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ABSTRACT

This capstone project evaluates the environmental impact of autonomous drone-based inventory
automation in a U.S. fulfillment warehouse operated by a global logistics company. The central research
question is: What is the impact of warehouse inventory automation on greenhouse gas (GHG) emissions
across Scope 1, 2, and 3? To address this, we developed a quantitative decision-making framework
grounded in the GHG Protocol and applied it to compare pre- and post-implementation scenarios using
activity-based emissions modeling and life cycle assessment (LCA). Drawing on operational data, drone
usage logs, and structured interviews, we modeled emissions from labor, material handling equipment,
energy consumption, and inventory waste. The results show a 49.5% reduction in total annual emissions
(from 79,200 kg CO2e to 40,008 kg CO:e), driven largely by a 40% decrease in inventory write-offs and a
70% drop in forklift energy use. Expanding drone coverage from 64% to 90% yields an additional 33%
reduction in emissions, though with diminishing marginal returns. The study concludes that drone-
enabled automation can significantly reduce indirect emissions—particularly Scope 3 sources such as
employee commuting and inventory loss—while offering a scalable, data-driven tool for operational
sustainability. The framework presented serves as a replicable model to support emissions-informed
decision-making in warehouse automation initiatives.
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1 INTRODUCTION

1.1 Motivation

Climate change is no longer a distant concern—it has become a pressing global challenge with
immediate and widespread consequences. The Intergovernmental Panel on Climate Change (IPCC, 2023)
confirms that rising greenhouse gas (GHG) emissions are causing significant environmental disruption,
including global temperature increases, geographic shifts, changes in seasonal patterns, and increased
severity of natural disasters.

Among the contributors to global GHG emissions, the logistics and transportation sector holds a
prominent position. According to the International Energy Agency (IEA, 2023), transportation accounts for
nearly one-quarter of global CO2 emissions from fuel combustion. This is exacerbated by the rapid growth
in e-commerce and omnichannel distribution, which has increased demand for storage and last-mile
delivery services (Olson, 2022). Warehousing, a key component of the logistics chain, has emerged as a
significant emissions source, contributing between 11-20% of total logistics-related emissions, depending
on operational context and study scope (McKinnon, 2018; McKinsey & Company, 2024).

At the same time, the logistics industry is undergoing a transformation driven by automation. The
rise of smart warehouses and automated inventory systems responds to evolving consumer expectations for
speed and accuracy, while also offering opportunities to enhance environmental sustainability. Recent
advancements in artificial intelligence (Al) have catalyzed a new era in warehouse automation. Al-powered
autonomous drones are increasingly replacing manual inventory processes, offering real-time, data-driven
visibility and near-zero error rates. These intelligent systems leverage Al algorithms to navigate complex
warehouse environments, scan inventory, and integrate data seamlessly with warehouse management
systems, thereby enhancing efficiency and accuracy (Fernandez-Carames et al., 2024).

Despite the momentum behind automation, limited academic attention has been devoted to
understanding its actual impact on emissions. In response to this gap, our study focuses on evaluating the
environmental implications of warehouse automation through the lens of GHG emissions. Specifically, we
examine whether automated inventory systems contribute to reducing Scope 1, 2, or 3 emissions, and under
what conditions these reductions occur. Our central research question (RQ) is: What is the impact of
warehouse inventory automation on GHG emissions across different emission scopes? The goal is to
uncover whether automation contributes to sustainability goals or introduces trade-offs that must be
considered.

To contextualize our analysis, we adopt the GHG Protocol framework, which categorizes emissions
into three distinct scopes: Scope 1 (direct emissions from owned or controlled sources), Scope 2 (indirect

emissions from purchased electricity, steam, heating, and cooling), and Scope 3 (all other indirect emissions



that occur in the value chain). Figure 1 illustrates this classification, providing the conceptual basis for the

modeling approach used in our analysis.

Figure 1. Overview of GHG Protocol Scopes and Emissions Across the Value Chain (WRI/WBCSDI,
2023)
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This research also challenges common assumptions—for instance, that employee commuting is the
largest emissions driver in warehouse operations. By quantifying the emissions impact of traditional versus
automated inventory systems, we provide evidence to support more informed sustainability strategies in

warehousing (Gonzales & Peterson, 2022).

1.2 Case Study: Verity’s Al-Powered Drone Inventory Automation

To address our research question, we partnered with a global company in the transportation and
integrated logistics sector, focusing on their fulfillment warehouse located in the United States. The
company is transitioning from traditional inventory management—characterized by high labor demands,

manual scanning, and inventory inaccuracies—toward advanced automated systems.



The automation solution implemented is provided by Verity, a robotics and Al company
headquartered in Zurich, Switzerland, with operations across Europe and North America. Verity is a
recognized leader in autonomous inventory intelligence, specializing in the deployment of Al-powered
systems that deliver real-time visibility for logistics, retail, and manufacturing environments. Their
autonomous indoor drone platform combines proprietary artificial intelligence algorithms, enabling the
system to continuously monitor inventory without the need for physical infrastructure changes.

Verity’s drones autonomously navigate high-bay warehouse environments—even in darkness—
scanning barcodes and identifying inventory discrepancies with zero-error precision. This allows for the
creation of digital twin representations of warehouse stock in real time (Verity, 2024b). Unlike manual
methods that rely on fossil-fuel-powered lifts and off-hour labor, Verity’s system reduces both physical
strain and energy consumption while enhancing data accuracy and reducing losses due to shrinkage or
misplacement.

This case provides a valuable opportunity to quantify both the direct and indirect environmental
impacts of transitioning to Al-powered warehouse automation. Through our collaboration, we obtained
drone usage logs, warehouse operational data, and emissions factors. These inputs were used to model the
GHG emissions associated with this technological shift, including changes in equipment energy demand,

emissions from employee activities, and material life cycle impacts.

1.3 Organization of the Capstone Paper

The remainder of this paper is organized into five chapters. In Chapter 2, we present the literature
review, outlining key concepts related to emissions modeling, warehouse operations, and automation
technologies. In Chapter 3, we describe the methodology used to quantify GHG emissions across Scopes
1, 2, and 3, applying an activity-based modeling framework and standardized emissions factors. Chapter 4
presents the results of our emissions model, comparing traditional inventory processes with drone-enabled
automation. In Chapter 5, we conclude the paper by summarizing our key insights, discussing the
implications of our findings for operational decision-making, sustainability strategy, and policy, and

suggesting directions for future research.

2 STATE OF THE PRACTICE

This chapter explores how automation, particularly autonomous drones, is shaping sustainability
practices in warehouse operations. It begins with a review of recent literature on automation’s role in
sustainable supply chains, then narrows its focus to warehouse automation, highlighting its evolving

application beyond material handling to include inventory counting. The chapter concludes with a



structured review of methodologies used to measure Scope 1, 2, and 3 emissions in warehousing contexts,

offering a foundation for the emissions modeling introduced in the following chapter.

2.1 Automation and Sustainability in Warehousing

The role of automation in promoting sustainability across manufacturing and supply chain
processes has gained significant attention in recent years (Qu & Kim, 2024). Organizations are now
prioritizing not only efficiency and cost-effectiveness when implementing new technologies or designing
processes, but also the environmental and social dimensions of sustainability (Lofti et al., 2023). These
include reducing energy consumption, minimizing greenhouse gas (GHG) emissions, and improving the
long-term resilience of operations.

Within supply chain operations, warehouse activities have historically been studied primarily
through the lens of operational and economic efficiency. However, emerging research has started to
incorporate sustainability considerations, particularly through industrial design improvements and the
integration of Internet of Things (IoT) technologies (Rezaei & Naghdbishi, 2024). Among the many
automation technologies deployed in warehouses, material handling systems—such as conveyors, sortation
systems, and automated storage and retrieval systems—have seen the most widespread adoption, driven by
their clear efficiency benefits (Minashkina et al., 2023). In contrast, the automation of inventory counting
remains a relatively underexplored area. As Minashkina et al. (2023) note, “the level of automation in
warehouse stock counting using drones is still at an experimental stage,” highlighting the novelty of this
approach in current literature.

To support the selection of new technologies in logistics with sustainability in mind, Ferraro et al.
(2023) developed a structured evaluation framework grounded in the Triple Bottom Line. Their study
proposes a three-level Analytic Hierarchy Process (AHP) model that helps organizations compare
technologies based on six sustainability indicators spanning economic, environmental, and social
dimensions. The model evaluates emerging tools such as drones, exoskeletons, collaborative robots, and
additive manufacturing, considering both their operational potential and their alignment with broader
sustainability goals. This decision-support approach reflects growing interest in sustainable logistics and
addresses a common challenge: how companies can prioritize investments across a wide range of
automation options. Among these, autonomous drones have emerged as a particularly promising solution
for inventory management.

Early efforts in drone-based inventory management were largely limited to manual piloting or
simple rule-based automation. However, recent advances in artificial intelligence (Al) have significantly
enhanced the capabilities of drones in warehouse environments. Al-driven drones can now autonomously

navigate complex indoor environments, perform inventory scans, and adapt to dynamic warehouse



conditions without human intervention (Fernandez-Carames et al., 2024). This evolution marks a
meaningful shift from traditional automation toward intelligent, adaptive systems. A growing body of
research has shown that Al-powered drones improve key operational outcomes—such as storage layout,
picking accuracy, and inventory audits—while enabling real-time, data-driven inventory visibility
(Fernandez-Carames et al., 2024). These improvements not only enhance efficiency but also contribute to
measurable sustainability outcomes, such as reduced reliance on fossil-fuel-powered equipment and
minimized energy use during off-peak hours.

Despite these advancements, there is still limited empirical research analyzing the sustainability
impact of drone-based inventory automation, particularly when it comes to quantifying its influence across
different emissions scopes. This gap underscores the importance of developing structured methodologies
for evaluating the environmental implications of this emerging technology, a focus explored in detail in the

following sections.

2.2 Framework for Emissions Analysis in Warehousing

We investigated methodologies to measure variables associated with Scope 1, 2, and 3 emissions
within contexts relevant to warehousing and automation. This review is organized into three segments, each
corresponding to the respective scope of emissions. It is framed by a structured approach to assessing GHG
emissions from material handling processes and warehouse operations, aligned with the GHG Protocol and
recent applications in logistics operations (Perotti et al., 2022), as shown in Error! Reference source not

found..
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Figure 2. Structured Approach to Assessing GHG Emissions (Fichtinger et al., 2015)
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2.3 Scope 1: Direct Emissions from Warehouse Operations

Scope 1 emissions represent the direct GHG emissions generated from warehouse operations.
These emissions can stem from HVAC systems and forklifts, depending on the energy sources powering
them. They also encompass fuel consumption by stationary and mobile equipment, including vehicles, with
emissions varying based on the type of fuel and equipment used. Recent studies highlight the significance

of managing these direct emissions to enhance warehouse sustainability (Zschausch & Rosenberger, 2023).

2.4 Scope 2: Indirect Emissions from Energy Consumption in Material Handling

Scope 2 emissions arise from the indirect consumption of energy within warehouse operations,
significantly influenced by material handling equipment, lighting, and HVAC systems running on
electricity. Key characteristics of warehouses, such as illumination and HVAC requirements, are generally
proportional to warehouse size, which accounts for a substantial portion of emissions in simulation studies

(Lewczuk et al., 2021). While the size of the warehouse itself may remain constant, the implementation of
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autonomous drones can alter these characteristics by changing the operational demands for lighting or
HVAC.

To achieve a truly comprehensive and sustainable warehouse design, it is essential to consider the
environmental impact of all material handling equipment. By incorporating emissions from both fixed and
mobile equipment—such as conveyors, cranes, and forklifts—into optimization models, a more accurate
assessment of the warehouse's full lifecycle environmental impact can be achieved (Perotti et al., 2022).
This approach ensures that the indirect contributions of equipment to Scope 2 emissions are properly
accounted for in sustainable design efforts.

Moreover, while emissions from drone usage are primarily studied in the context of last-mile
delivery, researchers have also assessed these emissions based on factors such as drone aerodynamics, mass,
and battery capacity (RawView, 2024). Considering drones’ potential impact on warehouse characteristics,
particularly through altered illumination and HVAC needs, it becomes even more critical to integrate these

variables into a holistic evaluation of warehouse operations and their environmental footprint.

2.5 Scope 3: Indirect Emissions from the Broader Supply Chain

Scope 3 emissions encompass a broader range of environmental impacts associated with warehouse
operations, extending beyond direct energy use to include upstream and downstream processes. For
instance, improved inventory accuracy and the use of drones for inventory counts can reduce reliance on
forklifts in warehouse operations. A decreased demand for forklifts lowers the need for their production,
thereby reducing embodied carbon emissions, as highlighted by Zschausch & Rosenberger (2023) in their
analysis of logistics equipment. However, introducing drones into warehouse systems also necessitates
evaluating the emissions associated with their production and operation, particularly for battery-powered
drones. These emissions align with findings by RawView (2024), who analyzed the environmental impact
of drones in warehouse inventory management. Balancing these trade-offs is critical to assessing the overall
sustainability impact of warehouse automation.

