational pounds (which 
represent the total weight of the products being quoted for the order), total products, distance 
from the shipment point to the client’s delivery location, a centrality measure for the Z nearest 
customers within the same delivery network, and factories encoded as a numerical value. 
 
6.2 Machine Learning Model 
 
To classify and predict whether an order should follow the Shapley method or the proportional 
method, a logistic regression was developed. Logistic regression, commonly used for binary 
classification tasks, estimates the probability that a given observation belongs to a particular 
class. In this case, the logistic regression model aims to determine the most suitable allocation 
method for each order. 
 
However, to utilize the logistic regression model effectively, the data must first be labelled. This 
labelling enables the model to train and learn, and eventually make predictions on which allocation 
method an order should follow. Two different approaches for labelling the data were considered. 
The first is based on the KL method, which measures the similarity between the proportional and 
Shapley methods. The second approach is based on the difference in monetary value between 
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both allocations methods. These two labelling approaches were explored to identify the optimal 
labelling strategy that would yield a balanced dataset and high-accuracy model. 
 
6.2.1 Labelling Based on KL Values 
 
Under the KL approach, the logistic regression model leverages the KL divergence value of each 
shift for labelling data. If the KL value exceeds a certain threshold, the shift is classified to follow 
the Shapley allocation, whereas if it falls below that limit, it is considered to follow the proportional 
method. A lower KL divergence means that the two methods are similar, and therefore the 
proportional method should suffice for prediction. When KL is larger, the methods differ more 
significantly. However, defining a threshold is not straightforward, and multiple values for this KL 
value threshold were tested to calibrate the model.  
 
As highlighted in Figure 15, various KL divergence thresholds were systematically evaluated to 
determine the most appropriate classification boundary. By varying these thresholds, the ratio of 
Shapley allocations to proportional method classifications fluctuates across shifts, which helps 
enable the identification of the most suitable model for cost allocation. 
 

KL Divergence Threshold % of Orders that follow 
Proportional Method 

% of Orders that follow 
Shapley Method 

5% 0.19 0.81 
7.5% 0.28 0.72 
10% 0.37 0.63 

12.5% 0.44 0.56 
15% 0.51 0.49 

 
Figure 15 – Percentage of Allocation Distribution for Various KL Thresholds 

 
It is evident from Figure 15 that a low threshold has significantly high data imbalance between 
both allocation ratios. Unbalanced data can negatively affect the performance of logistic 
regression because the model may become biased towards the majority class (Japkowicz, 2000). 
This denotes that the model might predict the Shapley method for most instances, regardless of 
the actual distribution of orders that follow the proportional method. Consequently, this results in 
poor classification performance, particularly for the proportional method class, and favors 
classifying orders as following the Shapley method. 
 
6.2.2 Labelling Based on Monetary Difference 
 
An alternative method for labeling the data is to consider the monetary value difference between 
the Shapley and proportional methods. This approach subtracts the cost of the Shapley method 
from that of the proportional method for each order. If the number is negative, the order is 
classified to follow the Shapley allocation; if the monetary difference is positive, the order is 
classified to follow the proportional method. 
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Using this method allows the identification of customers who are under-allocated based on the 
proportional method so that appropriate measures can be taken. Conversely, if the Shapley 
method indicates that a customer should pay more, those operations will be labeled to follow the 
Shapley allocation, and proportional method if not. By using this approach, the dataset becomes 
more balanced. 
 
6.3 Model Outcomes and Testing 
 
To evaluate the model's effectiveness, various scenarios were defined using different feature 
sets. Model performance was assessed using the Area Under the Receiver Operating 
Characteristic Curve (AUC) and the distribution of orders between the Proportional and Shapley 
methods. The AUC is a performance metric used to evaluate the predictive ability of binary 
classification models, including logistic regression. An AUC score of 0.5 indicates that the model 
is no better than random guessing, while a score of 1.0 represents a perfect classifier.  
 
The logistic regression model was run for both the KL labelling approach and the monetary 
difference labelling approach, while using the features selected in Section 6.1. The results from 
both approaches are compared to assess model performance. 
 
 

KL 
Divergence 
Threshold 

Number of Z  
customers for 

Centrality 

AUC % of Orders that 
follow 

Proportional 
Method 

% of Orders that 
follow Shapley 

Method 

5% Granular (25, 
50, 75, 100) 

0.56 0.2 0.8 

5% 100 0.52 0.2 0.8 
7.5% Granular (25, 

50, 75, 100) 
0.56 0.29 0.71 

7.5% 100 0.49 0.29 0.71 
10% Granular (25, 

50, 75, 100) 
0.55 0.38 0.62 

10% 100 0.58 0.38 0.62 
12.5% Granular (25, 

50, 75, 100) 
0.56 0.45 0.55 

12.5% 100 0.56 0.45 0.55 
15% Granular (25, 

50, 75, 100) 
0.57 0.52 0.48 

15% 100 0.57 0.52 0.48 
 

Figure 16 – Results from KL Labelling Approach 
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Number of Z  
customers for 

Centrality 

AUC % of Orders that 
follow 

Proportional 
Method 

% of Orders that 
follow Shapley 

Method 

100 0.79 0.47 0.53 

 
Figure 17 – Results from Monetary Difference Labelling Approach 

 
Figures 16 and 17 clearly illustrate that the Monetary Difference method results in a more 
balanced classification distribution between the proportional and Shapley methods compared to 
the KL method. Maintaining a balanced dataset is crucial for logistic regression models, as 
imbalanced data can significantly distort predictions and undermine overall accuracy. 
Furthermore, employing the Monetary Difference method substantially enhanced the AUC, or 
predictive capability, of the model to 0.79. In addition to improved predictive performance, the 
Monetary Difference method offers the advantage of simplicity by providing a clear understanding 
of the monetary value, as opposed to the KL value. Given these considerations, it is evident that 
the Monetary Difference method is better suited for policy formulation. 

 
7. Allocation Policy 
 
By using the machine learning model, an allocation policy could be developed. First, a logistic 
regression model determines whether an order should follow the proportional or Shapley 
allocation method. If the order of a known client is classified to follow the proportional weight-
based allocation method, the existing allocation practices of the sponsor company should be 
maintained. However, if the order is classified to follow the Shapley allocation method, the weight-
based allocation method must still be used, yet a surcharge to cover the true estimated cost of 
serving a given client needs to be charged over this allocation. Figure 18 outlines the overall 
allocation policy process. 
 

 
 

Figure 18 – Flow for Allocation Policy 
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To calculate the surcharge, a straightforward approach is proposed. Given that the surcharge is 
calculated for orders predicted to follow the Shapley method, the policy focuses exclusively on 
customers for whom this method is applicable. By examining historical deliveries that exhibit a 
divergence between the two methods, where the Shapley method should have yielded a higher 
value than the proportional method, it is possible to construct a probability distribution for the 
divergence value for each factory. This distribution is then added to the proportional method.  
 
Figure 19 presents a representative distribution of the difference between methods for cases 
where the Shapley method should have been employed at Factory F. It is important to note that 
the divergence is represented as a negative value, as it denotes the difference between the two 
methods, considering only cases where the Shapley method resulted in a higher value. From this 
analysis, it can be inferred that, in most cases, the overcharge for the proportional method should 
have been less than $200 to align with the Shapley method. 
 

 
 

Figure 19 – Distribution of Monetary Differences for Cases Favoring Shapley Method (Fact. F) 
 

The company should define a confidence level and use it with the previously defined cumulative 
distribution function (CDF) for the differential between both allocation policies for each network. 
Defining a confidence level ensures that the actual costs of serving a customer are covered. 
Furthermore, the cumulative distribution function can be adjusted conditionally based on distance, 
the number of products being quoted, or a combination of these factors. Ultimately, the policy can 
include these variables as well. 
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8. Conclusion 
 
A comprehensive literature review of allocation methods was conducted. As a result, the Shapley 
method is used to allocate costs fairly among clients, as it accounts for the marginal contribution 
of each client to the total cost on each route. Each order on a given route is assessed and labeled 
based on the monetary difference between the proportional method and the Shapley method. 
Significant divergences between the two methods have been observed, both in relative 
percentages and monetary value. 
 