Beyond equipment impacts, inventory automation fundamentally reshapes employee workflows,
enabling greater operational efficiency and reducing the need for additional labor. Automated inventory
checks and reduced trips from misplaced inventory streamline operations, allowing warehouses to function
effectively without expanding headcounts. This shift not only boosts efficiency but also decreases emissions
tied to employee commutes, as analyzed by Zschausch & Rosenberger (2023), who measured commute-
related environmental impacts.

Enhanced inventory accuracy contributes to optimizing economic order quantity (EOQ) and
reducing wastage. Incorporating environmental costs such as transportation emissions and waste into the

EOQ models enables larger lot sizes and less frequent orders, striking a balance between cost efficiency
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and sustainability (Perotti et al., 2022). These changes have far-reaching implications for upstream
production, where improved order quantities can refine production schedules and delivery frequencies,
reducing lead times, transportation costs, and CO: emissions.

These insights inform the hypothesis-driven model introduced in Section 3, where we map expected
changes in emissions to operational variables such as inventory accuracy, forklift usage, and workforce
footprint. The model builds on the structure of Perotti et al. (2022) and adapts variable mapping practices
described in Fichtinger et al. (2015), whose structured approach is visualized in Figure 3.

This study builds on prior literature and expert input to define the operational variables most likely
to be affected by inventory automation. The hypothesis mapping in Chapter 3 is informed by a triangulated
review of peer-reviewed research, insights from drone system providers, and practitioner knowledge of
warehouse operations. These sources guided the formulation of expected variable shifts and modeling
assumptions, helping ensure the framework’s relevance to real-world warehouse dynamics. While the
literature on drone-enabled stock counting remains nascent (Minashkina et al., 2023), our synthesis offers

a grounded basis for evaluating sustainability impacts.

3 METHODOLOGY

This chapter describes the step-by-step process used to model the environmental impact of
autonomous drone-based inventory automation. The methodology is designed to assess emissions across
Scope 1, 2, and 3, following the GHG Protocol framework. First, we define the operational variables most
likely to be affected by drone adoption and formulate hypotheses about their expected behavior. Next, we
explain how data was collected from warehouse systems, drone logs, and interviews. We then justify our
selection of emissions factors and outline the emissions modeling framework, which integrates both
activity-based and life cycle assessment (LCA) methods. Finally, we describe our comparative before-and-

after modeling structure and present the sensitivity analysis design used to explore the robustness of results.

3.1 Key Variable Definitions

To develop this framework, we identified the key variables to be evaluated and the emissions scopes
they influence. Variables were selected by prioritizing those most likely to be affected by the adoption of
drone-based inventory automation and those with significant potential impact on overall emissions. Factors
such as packaging materials and last-mile transportation were excluded, as they fall outside the scope of
internal warehouse operations and are not materially influenced by drone deployment.

To enhance clarity and facilitate modeling, we systematically defined each variable, including its

unit of analysis and associated emission scope. These variables were grounded in warehouse operations
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data, drone specifications, and emissions modeling literature. The definitions below form the analytical

foundation for our emissions estimation model and scenario analysis.

Drone Usage (kWh/yvear) — Electricity consumed by drones performing inventory scans. This
variable contributes to Scope 2 emissions and scales with drone activity levels.

Forklift Usage (kWh/year) — Energy consumed by forklifts for manual cycle counts and associated
lifecycle emissions from equipment manufacturing.

Fixed Material Handling Equipment (FMHE) Usage (kWh/year and units) — Energy
consumption and embodied emissions related to equipment such as AS/RS. Although hypothesized
to decrease, FMHE usage was later excluded from final modeling due to lack of observed variation.
Lighting and HVAC Usage (kWh/year) — Electricity required for lighting and temperature control.
While hypothesized to shift with drone implementation, as drones do not require lighting or HVAC
to operate

Employee Commuting (miles/year) — Distance traveled by staff dedicated to inventory counting.
Modeled under Scope 3 using region-specific emissions factors.

Inventory Write-Offs (units/year) — Quantity of inventory scrapped due to misplacement or
inaccuracy. The term “units” is warehouse-dependent and refers to the inventory handling level
used at the facility, such as individual items, cases, or pallets, depending on how products are
stored, tracked, and accounted for. This variable is a key driver of Scope 3 emissions from waste
and replacement production.

Addressing Inventory Discrepancies (kWh/vear) — Forklift energy expended in addressing
inventory discrepancies. Emissions are attributed to Scope 2.

Drone Manufacturing (kg CO:e/unit) — Embodied emissions from drone production, normalized
over a 5-year lifespan and categorized under Scope 3 (LCA).

Forklift Manufacturing (kg CO:e/unit) — Lifecycle emissions from forklift equipment, amortized
over a 10-year lifespan and attributed to Scope 3 (LCA).

These definitions inform the variable classification and emissions modeling structure shown in

Figure 3, which maps each operational variable to its corresponding GHG emissions scope.
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Figure 3. Categorization of Model Variables by Scope
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With these variables identified, we developed a methodology that aims to quantify total GHG
emissions from key operational activities, compare emissions before and after drone implementation, and
analyze the sensitivity of the results to changes in critical input variables. This multi-step approach begins
by selecting the operational variables most likely to be affected by the adoption of drone technology and
formulating hypotheses about their expected direction of change. We then describe the data collected to
quantify these variables and justify the sources and assumptions used. To estimate emissions, we apply
standardized emission factors from established sources such as the EPA Emission Factors for Greenhouse
Gas Inventories from GHG Emissions Factors Hub (2024). These are integrated into a mathematical model
that links activity levels to emissions outputs through formula-based calculations. The model is then applied
to simulate emissions for both the baseline (manual operations) and post-implementation (drone-enabled)
scenarios, using actual operational data and carefully constructed assumptions where needed. Finally, a
sensitivity analysis explores how variations in key variables influence the overall emissions outcome,

allowing us to identify which factors have the greatest potential for reducing environmental impact.

3.2 Variable Selection and Hypothesis Mapping

Building on the variable definitions presented above, we now organize them into five operational

categories and outline the expected direction and rationale of change.
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The starting point of this analysis is to identify the operational variables most likely to be affected
by the introduction of the new technology to perform inventory counting. Understanding how these
variables change is essential to quantifying the sustainability impact of the technological shift and
structuring the emissions model accordingly. To guide this analysis, we formulated a set of hypotheses
about the expected direction and rationale of change for each variable. These hypotheses are based on a
review of relevant literature, discussions with drone system providers, and our understanding of warehouse
operations.

The affected variables span across five main operational categories:

1. Energy Consumption and Infrastructure

Lighting and HVAC: Changes in operating hours due to drone implementation may affect lighting

and HVAC needs. Drones can operate without lighting, and fewer employees on the warehouse

floor could lead to optimized HVAC settings.
2. Material Handling Equipment

Forklifts (Mobile MHE).: We hypothesize a decrease in the usage and number of forklifts. Drones

are expected to reduce the need for forklifts to perform inventory checks, as they can capture data

without interrupting warehouse flow.

Fixed Material Handling Equipment (FMHE): A decrease in the usage and number of FMHEs is

anticipated. Drones can verify inventory in its current location, potentially reducing the need for

Automated Storage and Retrieval System (AS/RS) cycles.

3. Drone Usage

Drone Operations: The implementation of drone operations in the warehouse is expected to

increase electricity consumption, as these devices require energy for their operation regardless of

operational efficiency. Consequently, the overall energy demand within the facility is expected to
rise in direct proportion to the number of drones deployed.
4. Inventory Management
Inventory Levels and Accuracy: The implementation of drones is expected to enhance inventory
accuracy by reducing instances of misplaced or unaccounted-for stock. Through automated and
frequent cycle counting, drones can help identify discrepancies more quickly than manual cycle
counts, minimizing errors in recorded inventory levels. This improvement reduces the likelihood
of inventory being written off as obsolete or scrapped due to misplacement. Additionally, drones
can assist in real-time inventory tracking, enabling warehouse personnel to locate items efficiently,

thus preventing unnecessary replenishment orders and optimizing storage utilization.
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5. Employee-Related Factors

Employee Commute: The implementation of drone-assisted inventory cycle counts is expected to
reduce the aggregate employee commute distance. This reduction is primarily due to a decreased
need for dedicated personnel performing manual cycle counting. By automating part of the

inventory process, drones can free up human resources, leading to potential changes in standard

work processes and overall staffing requirements related to physical inventory management.

To organize these hypotheses and structure the subsequent emissions analysis, Table 1 presents the

selected variables, their expected direction of change, and the corresponding emissions scopes under the

GHG Protocol.

Table 1. Key Variables, Expected Direction of Change, and Emissions Scope

(fewer operating hours) |

Variable Expected Direction of Change = GHG Emissions Scope
Use of drones for inventory counting Increase T Scope 2
Use of forklifts for inventory tasks Decrease | Scope 2
Fixed material handling equipment use Decrease | Scope 2
Energy consumption (drone charging) Increase T Scope 2
Energy consumption(forklift charging) Decrease | Scope 2
Employee commute Decrease | Scope 3
Inventory write-offs Decrease | Scope 3
Addressing Inventory Discrepancies Decrease | Scope 2
Lighting and HVAC usage Decrease or shift in timing Scope 2

Drone lifecycle emissions (LCA)

Increase (introduced new
equipment) T

Scope 3 (LCA)

Forklift lifecycle emissions (LCA)

Decrease (partial allocation) |

Scope 3 (LCA)

These hypotheses were used to guide both the design of the emissions model and the structure of
the data request submitted to the warehouse and drone service provider Verity. Interviews were held with

the companies involved, particularly with the warehouse operations teams, to validate and quantify the

above hypotheses and ensure they accurately reflect real-world processes on the warehouse floor.

3.3 Data Collection and Source Justification

To quantify the variables in this study, it was essential to define the type of data associated with
each variable and identify their respective sources. Data collection methods included structured interviews

with warehouse personnel, warechouse management system (WMS) reports, and outputs from the
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autonomous drone system. These sources were selected to provide both quantitative and qualitative insights
into inventory operations before and after automation.

The primary dataset was collected from a fulfillment warehouse located in the United States,
covering operations from January to March in both 2024 and 2025. This facility was selected based on the
availability of comparable pre- and post-drone implementation data within the designated time window.
According to warehouse management, overall throughput volumes during these two quarters were
consistent, supporting the validity of before-and-after comparisons for inventory-related activities.

Operational data was extracted from the WMS and included detailed records of cycle counts, such
as date, number of locations counted, item descriptions, license plate number (LPN) counts, system-
recorded quantities, quantities counted, and both net and absolute discrepancies. This dataset enabled the
historical analysis of inventory accuracy, identification of discrepancies, and inference of manual counting
efforts using forklifts. Structured interviews with warehouse staff were conducted to contextualize the data,
validate modeling assumptions, and understand operational nuances, such as manual error rates, scheduling
practices, and workforce allocation to inventory tasks.

Drone performance specifications and usage logs were provided by Verity. This dataset included
the number of drone cycles performed, average cycle duration, energy consumption profiles, and the
number of items or locations scanned. The system also logged discrepancies detected by drones, allowing
for the calculation of issue rates and scan coverage.

Where inconsistencies or gaps were found across datasets, proxy values were derived using
industry benchmarks, academic literature, or expert insights from warehouse personnel. These assumptions
were validated through cross-referencing with available site data or by triangulating multiple sources to
ensure robustness.

In addition to raw inputs, several intermediate variables—such as the number of personnel needed
for inventory counting, forklift allocation, and the manual share of locations—were calculated using
warehouse-specific assumptions to perform the sensitivity analysis, including scan capacities, shift
durations, and drone coverage capabilities. These values were not treated as static inputs but rather modeled
dynamically in response to operational parameters detailed in Section 3.6. Table 2 summarizes the key

warehouse-specific inputs and assumptions used in the development of the emissions model.
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Table 2. Warehouse-Specific Inputs and Assumptions

Input Variable Value Units Source

Total warehouse locations 97,165 locations WMS / facility layout

Locations scannable by drones 78,560 locations Warehouse standard

Locations not scannable by drones 18,605 locations Calculated (difference)

o

.Inventory los.s rate (before 1.60% .A> of total NRF Survey (2023)

implementation) inventory

Issue rate (Locations counted manually) = 17.51% % of locations WMS historical data

Issue rate (Locations counted by Drones) @ 6.59% % of locations ;lczrrits})] logs (drone-only

Weekly scans (post-implementation) 8,836 scans/week Verity

Average employee commute distance 47.80 miles/day Employep survey /
assumption

Human counting capacity 60 locations/hour Warehouse operations

Shifts per day 2 shifts/day Warehouse standard

Hours per shift hours Warehouse standard

Working days per week 5 days Warehouse standard

Counting cycle length 12 weeks Operational policy

Forklift energy consumption 2.8 kWh/hour Estlrpateq based on battery
specifications

Drone energy consumption 0.0167 kWh/hour Verity

Drone operating time (per drone) 14.40 hours/week Verity

3.4 Emission Factor Selection

To convert measurements into emissions calculations and assess their sustainability impacts, we
adopt a systematic approach using emissions factors (EFs). These coefficients quantify the GHG emissions
associated with specific operational or life cycle activities, such as electricity consumption, employee
commuting, equipment production, or inventory disposal. Emissions factors link measurable activities to
emissions outputs and allow us to consistently estimate impacts across Scopes 1, 2, and 3 as defined by the
GHG Protocol.

Given the diversity of activities included in this analysis, ranging from equipment operation to
waste generation and lifecycle emissions from material handling equipment, we sourced emissions factors
from a combination of government publications, vendor-provided data, and peer-reviewed databases. Each
factor was selected based on its relevance to warehouse operations, the geographic location of the case
study, and the specificity of the activity measured.

For operational activities such as drone energy use and forklift charging, we used emissions factors
from Verity (2024a) and the U.S. Energy Information Administration. For employee commuting, we relied
on standard emissions factors provided by the U.S. Environmental Protection Agency (2024), as commuting

data was not provided. For example, drone energy consumption was modeled using Verity’s equipment-
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specific performance data, and forklift electricity use both applied an emissions factor (EF) of 0.5289 kg
CO2e/kWh, aligned with the fulfillment center’s regional electricity grid mix (U.S. EIA, 2024; XtraPower
Batteries; Dobers & Jarmer 2023). Employee commuting emissions were calculated using the U.S. EPA
standard of 0.4 kg CO:e/mile, consistent with national averages for passenger vehicle use (EPA, 2024).
Table 3 summarizes the emissions factors applied to operational activities, organized by source

category and citation.

Table 3. Operational & Commute Related Emission Factors

Category Activity Emission Factor (EF) Source / Citation
. U.S. Environmental Protection Agency.

Labor People commute 0.4 kgCOze/mile (2024). Average passenger vehicle emissions.

Cycle Count U.S. Energy Information Administration

: 2

Forklift Ops Addressing 0.5289 kgCO-“e/kWh | (2024) .

I XtraPower Batteries. (n.d.)

nventory

Discrepancies

Waste Inventory disposal 12.892kgC0,e/kg Carbonfact (2023), WRAP (2020),

Textile Exchange (2021)

U.S. Energy Information Administration
Drone Ops Cycle Count 0.5289 kg CO,/kWh  (2024)

XtraPower Batteries. (n.d.)

In addition to operational emissions, we accounted for Scope 3 emissions from equipment
production and transportation by applying life cycle assessment (LCA)-based emissions factors. These
factors represent the cradle-to-gate embodied carbon of material handling equipment, normalized over
estimated equipment lifespans. Drone production emissions were modeled based on material-level
assessments provided by Verity and supported by LCA databases and literature (Liang, Q., & Yu, L. M.
,2023; American Chemistry Council, 2022). For forklifts, production emissions were significantly higher
due to the scale, material intensity, and battery systems involved, with estimates drawn from comprehensive
electric MHE lifecycle analyses (Hao et al., 2017; Net Zero Carbon Guide; Sipert et al., 2024).
Transportation-related emissions were modeled using DEFRA-based emissions factors (UK Department
for Energy Security and Net Zero, 2024), accounting for delivery distances and equipment weight.

Table 4 outlines the LCA-related emissions factors used in the model, covering both production

and transportation stages.
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Table 4. LCA-Related Emission Factors

Emission Source Emission Factor (EF) . Source / Citation
Liang, Q., & Yu, L. M. (2023); City of Winnipeg (2012);

Drone Production 1098 kg COye American Chemistry Council (2022); CarbonChain (n.d.);
Verity (2024a)

Drone Transportation 16.675 kg CO,e UK Department of Energy Security and Net Zero (2024)
Net Zero Carbon Guide (n.d.); Hao et al. (2017);

Forklift Production 1,171.48 kg COye CarbonChain (n.d.); Sipert et al. (2024); ScienceDirect
(2024)

Forklift Transportation 2,295.22 kg CO»e UK Department of Energy Security and Net Zero (2024)

By triangulating multiple sources and aligning factors to the specific processes observed in the
warehouse, this emissions factor framework supports robust and transparent modeling. Full derivations of

emissions equations and assumptions associated with each EF are presented in Appendix A.

3.5 Mathematical Modeling of Emissions

A core component of this analysis involves evaluating the impact of operational changes on both
direct and indirect GHG emissions. Emphasis is placed on quantifying emissions associated with inventory
discrepancies, especially write-offs caused by misplaced or inaccurately counted items, as these serve as a
critical lever for emissions reduction. Improvements in inventory accuracy through drone-based cycle
counting are expected to reduce the frequency and severity of such discrepancies. To validate this
assumption and improve model fidelity, structured interviews were conducted with warehouse personnel to
understand the practical consequences of these discrepancies and their operational context.

Based on this investigation, we identify four primary emissions outcomes associated with poor
inventory accuracy:

1. Operational Overhead: Increased labor and equipment usage for manual cycle counting and
addressing inventory discrepancies.

2. Inventory Write-Offs: Items that are lost, unaccounted for, or later deemed unsellable due to
mishandling, leading to waste and replacement emissions.

3. Expedited Shipments: Triggered by stockouts from inaccurate inventory data, often involving air
freight or other high-emissions transport modes.

4. Intra-Network Transfers: When items must be shipped from alternate warehouse locations to

fulfill orders, resulting in additional transportation emissions.

These emissions consequences were modeled using a before-and-after comparative design focused

on operations at the selected warehouse where autonomous drones were introduced in January 2025. The
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model quantifies changes in emissions across key activities using operational data and emission factors

detailed in Section 3.3.

3.5.1 Modeling Approach and Workflow

Our emissions estimation follows a four-step process that aligns with methodological best practices
outlined in Dobers and Jarmer’s (2023) GHG accounting guide for logistics hubs, particularly in its
functional area-based allocation of electricity and ISO 14083-compliant reporting:

1. Pre-Implementation Baseline Estimation: Establishing GHG emissions from traditional inventory

management operations (Jan—Mar 2024).

2. Post-Implementation Projection: Simulating emissions under drone-enabled inventory automation

(Jan—Mar 2025).

3. Sensitivity Analysis: Exploring how variations in key assumptions affect emissions outcomes

(detailed in Section 3.6).

4. Result Interpretation: Estimating net emissions impact and identifying primary drivers of
sustainability gains or trade-offs.

Emissions are calculated using a standard activity-based modeling framework in which each

variable is represented as

Emissions activity = Activity Level X Emission Factor

where Activity Level refers to a measurable quantity such as kWh consumed, miles traveled, or
items scrapped, and Emission Factor (EF) refers to the carbon intensity of that activity, typically expressed

in kg COze per unit.

3.5.2 Activity-Based Emissions Modeling

The model evaluates a set of selected operational activities expected to be influenced by drone
deployment, such as employee commuting, forklift usage, energy consumption for drone charging, and
inventory write-offs. Emissions for each activity are calculated separately for both the baseline and post-

implementation periods using the formulas and variables defined in Table 5.
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Table 5. Emissions Model Structure by Activity

Emission Emissions

Category Activity Activity Level Formula Factor (EF) = Equation
Labor (Scope ;| Employee Individuals X Days commuted 0.4 kg CO2e .

. . . E = Miles X EF
3) commuting X Av Miles traveled | /mile
Drone Drone Drones 05289 k
Operations inventory X Avg Drone Fly Time per Week C Osc / k\%Vh E = Energy X EF
(Scope 2) scans X Avg Power Draw per Flight :
Forkllff Tnventory Forklif t§ used for Counting 0.5289 kg
Operations countin X Working Hours COse / KWh E = Energy X EF
(Scope 2) & X Avg Energy Consumption per Hour :
Inventory
Management In\{entory Item Loss Rate X Total Inventory 12.892 .kg E = Items X EF

write-offs COze / item

(Scope 3)
Forkliff Tnventory Forklif t_s used for discrepancies 0.5289 kg E — Items x EF
Operations Discrepancics X Working Hours COse / kWh
(Scope 2) p X Av Energy Consuption per Hour
Lifecycle Drone 5.531 kg s
(Scope 3) manufacturing Drones employed COq¢ / unit E = Units X EF
Lifecycle Forklift . 1401 kg s
(Scope 3) manufacturing Forklifts employed COze¢ / unit E = Units X EF

In Appendix B, we include all the assumptions we use in each formula—such as scan rate, power draw,

and average distance per forklift cycle—which we also examine through sensitivity analysis in Section 3.6.

3.5.3 Life Cycle Assessment Integration

To enhance the environmental impact assessment, a Life Cycle Assessment (LCA) was
incorporated to quantify emissions generated across the full lifecycle of key equipment used in inventory
counting operations. LCA provides a standardized, data-driven framework to evaluate environmental
footprints from material extraction and manufacturing to transportation, use, and eventual disposal
(International Organization for Standardization [ISO], 2006a). Unlike activity-based emissions, which
focus on operational energy use, LCA offers a more comprehensive evaluation by capturing the embodied
carbon in warehouse assets and infrastructure.

We structured the life cycle assessment (LCA) according to the phases outlined in ISO 14040 and
ISO 14044 (ISO, 2006b). In the goal and scope definition phase, we defined the objective as a comparison
of annualized emissions from drones and conventional forklifts used for inventory counting. The system
boundary encompasses production, transportation, and the operational lifespan of each equipment type. In
the life cycle inventory (LCI) phase, we gathered data on material inputs, energy consumption, logistics,
and manufacturing processes for both systems. During the life cycle impact assessment (LCIA), we

quantified GHG emissions using the Global Warming Potential (GWP) metric, expressed in kilograms of
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CO: equivalent (CO-e). Finally, in the interpretation phase, we validated the results, addressed data
uncertainties, and contextualized the findings within the broader emissions model of the warehouse
operation.

For our model, LCA calculations were based on data from manufacturer specifications, academic
literature, and government databases. For instance, Verity (2024a) and Liang & Yu (2023) provided
component-level data on the autonomous drones, while the Raymond 560-OPC30TT forklift was modeled
using emissions factors from published LCA studies (Hao et al., 2017; UK Department of Energy Security
and Net Zero, 2024).

Total cradle-to-gate emissions for the forklift were estimated at approximately 14,010 kg CO.e
over a 10-year lifespan (or 1,401 kg CO.e/year), reflecting contributions from steel, lithium-ion batteries,
plastics, and transportation. In contrast, the autonomous drone system, composed primarily of lightweight
polymers, optics, and a small battery, was found to have a total lifecycle footprint of 27.65 kg CO-e over a
S-year lifespan (or 5.53 kg CO.e/year).

LCA was applied across three impact categories:

1. Inventory Write-Offs and Waste Reduction

Misplaced or lost inventory leads to unnecessary disposal and emissions from replacement

production. By improving inventory accuracy, drones reduce write-off frequency and minimize

associated embodied emissions. We apply an average embodied carbon factor of 12.892 kg CO2e

per unit based on category-level apparel data (WRAP, 2020; Carbonfact, 2023).

2. Mobile Equipment Utilization

Conventional forklifts are a significant source of Scope 2 and 3 emissions. Drone adoption displaces

these emissions through reduced equipment cycles. Based on revised LCA inputs, forklifts

contribute approximately 1,401 kg CO.e/year, while drones contribute only 5.53 kg CO.e/year, a

>99% reduction in embodied equipment emissions.

3. Drone Infrastructure Emissions

Although drones reduce operational emissions, they introduce emissions from equipment

production and infrastructure (e.g., charging stations, battery systems). These impacts were

estimated and incorporated into the annual emissions model, ensuring a balanced view of both costs
and benefits.

By integrating LCA with operational modeling, we obtain a comprehensive assessment of
emissions impacts and can more accurately evaluate the net sustainability benefit of drone-based inventory
automation. A detailed explanation of assumptions and calculations is provided in Section 3.4.4 and

Appendix A.
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3.5.4 LCA Calculation Approach

To quantify life cycle emissions of both drone systems and conventional forklifts, we developed a
Life Cycle Inventory (LCI) based on component-level material breakdowns, energy usage, logistics, and
equipment lifespan. Emission factors were applied using data from peer-reviewed studies, government
databases, and environmental modeling platforms (e.g., UK Government GHG Conversion Factors,
CarbonChain, ScienceDirect).
Forklift System (Raymond 560-OPC30TT)
The LCI was based on an industrial-grade forklift weighing 3,882 kg, including:
e Steel frame: 2,254 kg x 2.8 kg CO2e/kg = 6,311.2 kg CO2¢e
e Lithium-ion battery (27.9 kWh): 61.5 kg CO.e/kWh x 27.9 =1,715.85 kg CO.e
e Other mixed materials (483 kg): 7.635 kg COze/kg = 3,687.69 kg COz¢
e Transport emissions (800 km trucking): ~ 295.26 kg COz¢
Total emissions: 11,714.76 + 295.26 = 14,010 kg CO:e
Annualized over 10 years: 1,401 kg COze/year

Drone System (Verity Autonomous Drone)
The drone system was modeled using component-level mass and specific emissions factors:
e PAI2 frame (0.5 kg): 5.7 kg CO2e/kg = 2.85 kg COz¢
e PC/ABS housing (0.2 kg): 4.518 kg COze/kg = 0.90 kg COz¢
e Optics and electronics (0.15 kg): 24.865 kg CO2e/kg = 3.73 kg CO2¢e
e Lithium-ion battery (0.25 kg): = 3.5 kg COz¢
e Transport emissions (air and truck): 16.675 kg CO-¢e
Total embodied emissions: 11.0 + 16.675 = 27.65 kg COae
Annualized over 5 years: 5.53 kg COze/year
All lifecycle emissions were normalized to the same functional unit: kg CO.e per year per
equipment unit, ensuring comparability between conventional and automated inventory solutions. The
results reinforce the significant sustainability advantage of drone adoption in inventory operations,

particularly in contexts where forklifts are primarily used for counting rather than material movement.