The analysis estimated a difference of approximately $13 million between the two methods across 
the network over time, affecting half of the customers with a divergence of 10% or greater. 
Although transforming this difference directly into profit is challenging, given that allocation is a 
zero-sum game, it is possible if customers undercharged by the proportional method can be 
identified before finalizing business deals and are charged accordingly. 
 
A logistic regression model was employed to predict whether a future client would be best 
allocated using the proportional method or the Shapley method. Once the allocation policy is 
established, implementing the proportional method is straightforward, whereas the Shapley 
method requires further analysis. For orders of a client that are predicted to follow the Shapley 
allocation, the proposed approach involves considering the historical distribution of differences 
between the methods where the proportional method fell short and setting a confidence level to 
ensure that a defined percentage of cases is covered. This value is then surcharged to the current 
weight-based policy that the company follows. 
 
By only modifying the policy for the customers that are predicted to follow the Shapley allocation, 
the company effectively builds a safety budget, ensuring that this policy cannot underperform 
compared to the traditional method. Furthermore, it partially captures the potential profit 
mentioned previously if the business context allows for establishing the surcharges. 
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Appendices 
 
Appendix A - Literature Review Database 
 

Allocation 
Method Author Year Title 

Problem 
Statement Allocation Strategy Focus 

Shapley Dror 1990 

Cost allocation: the 
traveling salesman, bin 
packing, and the 
knapsack. 

Traveling 
Salesman 

Shapley values for the 
knapsack problem. 

Shapley 
Engevall et 
al. 1998 

The traveling salesman 
game: an application of 
cost allocation in a gas and 
oil company. 

Traveling 
Salesman 

The core concept and Shapley 
values. 

Shapley 
Engevall et 
al. 2004 

The heterogeneous 
vehicle-routing game. 

Traveling 
Salesman, 
Vehicle 
Routing 

The core concept with 
constraint generation. 

Shapley Wong et al. 2007 
Cost allocation in spare 
parts inventory pooling. 

Inventory 
Systems The core concept. 

Shapley 
Krajewska 
et al. 2008 

Horizontal cooperation 
among freight 
carriers:request allocation 
and profit sharing. 

Vehicle 
Routing Shapley values. 

Shapley 
Agarwal 
and Ergun 2010 

Network Design and 
Allocation Mechanisms for 
Carrier Alliances in Liner 
Shipping 

Horizontal 
Cooperatio
n Shapley values. 

Shapley 
Crujjssen 
et a l. 2010 

Supplier-initiated 
outsourcing: a 
methodology to exploit 
synergy in transportation. 

Vehicle 
Routing 

Introduced the Shapley 
Monotonic Path (SMP) with 
Shapley values. 

Shapley Frisk et al. 2010 

Cost allocation in 
collaborative forest 
transportation. 

Transporta
tion 
Planning 

Shapley values compared to the 
Equal Profit Method. 

Shapley Liu et al. 2010 

Allocating collaborative 
profit in less-than-truckload 
carrier alliance. 

Vehicle 
Routing 

Shapley values compared to the 
Weighted Relative Savings 
Model. 

Shapley 
Massol and 
Tchung- 2010 

Cooperation among 
liquefied natural gas 

Transporta
tion Shapley values. 
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Ming suppliers: is rationalization 
the sole objective. 

Planning 

Shapley 
Granot et 
al. 2011 

On Chinese postman 
games where residents of 
each road pay the cost of 
their road 

Horizontal 
Cooperatio
n 

The core concept and considers 
the traditional nucleolus 
procedure. 

Shapley 

Fiestras-
Janeior et 
al. 2012 

Cost allocation in inventory 
transportation systems. 

Inventory 
Systems 

Introduced the Line Rule 
(Shapley values with less 
computational effort). 

Shapley Yengin 2012 

Characterizing the Shapley 
value in fixed-route 
traveling salesman 
problems with 
appointments. 

Traveling 
Salesman Shapley values. 

Shapley 
Lozano et 
al. 2013 

Cooperative game theory 
approach to allocating 
benefits of horizontal 
cooperation. 

Horizontal 
Cooperatio
n Shapley values. 

Shapley 
Özener et 
al. 2014 

Developing a collaborative 
planning framework for 
sustainable transportation. 

Vehicle 
Routing 

Modified Shapley values, by 
creating approximation method. 

Shapley 
Fang and 
Cho 2014 

Stability and endogenous 
formation of inventory 
transshipment networks. 

Inventory 
Systems 

Shapley values (in the form of 
the MJW value). 

Shapley 
Vanoverme
ire et al. 2014 

Integration of the cost 
allocation in the 
optimization of 
collaborative bundling. 

Horizontal 
Cooperatio
n Shapley values. 

Shapley 
Hezarkhani 
et al. 2015 

A competitive solution for 
cooperative truckload 
delivery. 

Horizontal 
Cooperatio
n Shapley values. 

Shapley Wang et al. 2015 

A methodology to exploit 
profit allocation in logistics 
joint distribution network 
optimization. 

Transporta
tion 
Planning Shapley values. 

Shapley 

Zakharov 
and 
Shchegrya
ev 2015 

Stable cooperation in 
dynamic vehicle routing 
problems. 

Vehicle 
Routing Shapley values. 

Shapley Kimms and 2016 Shapley value-based cost Traveling Shapley values to develop a 



 

   31 

Kozeletskyi allocation in the 
cooperative traveling 
salesman problem under 
rolling horizon planning 

Salesman model with lower NP-
completeness. 

Shapley Wu et al. 2017 
Using Shapley value for 
city bus route scheduling 

Transporta
tion 
Planning Shapley values. 

Shapley 
Leenders 
et al. 2017 

Emissions allocation in 
transportation routes 

Vehicle 
Routing Shapley values. 

Shapley 
Vos and 
Raa 2018 

Stability Analysis of Cost 
Allocation Methods for 
Inventory Routing 

Inventory 
Systems Shapley values. 

Shapley 

Otero-
Palencia et 
al. 2018 

A stochastic joint 
replenishment problem 
considering transportation 
and warehouse constraints 
with gainsharing by 
Shapley Value allocation 

Horizontal 
Cooperatio
n Shapley value function. 

Shapley 
Schulte et 
al. 2019 

Scalable Core and 
Shapley Value Allocation 
Methods for Collaborative 
Transportation 

Horizontal 
Cooperatio
n 

Shapley values to develop a 
model with lower NP-
completeness. 

Shapley 
Zheng et 
al. 2019 

Coordinating a closed-loop 
supply chain with fairness 
concerns through variable-
weighted Shapley values 

Horizontal 
Cooperatio
n 

Introduced a variable-weighted 
Shapley value mechanism. 

Shapley 
Levinger et 
al. 2020 

Computing the Shapley 
Value for Ride-Sharing and 
Routing Games 

Traveling 
Salesman Shapley values. 

Shapley 
Gnecco et 
al. 2020 

Public transport transfers 
assessment via 
transferable utility games 
and Shapley value 
approximation 

Transporta
tion 
Planning Shapley values. 

Shapley Wang 2023 

A collaborative approach 
based on Shapley value 
for carriers in the supply 
chain distribution 

Horizontal 
Cooperatio
n Shapley values. 

Nucleolus 

Göthe-
Lundgren 
et al. 1996 

On the nucleolus of the 
basic vehicle routing 
game. 

Vehicle 
Routing 

Traditional nucleolus procedure 
with constraint generation. 
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Nucleolus 
Engevall et 
al. 1998 

The traveling salesman 
game: an application of 
cost allocation in a gas and 
oil company. 