3.6 Before-and-After Scenario Modeling

To assess the net impact of drone implementation on sustainability outcomes, we developed two
modeled scenarios representing operations before and after the introduction of autonomous drones. These
scenarios are based on actual warehouse data and are supplemented with validated assumptions, as detailed

in earlier sections.
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Each scenario incorporates emissions from various sources, categorized according to the GHG
Protocol into Scopes 2 and 3, and life cycle emissions. Scope 2 includes electricity consumption associated
with drone charging, forklift operations, and other energy-dependent warehouse activities. Scope 3 covers
indirect emissions from employee commuting, inventory write-offs and losses, addressing inventory
discrepancies, and the manufacturing and transportation of operational equipment. Lifecycle emissions
represent the embodied carbon from the production, delivery, and use-phase amortization of drones and
forklifts, based on values derived through life cycle assessment (LCA) modeling.

Scope 1 emissions were intentionally omitted from this analysis. Scope 1 typically includes direct
emissions from on-site fossil fuel combustion—such as diesel-powered material handling equipment or
natural gas-based HVAC systems. However, during interviews and follow-up validation with warehouse
personnel, it was confirmed that the implementation of drone-based inventory automation did not alter on-
site fuel usage patterns. The warehouse maintained consistent HVAC schedules and operational settings
both before and after drone deployment. Therefore, as no change in Scope 1 emissions could be attributed
to the technology transition, they were excluded from the comparative emissions modeling.

The modeled scenarios are designed to represent a three-month operational window, covering
January through March for the years 2024 (pre-implementation) and 2025 (post-implementation). All
variables were either measured directly or derived from structured interviews, WMS datasets, and Verity
drone flight data. Where data was missing, assumptions were calculated or conservatively estimated using
industry benchmarks and validated against contextual information.

A central feature of the model is the introduction of a target percentage of locations counted by
drones, which acts as the master variable governing several downstream operational and emissions
outcomes. According to the warehouse operator, the planned future state will allow drones to complete 90%
of all cycle counting tasks for the reserve storage area, which includes 78,560 out of 97,165 total warchouse
locations. This means that only 7,800 reserve locations will continue to require manual counting, while an
additional 18,605 locations, which are not drone-accessible, will always be counted manually. This
assumption creates a calculated manual share of locations, which becomes the primary driver for estimating
required personnel and equipment for cycle counting in the after-implementation sensitivity analysis.

The drone coverage percentage also influences inventory accuracy by lowering the average issue
rate (percentage of scanned locations that trigger discrepancies) and, indirectly, the inventory loss rate
(percentage of inventory written off). Both values are modeled as linear functions of drone coverage, based
on observed issue rates in drone-scanned and manually counted locations.

For the post-implementation scenario, the initial values for issue rate and inventory loss rate were

not directly observed but calculated using calibrated linear relationships based on available warehouse data.
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The model uses a target drone coverage percentage as a control variable, which influences accuracy-related

metrics. Specifically, the issue rate was modeled using the equation

Issue Rate total = 6.59% X pd + 17.51% X (1 — pd)

where pd is the proportion of drone-scannable locations covered by drones, and the constants were
derived from observed rates in manually and drone-scanned areas. The inventory loss rate was assumed to

improve at the same proportional rate as issue rate and is calculated using

Issue Rate total
17.5%

Inventory Loss Rate total = 1.6% X (

These equations reflect operational data showing that drone-scanned locations have significantly
lower discrepancy rates and that improvements in inventory visibility reduce the likelihood of write-offs.
In the initial post-implementation model, current drone coverage was estimated at 64% out of the 90% goal,
based on WMS cycle count logs and interviews with warehouse personnel. At this coverage level, the model
produced an estimated issue rate of 10.53% and an inventory loss rate of approximately 1.0%.

In addition to calculating inventory issues and loss rate, the model also estimates forklift utilization
for addressing inventory discrepancies based on the number of locations flagged as issues during drone
scans. These locations require manual verification and physical access using forklifts. The number of

locations with issues per week was calculated as
Locations with issues week = Weekly Scans X Issue Rate

This value was then used to determine the weekly workload associated with misplacement retrieval.
To translate this into energy use and equipment needs, the model calculates the fraction of a forklift needed
using the following logic: given a known capacity for how many locations a forklift-and-operator team can
address in a week, the total number of locations with issues is divided by that capacity to yield a fractional
equipment count. This figure is multiplied by the number of operational hours per week and the average
power draw per hour to determine forklift energy consumption. Forklift energy for addressing issues is

calculated as

M
Forklift Energy Discrepancies = (C—) X HXP
f
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where M represents the number of locations requiring issue resolution each week, Cy the known
capacity of a forklift-and-operator team to process a given number of locations per week, H the number of
working hours per week, and P is the average energy consumption per hour. This value is modeled as
continuous and fractional to reflect real-world resource sharing, rather than assuming full-time equipment
is dedicated to misplacement recovery.

It is important to note that for this initial baseline comparison, the number of personnel and forklifts
for inventory counting operations was treated as static input values derived from current warehouse
operations. While later sensitivity analyses model these resources dynamically as a function of drone
coverage and task demand, the base after-implementation scenario preserves actual staffing levels to anchor
the model in real-world conditions.

By simulating the same operational setting with and without drone-enabled inventory automation,
this scenario-based modeling approach isolates the marginal impact of drone deployment on key
sustainability indicators. The emissions outcomes from these scenarios serve as the basis for the
comparative analysis presented in Section 4 and the sensitivity analysis in Section 3.6.

To quantify the environmental impact of drone implementation, we calculated the net emissions

change across each modeled activity using the following formulation

A Emissions = Emissions pre - Emissions post

A negative value of A Emissions indicates a reduction in GHG emissions attributable to drone

deployment.

3.7 Sensitivity Analysis Design

To better understand the influence of key drivers, a sensitivity analysis is conducted. This
component of the methodology aims to identify which input variables—such as labor requirements,
inventory accuracy, or equipment allocation—have the most significant effect on sustainability outcomes,
and how variations in these factors affect total emissions. Rather than isolating causal effects through
statistical control groups or regression models, this approach focuses on estimating plausible impacts by
systematically testing how changes in operational assumptions shape emissions outcomes.

The sensitivity analysis quantifies the emissions impact of individual parameters by evaluating the
change in total emissions relative to percentage changes in each variable. This helps determine which
variables produce the largest emissions shifts when adjusted and informs recommendations by highlighting
which levers are realistically modifiable in practice. The model supports a range of operational levers,

including personnel allocation strategies, inventory counting coverage, and discrepancy resolution effort.
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This enables supply chain stakeholders to explore implementation scenarios and evaluate emissions savings
under varied warehouse conditions.

The target percentage of locations to be counted by drones is the central feature of the model’s
sensitivity structure. This variable represents the share of drone-scannable locations covered by autonomous
drones and is varied across a range of values, from the current estimated state (64%) to the warchouse’s
future target (90%), and up to 100% to assess the implications of maximum achievable automation. As this
percentage increases, the manual share of locations to be counted decreases accordingly, and this directly
impacts the number of human personnel and forklifts required for inventory counting.

Personnel needed for manual inventory counting is dynamically calculated as a function of the
remaining locations to be counted and the scanning capacity of an operator. Forklift needs for this task are
set to match the number of people assigned, assuming a 1:1 human-equipment ratio. In contrast, the number
of forklifts needed for addressing inventory discrepancies is determined independently, based on the
number of issues flagged per week, calculated from the average issue rate and weekly scan volume, and the
weekly capacity of a forklift team. This ensures that misplacement-related activity remains partially
independent and responsive to the issue rate, which itself is also modeled as a function of drone coverage.

All personnel values—whether for inventory counting or issue resolution—are aggregated and
rounded up to determine total headcount for commuting emissions (Scope 3). The number of forklifts is
then derived as a ratio of total personnel, assuming that forklifts can operate across two shifts per day, while
employees only cover one. This ratio-based calculation enables fractional allocations of emissions in both
Scope 2 (energy) and Scope 3 (lifecycle) categories, reflecting shared asset use in practice.

Inventory accuracy metrics, specifically the issue rate and inventory loss rate, are also dynamically
modeled as linear functions of drone coverage. As drone coverage increases, the model assumes
proportional improvements in these metrics, based on observed data from manually and drone-scanned
areas. These improvements reduce both the number of discrepancies requiring manual intervention and the
number of items written off entirely, thereby lowering emissions associated with waste and retrieval labor.

By structuring the model this way, the sensitivity analysis not only identifies the most impactful
variables but also shows how they interact. This is particularly valuable for illustrating operational trade-
offs, such as how increasing drone coverage beyond 90% continues to reduce emissions, but with smaller
incremental gains. Similarly, staffing requirements decrease with automation, but tend to level off once
most manual tasks have already been replaced. Line graphs and scenario-based comparisons, presented in
Section 4, illustrate how emissions change in response to incremental increases in drone adoption and

provide actionable insight for warehouse operations planning.
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4 RESULTS AND DISCUSSION

This chapter presents the results of the emissions modeling and scenario analysis comparing manual
inventory processes with drone-enabled inventory automation. We begin by reporting total modeled
emissions across Scope 1, 2, and 3 under both the baseline and post-implementation scenarios. Next, we
analyze emissions changes by operational category, highlighting the specific variables that drove
reductions or increases in each scope. We then examine the results of the sensitivity analysis, which
evaluates how variation in key input assumptions—such as drone energy usage, inventory accuracy
improvements, and employee commute distance—affect total emissions. Finally, we present a
comparative summary that integrates these findings and quantifies the net sustainability impact of drone

adoption under different modeling assumptions.

4.1 Results

Following the application of the mathematical model, the first step involved calculating the total
emissions generated by each activity category using the activity-based formulas developed in Section 3.4.
Emissions for each activity were determined by multiplying its modeled activity level by the corresponding
emissions factor. To enhance the understanding of environmental impact, the total emissions were
annualized. Although the dataset was initially provided at a quarterly level (Q1), the cyclical nature of
inventory counting—defined as a scheduled and repetitive process—justifies replicating Q1 operational
parameters across all four quarters of the year. This practice reflects industry standards where inventory
cycle counts are consistently performed each quarter to achieve full inventory coverage targets.

Summing the emissions from all categories yielded a total footprint for each scenario: pre- and
post-implementation of drone technology. Additionally, the model calculated the percentage contribution
of each activity to total emissions, facilitating the identification of the most significant emission contributors
and the changes observed between the two scenarios.

The initial results indicated that total annual emissions decreased from 609,451 kg COz¢ to 358,619
kg COze, representing a reduction of 41%. This net decrease of approximately 250,832 kg CO2e was
primarily driven by changes in waste from inventory write-offs. Table 6 disaggregates emissions by
category, showing emissions before and after implementation, the absolute change, and each category's

share of the total footprint.
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Table 6. Scenario 1 Annual Emissions by Category: Before vs. After Implementation

Before: After: A % of Total
Category Activity Emissions Emissions Emissions @ % Change Carbon
(kg CO2e) (kg CO2e) (kg COze) Footprint
Labor People commute 29,827.20 14,913.60 -14,913.60 -50.0% 4.16%
Forkdift Forklift encrgy 16,662.19 501477 -11,647.42 | -69.9% 1.40%
Operations (inventory count)
Drone ) Drone inventory 0 2638 2638 N/A (new 0.01%
Operations | energy source)
Waste Inventory disposal 556,939.53 334,647.19 | -222,292.35 -39.9% 93.32%
. Forklift energy
Forldift (addressing 1,819.69 1,193.18 -626.52 -34.4% 0.33%
Operations . ;
discrepancies)
. N/A (new
Equipment  Drone LCA 0.00 22.12 22.12 0.01%
source)
Equipment | Forklift LCA 4,203.00 2,802.00 -1,401.00 -33.3% 0.78%
Total 609,451.61 358,619.23 | -250,832.38 | -41.16%

A closer examination of the results shows that inventory disposal (waste) was the leading
contributor to emissions in both the before and after implementation scenarios, accounting for about 93%
of total emissions. This outcome is due to the modeling assumption that each lost inventory unit corresponds
to an individual item, with a total inventory of 2.7 million units. This approach significantly overstates the
environmental impact of waste, as in practice, the warehouse stores items in cases or boxes rather than at
the single-item level. In the absence of actual data on inventory scrap rates, the model utilized an industry
average of 1.6% inventory loss, based on the NRF Survey (2023).