Traveling 
Salesman 

Introduced the Demand 
Nucleolus (where excess is 
multiplied with total demand of 
the coalition). 

Nucleolus 
Sakawa et 
al. 2001 

Fuzzy programming and 
profit and cost allocation 
for a production and 
transportation problem. 

Transporta
tion 
Planning Traditional nucleolus procedure. 

Nucleolus 
Engevall et 
al. 2004 

The heterogeneous 
vehicle-routing game. 

Traveling 
Salesman, 
Vehicle 
Routing 

Traditional nucleolus procedure 
with constraint generation. 

Nucleolus 
Agarwal 
and Ergun 2010 

Network Design and 
Allocation Mechanisms for 
Carrier Alliances in Liner 
Shipping 

Horizontal 
Cooperatio
n Traditional nucleolus procedure. 

 

Nucleolus Frisk et al. 2010 

Cost allocation in 
collaborative forest 
transportation. 

Transportatio
n Planning 

Tradtional nucleolus 
procedure compared to the 
Equal Profit Method. 

Nucleolus Liu et al. 2010 

Allocating collaborative 
profit in less-than-
truckload carrier 
alliance. 

Vehicle 
Routing 

Traditional nucleolus 
procedure compared to the 
Weighted Relative Savings 
Model. 

Nucleolus 
Massol and 
Tchung-Ming 2010 

Cooperation among 
liquefied natural gas 
suppliers: is 
rationalization the sole 
objective. 

Transportatio
n Planning 

Traditional nuclelous 
procedure, "Per Capita" 
Nucleolus, and the Disruption 
Nucleolus. 

Nucleolus Granot et al. 2011 

On Chinese postman 
games where residents 
of each road pay the 
cost of their road 

Horizontal 
Cooperation 

Traditional nucleolus 
procedure and considers the 
core concept. 

Nucleolus Lozano et al. 2013 

Cooperative game 
theory approach to 
allocating benefits of 
horizontal cooperation. 

Horizontal 
Cooperation 

Traditional nucleolus 
procedure. 

Nucleolus 
Hezarkhani et 
al. 2015 

A competitive solution 
for cooperative 
truckload delivery. 

Horizontal 
Cooperation 

Traditional nucleolus 
procedure. 

Nucleolus Leenders et al. 2017 Emissions allocation in Vehicle Traditional nucleolus 
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transportation routes Routing procedure. 

Nucleolus Vos and Raa 2018 

Stability Analysis of 
Cost Allocation 
Methods for Inventory 
Routing 

Inventory 
Systems 

Traditional nucleolus 
procedure. 

Proportional 
Fishburn and 
Pollak 1983 

Fixed-route cost 
allocation 

Traveling 
Salesman 

Proportional to willingness to 
pay (WTP) scheme. 

Proportional Dror 1990 

Cost allocation: the 
traveling salesman, 
binpacking, and the 
knapsack. 

Traveling 
Salesman Egalitarian method. 

Proportional Engevall et al. 2004 
The heterogeneous 
vehicle-routing game. 

Traveling 
Salesman, 
Vehicle 
Routing 

Proportional to demand 
scheme. 

Proportional Wong et al. 2007 
Cost allocation in spare 
parts inventory pooling. 

Inventory 
Systems 

Proportional to demand 
scheme. 

Proportional 
Özener and 
Ergun 2008 

Allocating costs in a 
collaborative 
transportation 
procurement network. 

Horizontal 
Cooperation 

Developed a cross-monotonic 
and stable allocation method. 

Proportional Frisk et al. 2010 

Cost allocation in 
collaborative forest 
transportation. 

Transportatio
n Planning 

Developed the Equal Profit 
Method (EPM) based on 
stable allocation theory. 

Proportional Liu et al. 2010 

Allocating collaborative 
profit in less-than-
truckload carrier 
alliance. 

Vehicle 
Routing Egalitarian method. 