To better align the model with the operational structure of the warehouse, we refined the original
assumption regarding inventory granularity. Instead of modeling emissions from item-level inventory (2.7
million individual units), we redefined the inventory as 129,381 cases, which better reflects how products
are physically handled and stored on site. This adjustment significantly altered the magnitude and
distribution of modeled emissions and yielded the revised results presented in Scenario 2 (Table 7). Under
this case-based model, total annual emissions prior to drone implementation were calculated at 79,200 kg
COze, while post-implementation emissions dropped to 40,008 kg COze, reflecting a 49.48% reduction in
relative terms. Compared to Scenario 1, this change also resulted in a 87% decrease in the total magnitude
of modeled emissions, emphasizing the impact of inventory-level assumptions on absolute emissions

figures.
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Table 7. Scenario 2 Annual Emissions by Category: Before vs. After Implementation

Before: After: A o % of Total
Category Activity Emissions Emissions Emissions Cha; o Carbon
(kg CO2e) (kg CO2e) (kg CO:z¢) g Footprint
Labor People commute 29,827.20 14,913.60 -14913.60 . -50.0% 37.28%
Forklift - Forklift encrgy 16,662.19 5,014.77 -11,647.42 -69.9% 12.53%
Operations  (inventory count)
Drone ) Drone inventory 0 2638 2638 N/A (new 0.07%
Operations energy source)
Waste Inventory disposal 26,687.92 16,035.92 -10,652 -39.9% 40.08%
. Forklift energy
Forklift | . i iressing 1,819.69 1,193.18 62652 -34.4% 2.98%
Operations | . ;
discrepancies)
. N/A (new
Equipment | Drone LCA 0 22.12 22.12 0.06%
source)
Equipment = Forklift LCA 4,203 2,802 -1401 -33.3% 7.00%
Total 79,200 40,008 -39,192 | -49.48%

The redistribution of emissions across categories in Scenario 2 is particularly notable. While
inventory disposal remains the largest contributor post-implementation, its share of total emissions dropped
dramatically from 93% in Scenario 1 to 40%. At the same time, employee commuting rose from just 4.16%
to 37.28% of total emissions, becoming the second-largest contributor. This shift underscores the
importance of properly calibrating inventory structure and activity volumes to operational realities, as
category weightings are highly sensitive to underlying assumptions. The emissions share from forklift
operations also increased proportionally, moving into third place at 12.5% of the total.

Despite these shifts, drone implementation continues to offer strong sustainability gains while
introducing only marginal emissions from new activities. Drone electricity consumption contributed just
26.4 kg COqe per year, and drone lifecycle emissions added 22.1 kg CO-e, together accounting for only
0.12% of post-implementation emissions. Meanwhile, energy use from forklifts performing inventory
counts was reduced by approximately 70%, falling from 16,662.2 kg COz¢e to 5014.8 kg CO-e, as drone
automation replaced a substantial portion of manual activity. Lifecycle emissions from forklift equipment
also dropped by one-third, from 4,203 kg CO:e¢ to 2,802 kg CO-e, while drones contributed only a negligible
addition.

To help interpret the shifting impact of individual emissions categories, Figure 4 provides a side-
by-side bar chart comparing the percentage of emissions reductions by category for Scenario 2, and Figure
5 illustrates how each category contributes to total emissions savings. These visualizations support a more
intuitive understanding of how drone implementation reshapes the emissions profile of warehouse

inventory operations and helps identify the most significant levers for sustainability improvements.
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Figure 4. Comparison of Emissions Reduction by Category
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Figure 5. Contribution of Each Category to Emissions Savings
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To complement the absolute emissions analysis, we developed a comparative line graph that
visualizes the relative contribution of each emissions category to total emissions before and after drone
implementation. Figure 6 and 7 illustrate how the percentage share of each activity evolves across scenarios,
highlighting the redistribution of carbon intensity within warehouse operations. For instance, emissions
from drone operations—nonexistent in the baseline—appear in the post-implementation scenario,
increasing modestly from 0% to 0.07% for drone energy and 0.06% for drone manufacturing. These
additions remain minimal, underscoring the carbon efficiency of the drone system.

More revealing, however, are the shifts among traditional emission sources. While total emissions
from inventory disposal decreased in absolute terms, their share of the total footprint increased from 33.7%
to 40%. This relative growth reflects the fact that other categories, such as operational energy use, declined
even more dramatically. Forklift lifecycle emissions followed a similar pattern, rising from 5.31% to 7%,
despite a drop in equipment quantity, due to slower depreciation relative to faster-declining operational
activities.

In contrast, people commuting, once the largest contributor at 37.66%, fell to 37.28% of total
emissions, and forklift energy use for inventory counting dropped from 21% to 12.5%. These changes
demonstrate how drone automation reduces labor requirements and equipment energy use, shifting the
emissions profile from labor- and equipment-heavy operations toward a structure where waste and capital
goods play a larger role.

This visual representation helps isolate not just which categories have grown or diminished, but
how automation reconfigures the emissions landscape. It offers a clearer view of the new sustainability
profile emerging from drone adoption—not only through overall reductions, but through a fundamental

change in which activities drive warehouse emissions post-automation.
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Figure 6. Change of Drone Contribution to Total Carbon Footprint
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Figure 7. Change in Contribution to Total Carbon Footprint by Activity
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To further contextualize the emissions distribution in the post-implementation scenario, we
introduced two additional visual breakdowns. Figure 8 categorizes emissions by operational source,
showing that waste and transportation account for the vast majority of the warehouse’s footprint,
contributing 40.1% and 37.3%, respectively. Emissions from core warehouse operations account for 15.6%
total footprint, while equipment-related emissions make up just 7.1%. This breakdown reinforces the earlier
finding that even after automation, the warehouse’s emissions profile is still shaped largely by upstream
and downstream activities, such as product loss and employee commuting.

In parallel, Figure 9 disaggregates emissions by GHG Protocol scope, highlighting the dominance
of Scope 3 emissions, which account for 84.4% of the total footprint. Scope 2 emissions from electricity
usage are still significant, accounting for 15.6% of emissions, and Scope 1 emissions are entirely absent,
consistent with the facility’s use of electric equipment and external service providers. This scope-based
visualization emphasizes that the environmental impact of drone adoption lies primarily in its ability to
reduce indirect emissions—especially those related to labor, transportation, and waste—rather than altering

the facility’s direct energy footprint.

Figure 8. Emissions by Operational Category — Post-Implementation Scenario
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Figure 9. Emissions by GHG Protocol Scope — Post-Implementation Scenario

AUTOMATED INVENTORY COUNTING CARBON FOOTPRINT BY

SCOPE
100% -

80% -

60% -

40% | 84.4%

20% -

0
0% 15.6%
0% ‘ ‘
Scope 1 (Direct Emissions) Scope 2 (Indirect Emissions Scope 3 (Other Indirect

from Electricity) Emissions)

4.1.1 Drone Coverage Sensitivity Analysis

For the sensitivity analysis, we transitioned from using fixed warehouse inputs to modeling key
variables as functions of the target percentage of locations to be counted by drones. This parameterized
approach allowed us to explore how incremental increases in drone adoption influence emissions outcomes
by dynamically adjusting related operational factors, such as labor requirements, inventory accuracy, and
equipment usage.

We began by calculating the manual share of locations, which determines the number of inventory
locations requiring human verification. This is calculated as the difference between the total scannable
locations and those covered by drones, combined with a set of locations that drones can never count due to

layout or classification constraints. Formally

Manual Locations = (1 — pd) X Drone Countable Locations + Non Drone Countable Locations

where pd is the target percentage of drone coverage, and for this warehouse, 78,560 out of 97,165

total locations are considered drone-countable, while 18,605 locations are not. As a result, even at 100%

37



drone coverage, a significant portion of the facility—approximately 19%—will still require manual
inventory operations, implying that a fully autonomous solution is operationally unattainable in this context.

From the manual locations, we calculated the number of people needed for inventory counting by
dividing the total by the number of locations one operator can scan over a full inventory cycle. Assuming
a 12-week cycle, 8-hour shifts, 5 days per week, and a counting capacity of 60 locations per hour, each

operator can verify 28,800 locations per cycle:

Manual Locations
28,800

Peoplecounting =

We separately modeled the labor required for addressing inventory discrepancies, which depends

on the issue rate, itself a weighted average of drone and manual performance based on coverage:

Issue Rate = pd X Drone Issue Rate + (1 — pd) X Manual Issue Rate

Multiplying this rate by the average number of locations scanned weekly yields the number of
locations with issues per week, which we then use to calculate the labor and equipment needed to resolve
discrepancies. Rather than treating issue resolution as a separate process, we assume that each flagged
discrepancy requires an operator to return to the affected location and perform a manual verification. This
aligns with actual warehouse behavior and allows us to treat issue resolution as an extension of the cycle
counting task.

Although the labor requirements for inventory counting and discrepancy resolution were calculated
independently, we summed both to determine the total number of people commuting for inventory-related
tasks. The total was rounded up to the nearest whole number, reflecting the warehouse's practice of
assigning staff to full 8-hour shifts. While this rounding was necessary to calculate Scope 3 commuting
emissions, tracking the contributions of each activity separately helped identify the proportional labor
intensity of each task.

For forklifts, we applied the same division between inventory counting and issue resolution, but
modeled the energy consumption of each as a fractional value based on the time spent on each activity.
Unlike personnel, forklifts can remain idle or be reassigned when not in use. However, for lifecycle
emissions (Scope 3), we estimated the number of forklifts as a function of total personnel. Since forklifts
can be used across two shifts per day, we assumed each unit serves two employees. Thus, the required

number of forklifts was calculated as the ceiling of half the total number of commuting personnel

38



Peopletotal

Forklift LCA =] >

This assumption reflects standard warehouse practices for equipment utilization and reduces the
emissions attributed to capital assets. We then applied life cycle emissions factors based on this adjusted
equipment count, linking drone coverage not only to energy and labor but also to infrastructure-related
emissions.

To evaluate the potential for further emissions reduction through increased automation, we modeled
the impact of expanding drone coverage from the current post-implementation level of 64% to the
warehouse’s target of 90%, and then to a hypothetical maximum state of 100%. These scenarios allow us
to assess not only the carbon savings associated with incremental drone adoption, but also how operational
parameters and emissions distributions shift as drone deployment expands.

As shown in Table 8, increasing drone coverage to 90% would reduce total annual emissions from
40,008 kg CO:e to 26,801 kg CO:e, representing a 33% reduction relative to the current state. Compared to
the baseline scenario (before implementation), this equates to a 66.16% total reduction. In a maximum
coverage scenario, where all drone-compatible reserve locations are automated, emissions would fall
further to 19,202 kg COxe, yielding a 75.76% reduction compared to the baseline and a 52% improvement
over the current post-implementation performance.

These reductions are largely driven by declines in labor demand, energy consumption, and waste.
As drone coverage increases, the number of inventory personnel drops from 3 to 2, and then to 1; forklifts
for inventory counting decrease accordingly. Although drone usage remains constant at 4 units, greater
coverage increases the efficiency of each drone cycle; however, their relative share of the total footprint
increases slightly, reflecting the declining contributions from traditional activities. Still, these drone-related
emissions remain minor—collectively under 1% of the total carbon footprint—highlighting the efficiency
of automation even at full deployment. Lifecycle emissions from forklift equipment drop as fewer assets
are required, while inventory loss rate improves from 0.96% to 0.70%, and further to 0.60% in the full
automation scenario. The misplacement issue rate, which drives the labor and energy required for item
retrieval, declines in parallel, from 11% to 8%, and finally to 6.59% when 100% of locations are counted

by drones.
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Table 8. Emissions and Emissions Share by Category — Current vs. Future State (90% Drone Coverage)

Current Current Future %
State Future State o Q % of f Total
Activity Emissions  Emissions (kg A Emissions 8 Total o1 tota
(kg CO:ze) Change Carbon
(kg CO2e) Carbon et e
CO2e) Footprint
People commute 14,913.60 9,942 .40 -4,971.20 -33.3% 37.3% 37.1%
Forklift energy 5,014.77 2,830.15 -2,184.63 -43.6% 12.5% 10.6%
(inventory count)
Drone inventory energy 26.38 26.38 0.00 0% 0.1% 0.1%
Inventory disposal 16,035.92 11,708.44 -4,327.48 -27% 40.1% 43.7%
Forklift energy 1,193.18 871.19 -321.98 -27% 3.0% 3.3%
(addressing
discrepancies)
Forklift LCA 2,802.00 1,401.00 -1,401.00 -50% 7.0% 5.2%
Drone LCA 22.12 22.12 0.00 0.0% 0.1% 0.1%
Total 40,008 26,801.67 -13,206.3 -33%

To better illustrate the operational drivers behind these reductions, we present Table 9, which

summarizes how key activity parameters shift across the three modeled scenarios. Labor, equipment needs,

and accuracy-based metrics (inventory loss and issue rate) all respond to increased drone coverage. As

shown, greater automation translates directly into fewer people and forklifts needed for inventory

operations.

Table 9. Operational Parameters Across Drone Coverage Scenarios

Parameter g:;:;::p?tate g‘;:lttl;re DES Maximum State
Target percentage of locations counted by drones 64.0% 90.0% 100.0%
Inventory personnel 3 2 1
ForKklifts (inventory counting) 1.63 0.92 0.65
Drones (inventory counting) 4 4 4
Forklifts (LCA) 2 1 1
Drones (LCA) 4 4 4
Inventory loss rate (%) 0.96% 0.70% 0.60%
Misplacement issue rate (%) 10.52% 7.68% 6.59%
Total emissions reduction vs. Before Implementation -49.49% -66.16% -75.76%
Additional savings vs. Current scenario - -16.67% -26.27%

To illustrate the cumulative emissions savings across the three modeled scenarios, Figure 10

presents a bar chart comparing total annual emissions at 64%, 90%, and 100% drone coverage levels. This

visual highlights the magnitude of improvement associated with reaching the warehouse’s future target and

demonstrates the additional gains that could be unlocked through full drone coverage. The chart clearly
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shows that increasing drone coverage from 64% to 90% yields a substantial additional reduction of 16.67%,
while pushing toward full automation provides a further 9.6% reduction beyond that. However, the visual
also helps emphasize that while total emissions continue to decrease, the rate of improvement begins to
taper as automation approaches its upper limit, suggesting diminishing returns in some categories. This
representation reinforces the value of reaching the 90% goal while also supporting a cost-benefit analysis

of pursuing complete coverage.

Figure 10. Total Emissions Reductions Across Drone Coverage Scenarios (64%, 90%, 100%)

TOTAL EMISSIONS REDUCTIONS VS. BEFORE IMPLEMENTATION
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Building on the total emissions analysis, we disaggregated reductions by activity category across
four drone coverage levels: 25%, 64%, 90%, and 100%. Figure 11 presents this multi-line chart, illustrating

how key operational emissions decline as drone adoption increases.
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Figure 11. Emissions Reduction by Category as a Function of Drone Coverage
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The results show that employee commuting and forklift energy use for inventory counting
experience the steepest and most consistent declines, reaching over 80% reduction at full drone coverage.
This reflects the direct replacement of manual labor and operational forklift usage as drones take over an
increasing share of cycle counting. These categories are highly sensitive to automation because their
emissions are tightly coupled with the volume of human-driven activity.

Inventory disposal—representing emissions from scrapped goods due to miscounts or
misplacements—also exhibits a significant decline of over 60% by the time drone coverage reaches 100%.
This trend confirms the hypothesis that increased automation leads to improved inventory accuracy,
reducing the number of items written off and the upstream emissions associated with producing
replacements. The curve is somewhat less steep than that of commuting, reflecting the fact that inventory
loss is influenced not only by the quantity of manual counting but also by systemic processes, operator
behavior, and detection capabilities.

Similarly, forklift energy for addressing inventory discrepancies shows a clear downward trend as
issue rates decline with higher drone adoption. The reduction surpasses 50% at full drone coverage,
illustrating how drone-generated visibility reduces the operational effort required to resolve discrepancies.
This category, while smaller in overall contribution, demonstrates how automation helps reduce emissions

even from secondary activities like discrepancy resolutions.
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In contrast, forklift lifecycle emissions decrease in stepwise increments rather than a smooth curve.
A reduction of 33% occurs between 64% and 90% drone coverage—Ilikely the point at which one piece of
equipment is no longer needed—reflecting further workforce consolidation. Because lifecycle emissions
are amortized over fixed equipment units rather than tied to marginal usage, their reductions occur only
when a full asset can be removed from operations.

This visualization illustrates how drone implementation not only reduces total emissions but also
transforms the structure of operational demand. High-frequency, labor- and equipment-intensive tasks
shrink steadily, while capital-dependent emissions decline in fixed intervals. As drone coverage increases,
warehouses can expect emissions reductions to occur both continuously (through efficiency gains) and
structurally (through changes in equipment and staffing requirements). These insights provide a clearer
understanding of where sustainability gains are most responsive to automation, and where diminishing

returns may appear as operations become increasingly optimized.

4.1.2 What-If Sensitivity Analysis

We conducted a series of what-if scenarios to evaluate how the model responds to deviations from
key assumptions and edge-case operational conditions. Unlike previous analyses where drone coverage was
the main variable, these scenarios test the robustness of emissions reductions under alternate conditions.
Each test isolates a specific factor, such as initial inventory accuracy, drone system enhancement, or failure
to improve accuracy with automation, and evaluates its impact on overall emissions and emissions structure.
Scenario 1: High-Accuracy Baseline

To evaluate whether drone implementation remains a valuable emissions reduction strategy in
warehouses that already operate with high inventory accuracy, we modeled a scenario where both the initial
inventory loss rate and the issue rate were set significantly lower than in the baseline analysis. Specifically,
we assumed a starting loss rate of 0.5% and an issue rate of 7%, simulating an environment where manual
processes already perform with relatively low error. The goal was to test whether drone automation would
still yield meaningful emissions savings when improvements to accuracy—and therefore to waste
reduction—are limited.

Even under this high-accuracy baseline, drone adoption continues to deliver notable emissions
reductions, though the magnitude is somewhat lower than in the original model. The transition from a
manual system to 64% drone coverage resulted in a 48% total emissions reduction, compared to 49.5% in
the original model. Increasing drone coverage to 90% improved total emissions reduction to 62.4%, and
extending it to full (100%) drone-compatible coverage further reduced emissions by 72% relative to the
high-accuracy baseline. However, these values are slightly lower than in the base case (where reduction

reached 75.8%), indicating that the benefits of automation diminish when fewer errors can be prevented.
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The improvement in inventory disposal was relatively modest, with emissions decreasing from 8,340 kg
COze to 8,027 kg COze—an absolute drop of only 3.8%. This reflects the smaller baseline of avoidable
waste.

Importantly, the emissions profile shifted heavily toward commuting, which represented 49% of
pre-implementation emissions, and remained the largest contributor post-implementation. In contrast,
inventory disposal accounted for just 13.7% before and 25.4% after drone adoption, highlighting how
category importance is relative to the total. These findings confirm that automation remains beneficial even
in accurate systems, largely by eliminating manual labor and equipment reliance, but its impact on waste
reduction is naturally constrained.

An interesting finding from this scenario is that emissions from forklift energy used to address
inventory discrepancies show a temporary increase of approximately 5% after drone implementation
begins. As illustrated in Figure 12, this occurs because the number of locations scanned per week increases
significantly with drone deployment, while the inventory issue rate does not decrease at the same pace. As
a result, the absolute number of discrepancies identified rises, which increases the operational demand for
addressing them. This intermediate effect reflects the lag between expanded coverage and improved
accuracy, and highlights how partial automation, without concurrent improvements in data quality, can
temporarily increase workload in secondary activities like item retrieval, even as total emissions decline.
Over time, as accuracy improves further, this category returns to a downward trend.

Table 10 summarizes the emissions breakdown across key categories, while Figure 12 displays the

shift in total emissions as drone coverage increases within a high-accuracy environment.

Table 10. Operational Parameters — High-Accuracy Baseline Scenario

Parameter Before Current State | Future Desire Maximum State
Impl. Post-Impl State
bT;zie;nllircentage of locations counted 0.0% 64.0% 90 0% 100.0%
Inventory personnel 6 3 2 1
ForKklifts (inventory counting) 5.76 1.63 0.92 0.65
Drones (inventory counting) 0 4 4 4
Forklifts (LCA) 3 2 1 1
Drones (LCA) 0 4 4 4
Inventory loss rate (%) 0.50% 0.48% 0.47% 0.47%
Misplacement issue rate (%) 7.00% 6.74% 6.63% 6.59%
f;ﬁti‘;‘;i;‘t‘l’:; Reduction vs. Before 48.12% -62.41% 72.05%
Additional savings vs. Current scenario - - -14.29% -23.93%
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Figure 12. Emissions Changes by Category — High-Accuracy Baseline
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Scenario 2: Adding a Drone to Improve Frequency and Accuracy

In this scenario, we explored the impact of adding a fifth drone beyond the warehouse’s target of
90% inventory coverage. While total coverage remains constant, the intent behind this adjustment is to
increase scanning frequency—allowing the drone system to revisit locations more often—and to test
whether doing so yields additional emissions savings through improved inventory accuracy. We assumed
that enhanced scanning would reduce the inventory issue rate for drone-counted locations to 5%, and that
this would translate into a lower overall inventory loss rate of 0.46%.

Despite the slight increase in drone-related emissions—drone electricity usage rises by 25%, and
drone LCA emissions increase proportionally due to the additional hardware—the total warehouse
emissions drop meaningfully. Total annual emissions decline from 40,008 kg COze to 24,470 kg COsze,
representing a 38.9% improvement over the current post-implementation state, and a 69.1% reduction
compared to the pre-drone baseline. This makes it the largest reduction observed across all modeled
scenarios.

Notably, this strategy also reshapes the emissions distribution across categories. The percentage of
total emissions attributed to inventory disposal falls from 40.1% to 39%. Conversely, commuting emissions
become more prominent (increasing from 37.3% to 40.6%), becoming the largest contributor, simply

because they decline at a slower rate compared to the accelerated improvements in other categories. This
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shift indicates that increasing drone performance does not only reduce absolute waste-related emissions—
it also changes the emissions structure, making waste a less dominant share of the overall footprint.

Drone-related emissions—both in terms of energy (up from 26.38 to 33 kg CO:e) and equipment
(LCA rising from 22.1 to 27.7 kg CO.e)—increase modestly and remain marginal in relative terms (still
under 0.2% combined). These additions are more than offset by the substantial gains in inventory accuracy,
reduced issue rates, and lower equipment use from cycle counting and item retrieval.

This scenario demonstrates that even in a highly automated warehouse, investing in drone system
performance can yield additional sustainability gains, especially in areas where automation improves data
quality and operational accuracy. While it introduces minor emissions costs, the environmental return on
that investment, particularly in reducing waste and increasing system-wide efficiency, is clearly positive.

To illustrate the impact of enhanced scanning frequency, Table 11 summarizes how each variable
changes with adding a fifth drone, and Table 12 shows emissions by category when evaluating the future
state of 90% coverage under this scenario vs the current scenario. Figure 13 visualizes the changing
emissions structure, quantifying each category’s contribution to total emissions. These results show that
modest increases in drone-related emissions are offset by significant reductions in inventory disposal,

reinforcing the value of performance-driven automation strategies.

Table 11. Operational Parameters — Adding One More Drone and Improving Accuracy Scenario

Parameter Before Current State Future Desire | Maximum
ete Impl. Post-Impl State State
:‘:;E:: percentage of locations counted by 0.0% 64.0% 90 0% 100.0%
Inventory personnel 6 3 2 1
ForKklifts (inventory counting) 5.4 1.6 0.9 0.6
Drones (inventory counting) 0 4 5 5
Forklifts (LCA) 3 2 1 1
Drones (LCA) 0 4 5 5
Inventory loss rate (%) 1.60% 0.96% 0.57% 0.46%
Misplacement issue rate (%) 17.50% 10.52% 6.25% 5.00%
Total emissions reduction vs. Before -49.49% 69.10% 79.03%
Implementation
Additional savings vs. Current scenario - - -19.62% -29.54%
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Table 12. Emissions by Category With Addition of a Fifth Drone (90% Drone Coverage, 5% Issue Rate)

Future State

Current State (64%) (90%) Emissions : A Emissions
Activity Emissions (kg CO2e) (kg CO2e) (kg COze) % Change
People commute 14,913.60 9,942.40 -4,971.20 -33.3%
Forklift energy (inventory 5,014.77 2,830.15 22,184.63 -43.6%
count)
Drone inventory energy 26.38 32.97 6.59 25.0%
Inventory disposal 16,035.92 9,527.39 -6,508.53 -40.6%
Forklift energy (addressing 1,193.18 708.91 -484.27 -40.6%
discrepancies)
Forklift LCA 2,802 1,401 -1,401 -50.0%
Drone LCA 22.12 27.66 5.53 25.0%
Total 40,008 24,470.5 -15,537.5 -38.84%

Figure 13. Category Contribution to Total Emissions (%) — With Fifth Drone Addition in Future State
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Scenario 3: Stress-Testing the Assumption of Improved Accuracy

This final scenario reverses the core assumption that automation always improves performance.
Instead, we modeled a situation where inventory loss increases with higher drone coverage, whether due to
implementation issues, poor integration, or over-reliance on automation. The goal was to identify the break-

even point where inventory disposal emissions outweigh the reductions from labor and equipment.
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We found that if the inventory loss rate rises to approximately 3.31%, the system reaches a point
of zero net emissions benefit. At this level, the emissions generated by increased waste offset all other
sustainability gains. This threshold marks a critical inflection point: beyond it, further investment in drone
automation would result in higher total emissions rather than reductions.

This scenario illustrates the model’s high sensitivity to inventory disposal emissions, which carry
a much higher carbon intensity per unit than labor or energy-related sources. While categories such as
commuting and forklift use shrink consistently with automation, waste remains a dominant driver of total
emissions. At a 3.31% loss rate, emissions from inventory disposal outweigh the reductions achieved
elsewhere, particularly as other categories begin to plateau with higher drone coverage. This emphasizes
the importance of ensuring that drone performance translates into measurable improvements in accuracy,
rather than simply displacing human effort. In this context, drone implementation must be coupled with
ongoing monitoring, calibration, and error-correction workflows to ensure it achieves its intended
environmental benefits.