Proportional 
Massol and 
Tchung-Ming 2010 

Cooperation among 
liquefied natural gas 
suppliers: is 
rationalization the sole 
objective? 

Transportatio
n Planning 

Egalitarian method, 
proportional to non-
cooperative profits, and 
proportional to shipments 
schemes. 

Proportional Özener et al. 2013 

Allocating cost of 
service to customers in 
inventory routing. 

Inventory 
Systems 

Proportional to several factors 
(distance, capacity, 
consumption) scheme. 

Proportional Nguyen et al. 2014 

Consolidation 
strategies for the 
delivery of perishable 
products. 

Horizontal 
Cooperation 

Proportional to demand 
scheme. 
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Proportional Özener 2014 

Developing a 
collaborative planning 
framework for 
sustainable 
transportation. 

Vehicle 
Routing 

Proportional to distance 
scheme. 

Proportional Flisberg et al. 2015 

Potential savings and 
cost allocations for 
forest fuel 
transportation in 
Sweden: a country-
wide study. 

Transportatio
n Planning 

Proportional to volume 
scheme. 

Proportional 
Hezarkhani et 
al. 2015 

A competitive solution 
for cooperative 
truckload delivery. 

Horizontal 
Cooperation 

Proportional to stand-alone 
costs of minimal essential 
deliveries. 

Proportional Algaba et al. 2018 

Horizontal cooperation 
in a multimodal public 
transport system: The 
profit allocation 
problem 

Horizontal 
Cooperation 

Developed the Coloured 
Egalitarian Solution and 
Coloured Cost Proportional 
Solution. 

Proportional 
Bogachev et 
al. 2021 

Comparative Analysis 
of the Use Egalitarian 
and Utilitarian 
Approaches in the 
Freight Transportation 
Optimization Problem 

Transportatio
n Planning Egalitarian method. 

Proportional Estañ et al. 2021 

On how to allocate the 
fixed cost of transport 
systems 

Transportatio
n Planning Egalitarian method. 
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Appendix B – Data Filtration for Computational Optimization 
 

Factory Number of 
Rows 

% of Total 
Rows 

Rows Filtered 
Out 

% of Dataset 
Filtered Out 

A 10,972 7.88% 0 0.00% 
B 14,987 10.76% 187 0.71% 
C 9,479 6.80% 12 0.13% 
D 7,001 5.03% 0 0.00% 
E 4,806 3.45% 0 0.00% 
F 9,664 6.94% 0 0.00% 
G 11,792 8.46% 0 0.00% 
H 13,893 9.97% 624 4.49% 
I 9,190 6.60% 49 0.53% 
J 8,439 6.06% 331 3.92% 
K 2,109 1.51% 0 0.00% 
L 2 0.00% 0 0.00% 
M 19,436 13.95% 0 0.00% 
N 2,823 2.03% 0 0.00% 
O 5,337 3.83% 0 0.00% 
P 9,376 6.73% 0 0.00% 

 
 
 
 
Appendix C – Shapley Distribution Across Factories 
 
 

 
 

Histogram of Factory A Histogram of Factory B 
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Histogram of Factory C Histogram of Factory D 

Histogram of Factory E Histogram of Factory F 

Histogram of Factory G Histogram of Factory H 
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Histogram of Factory I Histogram of Factory J 

Histogram of Factory K Histogram of Factory L 

Histogram of Factory M Histogram of Factory N 
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Appendix D – Geographical Visualization of Locations Across Factories 
 

  
 

 

Histogram of Factory O Histogram of Factory P 

Locations in Factory A Network 
 

Locations in Factory B Network 

Locations in Factory C Network 
 

Locations in Factory D Network 
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Locations in Factory E Network 
 

Locations in Factory F Network 

Locations in Factory G Network 
 

Locations in Factory H Network 

Locations in Factory I Network 
 

Locations in Factory J Network 
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Locations in Factory K Network 
 

Locations in Factory L Network 

Locations in Factory M Network 
 

Locations in Factory N Network 

Locations in Factory O Network 
 

Locations in Factory P Network 
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