Figure 14 presents a break-even chart, demonstrating how total emissions increase sharply beyond
a 3.31% loss rate, emphasizing the model’s sensitivity to inventory disposal and the critical importance of

maintaining accuracy during automation.

Figure 14. Break-Even Emissions Curve Based on Inventory Loss Rate
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4.2 Scope Refinement and Excluded Variables

While the initial hypothesis mapping (Section 3.1) identified a broad range of variables expected to
be affected by drone implementation, not all were included in the final emissions model due to data
limitations or lack of observed variation. For instance, lighting and HVAC-related energy usage were
excluded, as drone operations did not lead to measurable changes in facility runtime, ambient conditions,
or staffing patterns that would warrant adjustments to energy settings. Similarly, Fixed Material Handling
Equipment (FMHE), such as automated storage and retrieval systems, showed no meaningful change in
usage attributable to drone-based inventory scanning and were therefore not modeled.

Additionally, while inventory accuracy improvements were hypothesized to reduce unnecessary
replenishment and scrapping, actual order quantities and product ownership remained outside the scope of
available data and operational control, limiting the ability to quantify downstream impacts such as
overproduction or transportation emissions. As a result, the emissions model focuses on observable,
measurable impacts, including energy use from mobile equipment, embodied emissions from capital assets,

commuting-related emissions, and inventory write-offs.

4.3 Implications

The analysis reveals several critical insights for warehouse sustainability strategy and technology
adoption. First, the deployment of Al-powered drone inventory automation has the potential to significantly
reduce total carbon emissions associated with inventory counting processes by nearly 50% in both modeled
scenarios, and up to 79% in enhanced drone configurations. However, the magnitude and distribution of
these reductions are highly sensitive to operational parameters and foundational modeling assumptions,
reinforcing the need for context-aware implementation.

A key modeling insight involves the definition of inventory units. The contrast between Scenario 1,
which used item-level inventory assumptions, and Scenario 2, which modeled inventory at the case level,
underscores the importance of aligning emissions calculations with actual warehouse storage and counting
practices. Under item-level assumptions, waste emerged as the dominant emissions category due to high-
volume multipliers. When revised to a case-based inventory structure, commuting overtook waste as the
largest emissions contributor, shifting the emissions profile and highlighting how data granularity and
modeling precision shape sustainability conclusions.

Several operational design choices also emerged as influential emissions drivers. One such factor is
the total number of locations that drones are eligible to count, which, in this study, was capped at 78,560 of
97,165 locations. The presence of non-droneable areas effectively establishes a ceiling on automation

potential, meaning that some manual processes—and their associated emissions—will persist unless
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warehouse layouts or drone hardware evolve. This highlights the value of including automation
compatibility assessments in future warehouse planning.

Another key variable is the target percentage of drone coverage. Although the warehouse currently
operates at ~64% drone coverage, the model demonstrated that increasing this to 90% or 100% could
significantly amplify emissions reductions, especially in waste and labor categories. Importantly, the
inventory issue rate was modeled as 6.59% for drone-counted locations based on current performance, but
scenario testing showed that this rate can continue to decline with more frequent scans or improved route
logic. These improvements, in turn, have cascading effects on both inventory loss and addressing inventory
discrepancies needs, further shrinking emissions.

The model also accounts for the allocation of labor and equipment across shifts, which has
implications for equipment-related lifecycle emissions. Forklifts were assumed to be shared across two
shifts, while employees were allocated on a per-shift basis. This logic allowed for reduction in total forklift
assets even when headcount remained constant. In parallel, operator counting capacity, set at 60 locations
per hour, determined how many staff were required to cover the remaining manual locations in each drone
coverage scenario. Together, these assumptions show that even modest changes in workforce efficiency or
shift strategies can have outsized effects on both Scope 2 (energy) and Scope 3 (lifecycle and commuting)
emissions.

From a broader sustainability planning standpoint, these findings suggest that drone automation
introduces minor new emissions but enables significant reductions in legacy emissions categories, most
notably waste, manual labor energy use, and commuting. These benefits are amplified by the intelligence
layer provided by Al, which enables dynamic route optimization, real-time discrepancy detection, and
proactive operational adjustments.

The model also reveals overlooked opportunities, such as employee transportation. In revised
scenarios, commuting became the largest single contributor to emissions. This suggests that sustainability
initiatives should expand beyond equipment and automation to include transport policy interventions like
carpooling incentives, electric shuttle fleets, or remote inventory reconciliation roles.

Finally, this study demonstrates the value of pairing operational innovation with emissions modeling
to support strategic decision-making. The findings confirm that automation alone is not sufficient: the
emissions benefits depend on how technologies are implemented, how performance is monitored, and how
surrounding workflows are optimized. As Al-powered drone adoption continues to scale, warechouses can
expect to capture meaningful emissions reductions, particularly when modeling frameworks are grounded

in site-specific data, operational constraints, and measurable performance metrics.
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4.4 Limitations

While this study presents a comprehensive assessment of the environmental impact of drone-based
inventory automation, several limitations must be acknowledged regarding the modeling scope, data
availability, and generalizability of results. We categorized these limitations across seven thematic areas,
reflecting both methodological constraints and contextual boundaries that influence the interpretation and
application of the findings.

1. Modeling Approach Limitations

The emissions model employed is a deterministic, rule-based framework rather than a probabilistic
or statistical model. It does not attempt to quantify uncertainty or variability in operational conditions.
As such, factors such as fluctuating energy loads, equipment degradation, drone idle time, and manual
override events are excluded. Additionally, the model does not capture temporal variations such as
peak vs. off-peak electricity use. These simplifications are necessary for tractability but limit the
model’s real-world fidelity.

Similarly, sensitivity analyses were conducted under deterministic assumptions, varying one
parameter at a time without accounting for interaction effects or confidence intervals. The absence of
probabilistic modeling (e.g., Monte Carlo simulation) restricts our ability to assess the robustness of

results under real-world variability.

2. Lifecycle Emissions Estimation

Lifecycle emissions estimates for drones and forklifts were derived from secondary sources (e.g.,
Net Zero Carbon Guide) and sponsor input, relying on average material compositions and production
energy profiles. These sources lack granularity, omitting emissions from smaller subcomponents such
as PCBs, sensors, and lithium controllers. Moreover, no data was available on supplier-specific
practices (e.g., use of recycled materials, green manufacturing) or end-of-life treatment. Consequently,

these LCA estimates represent high-level approximations rather than full cradle-to-grave footprints.

3. Data Availability and Input Assumptions

Several data-related constraints shaped the modeling boundaries:

Transportation Emissions: Logistics-related Scope 3 emissions were estimated using average
distances along assumed trade routes, as specific supplier origins for drones and forklifts were not
disclosed.

Equipment Composition: Component-level detail (e.g., motors, controllers) was unavailable,

requiring aggregation based on dominant materials (e.g., steel, batteries, polymers).
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Inventory Data: The sponsor-provided data excluded SKU-level and financial details, limiting the
model’s ability to reflect emissions variability tied to non-standard SKUs or seasonal fluctuations.

Commute Emissions: Scope 3 employee commuting emissions were modeled using average
regional distances, not individual employee data. Variations in carpooling, home locations, and remote
work practices were not captured.

Collectively, these assumptions affect the precision of Scope 1, 2, and 3 emissions estimates,

particularly for categories sensitive to input heterogeneity.

4. Assumptions About Operational Substitution

The model assumes that drones fully replace manual inventory checking within the process scope.
However, in practice, hybrid workflows may persist due to contractual or operational requirements
mandating human oversight. In such cases, drones act as supplementary tools rather than replacements,
which could lead to an underestimation of operational emissions and an overstatement of potential

GHG savings.

5. Emissions Factor Generalization

Emission factors were sourced from public databases and applied as regional or global averages:

Grid Emissions: Regional average emission factors do not capture hourly or seasonal carbon
intensity variations.

Material Emissions: Factors for materials such as steel, aluminum, and batteries reflect global
averages and overlook specific supplier or facility characteristics like renewable energy use or
recycled content.

While these factors provide accessible benchmarks, they may either overstate or understate true

emissions depending on the actual sourcing and energy infrastructure.

6. Generalizability and Context Dependency

This analysis is based on a single warehouse in the United States, and its conclusions are context
dependent. Operational emissions are influenced by facility layout, labor scheduling, energy
infrastructure, and storage systems. In warehouses located in regions with different emissions intensity
or labor policies—or in those handling irregular or non-palletized goods—automation's sustainability
benefits may vary. The modeling framework should be adapted to local operational and regulatory

contexts for broader application.
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S CONCLUSION

Sustainability has become a critical priority in modern logistics, driven by growing stakeholder
expectations, regulatory pressures, and the increasing urgency of climate action. Warehouses, as key nodes
in the supply chain, offer meaningful opportunities for emissions reduction through the adoption of
intelligent technologies. This research evaluated the environmental impact of Al-powered inventory
automation, focusing on the use of autonomous systems that replace manual cycle counting with real-time,
data-driven visibility.

To assess the emissions impact of this transition, we developed a methodology grounded in the GHG
Protocol. The model integrated activity-based accounting with LCA to evaluate Scope 1, 2, and 3 emissions
across traditional and Al-automated inventory workflows. Key operational variables, such as forklift usage,
energy consumption, inventory discrepancies, and labor requirements, were analyzed to understand how
intelligent automation reshapes emissions profiles at the warehouse level.

Our results show that Al-driven inventory automation can reduce total annual GHG emissions by
approximately 50% compared to manual operations. These reductions are primarily driven by decreased
labor-related emissions, lower energy consumption from forklifts, and reduced inventory waste. Together,
these three drivers account for over 95% of the modeled emissions savings, while the Al-powered drone
system itself contributes negligible direct emissions. This demonstrates that intelligent automation’s true
environmental value lies in its ability to reshape broader warehouse operations.

Sensitivity and scenario analyses validated the robustness of these findings under varied assumptions
of drone coverage, scan frequency, and operational structure. This confirms the broader potential of Al-
powered systems to serve as levers for emissions reduction in warehouse environments.

To operationalize these insights, we developed a set of managerial recommendations (Section 5.1)
for logistics and sustainability leaders—ranging from emissions modeling alignment to phased equipment
retirement and drone eligibility expansion. These actionable strategies are intended to guide implementation
decisions and ensure that automation investments translate into measurable sustainability outcomes.

Finally, we propose two directions for future research (Section 5.2): expanding the empirical rigor
of this analysis through a Difference-in-Differences (DiD) framework and enhancing model realism
through mathematical simulations of operational scenarios. Together, these future steps will enable broader
generalization and continuous improvement of emissions modeling in warehousing contexts.

Ultimately, this study contributes a replicable framework for evaluating automation’s sustainability
impact and highlights the critical role of Al in shaping the future of decarbonized logistics. By embedding
intelligent systems into inventory operations, warchouse managers can achieve operational excellence

while meaningfully advancing environmental goals.
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5.1 Managerial Insights

The findings of this study yield several actionable insights for warehouse operations and
sustainability management. The following recommendations are proposed to guide strategic decision-
making and facilitate the adoption of low-carbon inventory practices.

Prioritize Al-powered drone inventory automation. The implementation of drone-based
inventory counting is associated with a substantial reduction in total annual emissions of approximately
50% in both scenarios. Management should consider scaling the deployment of drone technology,
particularly in facilities with high inventory turnover or frequent cycle counting requirements, to capitalize
on its environmental and operational benefits.

Align emissions modeling with operational realities. The comparative analysis between unit-
level and case-level modeling underscores the importance of accurately reflecting warehouse inventory
structures in emissions estimation. Future sustainability assessments should incorporate site-specific data
on inventory loss rates, packaging units, and activity frequencies to improve the fidelity of emissions
modeling and ensure appropriate allocation of mitigation resources.

Leverage AI-powered drone coverage as a master lever for emissions optimization. The model
demonstrated that drone coverage acts as a central driver of emissions performance by influencing multiple
downstream variables, most notably the number of manual locations to be counted, employee headcount
for inventory operations, forklift equipment requirements, and indirectly, the inventory loss and issue rates.
Sensitivity and what-if analyses showed that increasing drone coverage yields compounded environmental
benefits, not only by directly reducing labor and equipment emissions, but also by improving inventory
accuracy and reducing waste. Accordingly, the target percentage of drone-covered locations should be
treated not as a fixed operational decision but as a strategic lever. Management should periodically reassess
drone eligibility criteria and explore layout changes or technology upgrades to increase the share of drone-
accessible locations over time.

Address Scope 3 emissions from employee commuting. In the revised modeling scenario,
employee commuting emerged as the primary contributor to post-implementation emissions. Although
often overlooked in operational decarbonization strategies, Scope 3 emissions from workforce
transportation represent a significant opportunity for reduction. Management may consider implementing
employee mobility programs, such as subsidized public transit, carpooling incentives, or flexible work
arrangements, to further reduce the warehouse’s indirect carbon footprint.

Phase out high-impact legacy equipment. As drone coverage expands, reliance on traditional
inventory scanning equipment, such as forklifts, is expected to decline. Management should develop a
phased retirement strategy for high-emission equipment, informed by life cycle assessment (LCA) data, to

support emissions reduction while maintaining operational continuity.
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Incorporate life cycle emissions in capital investment decisions. The LCA analysis of drone
hardware demonstrated a significantly lower embodied emissions profile relative to traditional machinery.
As such, future procurement processes should integrate life cycle emissions as a criterion for evaluating
new technologies. This approach aligns procurement strategy with broader organizational sustainability
objectives.

Ensure Al-powered drone adoption delivers measurable accuracy gains. The model reveals
that emissions from inventory disposal carry significantly higher carbon intensity than those from labor or
equipment usage. As a result, improvements in inventory accuracy represent one of the most powerful
levers for reducing warehouse emissions. Management should ensure that drone deployment is not treated
as a plug-and-play solution, but as a system requiring continuous calibration, monitoring, and integration
with warehouse processes. Without measurable improvements in discrepancy detection and inventory loss,
drone implementation may fail to deliver its full environmental benefit. Ongoing performance validation—
such as tracking issue rate reductions and scrap avoidance—is essential for maintaining emissions
improvements over time.

Develop a long-term emissions monitoring framework. To ensure accountability and continuous
improvement, management should establish a standardized emissions monitoring framework. This system
should leverage available operational data—such as equipment usage logs and energy consumption
records—to support annual reviews of emissions performance and validate the impact of automation
technologies over time.

By adopting these recommendations, warehouse operations can enhance environmental
performance, improve resource efficiency, and contribute meaningfully to the organization’s overall

sustainability strategy.

5.2  Future Work

To build on this study’s findings and strengthen the generalizability and decision-making utility of
the model, we propose two key areas for future research. First, we recommend expanding the empirical
rigor of the analysis through a Difference-in-Differences (DiD) approach that compares warehouses with
and without Al-powered inventory automation over time. Second, we suggest incorporating mathematical
modeling techniques to simulate operational dynamics and evaluate emissions outcomes across a range of
drone deployment scenarios. Together, these efforts can enhance causal attribution, support scenario

planning, and provide a more robust foundation for sustainable warehouse design.
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5.2.1 Expanding the Difference-in-Differences (DiD) Analysis

While this study provides a preliminary assessment of the sustainability impacts of drone
implementation through Life Cycle Assessment (LCA), future work should incorporate a more robust
causal inference framework using a Difference-in-Differences (DiD) approach. This method would enable
the comparison of changes in key operational metrics (e.g., emissions, inventory accuracy, equipment
runtime) between facilities that adopt drone technology and those that do not, both before and after
implementation.

To improve the reliability of the DiD analysis, future work should include:

e A larger sample size of warehouses across varied operational profiles and geographies.
e C(Clear identification of treatment and control groups with similar baseline characteristics.
¢ Consistent time intervals for pre- and post-treatment measurements.

e Integration of LCA-derived metrics (e.g., normalized COz¢/year) as outcome variables.

This approach would enhance the attribution of sustainability improvements specifically to drone

implementation, while controlling for unrelated external factors.

5.2.2 Incorporating Mathematical Modeling for Operational Factors

Given the sensitivity of emissions outcomes to operational assumptions, future research should
integrate mathematical modeling to simulate warehouse performance under varying conditions of drone-
assisted inventory management. This approach can help validate empirical findings and enable more
dynamic scenario planning. Key factors identified from this study that warrant inclusion in future models
are:

e Frequency of Cycle Counting: Alters the volume of activity, affecting energy consumption and
inventory waste rates.

e Inventory Structure Granularity (Case vs. Unit): Significantly impacts waste emissions
calculations; models should accommodate toggling between unit and case-level assumptions.

¢ Drone Flight Time and Coverage Constraints: Determines how many drones are required and how
often manual support is needed due to battery or coverage limitations.

e Equipment Sharing and Utilization Rates: Reflects the interplay between drones, forklifts, and
forklifts in mixed-technology environments, which influences total energy use and emissions.

e System Downtime and Maintenance: Incorporating probabilistic maintenance and failure events

can simulate operational disruptions and their impact on emissions and productivity.
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These parameters can be modeled using discrete-event simulations, queuing theory, or stochastic
optimization methods to evaluate cost, emissions, and operational efficiency across different
implementation scenarios. When combined with LCA data, this modeling approach provides a more robust

framework for strategic technology adoption and sustainability planning in warehouse operations.
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APPENDICES

Appendix A

Table Al. Emissions Parameter Table for Drone and Forklift Operations, Transportation, and Lifecycle

Assessment
Category Activity Formula with EF iNotes / Variables Citations
Cycle Count(daily) E = Eg X EFgrig—giobal iEq = 0.01665 kWh, EFyriq—giopal = 0.709 COze/kWh [1]
S . =1,500 cycle/year >
2 C “ons = X id— a
Annual Electricity Consumption E =EqxNXEFgq global F = 0.01665 x 1,500 x 0.709 = 17.71 kg COse/kWh [1]
Drone Operations :
2250 operating days/year assumed
. . . Annual Electricity Emission
c ) - 17.71
Daily Electricity Consumption E= 750 e = 0.0708 kg COye/day [1]
. . Cycle Count / Addressing _ . Ey, = 1.875 kWh/hour,hr = 8 hours/day,
Forklift Operations Discrepancics E =Ep X hr X EFgrig_wy EFyiqwn = 0.5289 kg COne/kKWh 2]
D = distance(km), C; = component weight(kg),
Drone Transportation Logistics for component and delivery E=DxCixNXEFj = number of cycle, 3]
iEF; = transmort mode EF (air/truck, kg COze/ton km)
. . - . _ D = distance(km),C = picker weight(kg),
Forklift Transportation Logistics for component and delivery E=DxCxNXEF — number of shipment, EF = transport EF [3]
E = ¥Cix EFi iC; = Material mass for component i
Drone Production Component EF S e EF; = EF for PA12,PC/ABS, optics,V = 5 years [4]
14 ‘Total embodied = 5.531 kg CO,e
N . . E =YCixEFi = vehicle life, Ci = component i weight,
Forklift Production Component EF — EFi= EF for component i [4]
:Dc = 47.8miles,
Commute Work commute E =DcXEF EF = 0.404kg COze/mile [51.(6]
Waste Tnventory disposal E = I x AVG(EF) _‘:nl;os( inventory, AVG[EF] = average carbon intensity factor for lost 7
Ref Source

Verity — Drone energy use and embodied component EF

[5] EPA — Average passenger vehicle emissions

[6] Axios — Average commute distance

WRAP (2020), Carbonfact (2023), Textile Exchange (2021)

]
[2] XtraPower Batteries. (n.d.); U.S. Energy Information Administration — Forklift energy and grid EF
] UK Department of Energy Security and Net Zero (2024) — GHG Conversion Factors

Hao, H., Mu, Z., Jiang, S., Liu, Z., & Zhao, F. (2017); Net Zero Carbon Guide (n.d.); CarbonChain (n.d.); American Chemistry
Council (2022); Liang, Q., & Yu, L. M. (2023); City of Winnipeg (2012); Sipert et al. (2024), Supplychain Connect, ScienceDirect

The table outlines all major emissions-related parameters, equations, and assumptions used for

estimating operational and lifecycle carbon impacts.

e Structure: Category: Operational or lifecycle phase (e.g., drone operations, commute).

e Activity: Specific function or emission-generating task.

e Formula with EF: Emissions formula integrating activity-specific emission factors.

e Notes/Variables: Definition of each variable and any key assumptions.

e C(Citations: Reference to data sources used for emission factors or values.

Coverage: This framework includes Scope 1 (e.g., on-site energy), Scope 2 (e.g., grid electricity),
and Scope 3 (e.g., transportation, waste, embodied carbon).
Assumptions: 250 operating days/year for drone use. Emission factors aligned with GHG Protocol,

and EPA. Commute and waste emissions treated with average factors due to data confidentiality.
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Table A2. Category-Level Inventory Emissions Estimates Using Aggregated Warehouse Data

Category Units Estimated kg COe per unit i Proportion to Total Inventory Source/Note
Boots 11,318 5 0.0042 Carbonfact (2023); Light polyester or nylon underlayer (e.g., thermals)
Baselayer 4,766 20 0.0018 RAP (2020); Includes leather/synthetic boots; assumes mid-range material intensity
Dress 36,980 22 0.0137 Carbonfact (2023); Mid- to full-length cotton/polyester blend
Graphic Fleece 35,366 12 0.0131 Carbonfact (2023); Printed polyester fleece sweatshirt with decoration
Graphic T’s 55,790 7 0.0207 Carbonfact (2023); Printed cotton/polyester blend t-shirts
Jackets 371,657 25 0.1380 RAP (2020); Insulated outerwear (synthetic/down fill)
Knit Bottoms 33,257 7 0.0123 RAP (2020); Sweatpants or leggings, often cotton/poly blend
Knit Tops 571,763 6.5 02123 RAP (2020); Basic long-sleeve or short-sleeve knit shirts
One Piece 2,360 10 0.0009 iTextile Exchange (2021); Jumpsuits or bodysuits; midweight mixed fibers
Outer Layer Polyflc 680,639 18 0.2527 RAP (2020); Heavyweight fleece jackets with full polyfill
Pants 11,752 8 0.0044 RAP (2020); Woven trousers, chinos, or cotton-polyester pants
Sandals 738 5 0.0003 Carbonfact (2023); Foam or synthetic sandals, minimal upper construction
Shoes 11,909 13 0.0044 Carbonfact (2023); General athletic shoes made of EVA, rubber, polyester upper
Sportswear Fleece 71,630 10 0.0266 RAP (2020); Lightweight athletic fleece jacket
Vests 14,030 12 0.0052 RAP (2020); Insulated vest with synthetic fibers
Woven Bottoms 415,859 9 0.1544 RAP (2020); Denim or twill trousers
Woven Tops 363,172 7 0.1349 RAP (2020); Button-down shirts, light woven fabrics
:Avg Emissions per Unit: 12.892 kg COe
Grand Total 2,692,986 Weighted average of all inventory units multiplied by their respective per-unit CO:e

alues.

* Inventory quantities are based on confidential internal data provided by the warehouse operator and
aggregated at the product category level. The weighted average emissions figure was calculated by
multiplying the unit count for each category by its estimated per-unit CO:ze value.
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Appendix B

Table B1. Variables, Parameters and Sources for Before Implementation Model

Activity Variable Name Value Units Source / Notes
# of inventory
personnel Ops team /
People commute commuting 6 | people assumption
Days commuted per
week 5 | days Ops team
Average miles
traveled per
individual 47.8 | miles Survey / assumption
# of forklifts for
inventory counting 5.41 | units Calculated
Avg inventory
Forklift energy counting hours per
(inventory count) | week 40 | hours/week WMS / estimate
Avg energy
consumption per Estimated based on
hour 2.8 | kWh battery spec
Tnventory disposal Inventory Loss Rate 1.60% | items NRF Survey 2023
Total inventory 129,381 | cases WMS
Locations count per
week 8,097.08 | locations Ops / assumptions
Issue rate 17.5% Verity/Assumptions
# of locations with
Forklift energy issues per Week 1417.8 | pallets/week Ops / assumptions
(addressing Totgl forklifts used
discrepancies) f(.)r 1nvento.ry .
discrepancies 0.59 | forklifts/week Calculated
Working Hours per
Week 40 | hours/week Warehouse spec
Avg energy
consumption per Estimated based on
hours 2.8 | kWh battery spec
Equipment # of forklifts 3 | units Warehouse spec
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Table B2. Variables, Parameters and Sources for After Implementation Model

Activity Variable Name Value Units Source / Notes
# of inventory personnel Ops team /
commuting 3 | people assumption
People commute Days commuted per week 5 | days Ops team
Average miles traveled per
individual 47.8 | miles Survey / assumption
# of drones 4 | units Verity
Drones energy Avg drone cycle time per
(inventory count) week 14.4 | hours/week Verity
Avg power draw of drone 0.01665 | kWh Verity
# of forklifts for inventory
counting 1.63 | units Calculated
Forklift energy Avg inventory counting
(inventory count) hours per week 40 | hours/week WMS / estimate
Avg energy consumption Estimated based on
per hour 2.8 | kWh per hour battery spec
Inventory disposal .
Inventory Loss Rate 0.96% | items per year Calculated
Total inventory 129,381 | cases WMS
# of locations with issues
per week 929.65 | locations Ops / assumptions
Avg Total Scans per Week 8,836 | locations Verity
Forklift energy Avg Issue Rate 10.5% Verity
(addressing Total forklifts used for
discrepancies) addressing inventory
discrepancies 0.39 | forklifts/week Calculated
Working Hours per Week 40 | hours/week Warehouse spec
Avg energy consumption Estimated based on
per hours 2.8 | kWh per hour battery spec
. # of Forklifts 2 | units Warehouse spec
Equipment
# of Drones 4 | units Verity
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