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ABSTRACT 
 
This capstone project evaluates the environmental impact of autonomous drone-based inventory 
automation in a U.S. fulfillment warehouse operated by a global logistics company. The central research 
question is: What is the impact of warehouse inventory automation on greenhouse gas (GHG) emissions 
across Scope 1, 2, and 3? To address this, we developed a quantitative decision-making framework 
grounded in the GHG Protocol and applied it to compare pre- and post-implementation scenarios using 
activity-based emissions modeling and life cycle assessment (LCA). Drawing on operational data, drone 
usage logs, and structured interviews, we modeled emissions from labor, material handling equipment, 
energy consumption, and inventory waste. The results show a 49.5% reduction in total annual emissions 
(from 79,200 kg CO₂e to 40,008 kg CO₂e), driven largely by a 40% decrease in inventory write-offs and a 
70% drop in forklift energy use. Expanding drone coverage from 64% to 90% yields an additional 33% 
reduction in emissions, though with diminishing marginal returns. The study concludes that drone-
enabled automation can significantly reduce indirect emissions—particularly Scope 3 sources such as 
employee commuting and inventory loss—while offering a scalable, data-driven tool for operational 
sustainability. The framework presented serves as a replicable model to support emissions-informed 
decision-making in warehouse automation initiatives.       
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1 INTRODUCTION  

1.1 Motivation 

Climate change is no longer a distant concern—it has become a pressing global challenge with 

immediate and widespread consequences. The Intergovernmental Panel on Climate Change (IPCC, 2023) 

confirms that rising greenhouse gas (GHG) emissions are causing significant environmental disruption, 

including global temperature increases, geographic shifts, changes in seasonal patterns, and increased 

severity of natural disasters. 

Among the contributors to global GHG emissions, the logistics and transportation sector holds a 

prominent position. According to the International Energy Agency (IEA, 2023), transportation accounts for 

nearly one-quarter of global CO2 emissions from fuel combustion. This is exacerbated by the rapid growth 

in e-commerce and omnichannel distribution, which has increased demand for storage and last-mile 

delivery services (Olson, 2022). Warehousing, a key component of the logistics chain, has emerged as a 

significant emissions source, contributing between 11–20% of total logistics-related emissions, depending 

on operational context and study scope (McKinnon, 2018; McKinsey & Company, 2024). 

At the same time, the logistics industry is undergoing a transformation driven by automation. The 

rise of smart warehouses and automated inventory systems responds to evolving consumer expectations for 

speed and accuracy, while also offering opportunities to enhance environmental sustainability. Recent 

advancements in artificial intelligence (AI) have catalyzed a new era in warehouse automation. AI-powered 

autonomous drones are increasingly replacing manual inventory processes, offering real-time, data-driven 

visibility and near-zero error rates. These intelligent systems leverage AI algorithms to navigate complex 

warehouse environments, scan inventory, and integrate data seamlessly with warehouse management 

systems, thereby enhancing efficiency and accuracy (Fernandez-Carames et al., 2024). 

Despite the momentum behind automation, limited academic attention has been devoted to 

understanding its actual impact on emissions. In response to this gap, our study focuses on evaluating the 

environmental implications of warehouse automation through the lens of GHG emissions. Specifically, we 

examine whether automated inventory systems contribute to reducing Scope 1, 2, or 3 emissions, and under 

what conditions these reductions occur. Our central research question (RQ) is: What is the impact of 

warehouse inventory automation on GHG emissions across different emission scopes? The goal is to 

uncover whether automation contributes to sustainability goals or introduces trade-offs that must be 

considered. 

To contextualize our analysis, we adopt the GHG Protocol framework, which categorizes emissions 

into three distinct scopes: Scope 1 (direct emissions from owned or controlled sources), Scope 2 (indirect 

emissions from purchased electricity, steam, heating, and cooling), and Scope 3 (all other indirect emissions 



 7 

that occur in the value chain). Figure 1 illustrates this classification, providing the conceptual basis for the 

modeling approach used in our analysis. 

 

Figure 1. Overview of GHG Protocol Scopes and Emissions Across the Value Chain (WRI/WBCSDl, 
2023) 

 
 

This research also challenges common assumptions—for instance, that employee commuting is the 

largest emissions driver in warehouse operations. By quantifying the emissions impact of traditional versus 

automated inventory systems, we provide evidence to support more informed sustainability strategies in 

warehousing (Gonzales & Peterson, 2022). 

1.2 Case Study: Verity’s AI-Powered Drone Inventory Automation 

To address our research question, we partnered with a global company in the transportation and 

integrated logistics sector, focusing on their fulfillment warehouse located in the United States. The 

company is transitioning from traditional inventory management—characterized by high labor demands, 

manual scanning, and inventory inaccuracies—toward advanced automated systems. 
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The automation solution implemented is provided by Verity, a robotics and AI company 

headquartered in Zurich, Switzerland, with operations across Europe and North America. Verity is a 

recognized leader in autonomous inventory intelligence, specializing in the deployment of AI-powered 

systems that deliver real-time visibility for logistics, retail, and manufacturing environments. Their 

autonomous indoor drone platform combines proprietary artificial intelligence algorithms, enabling the 

system to continuously monitor inventory without the need for physical infrastructure changes.  

Verity’s drones autonomously navigate high-bay warehouse environments—even in darkness—

scanning barcodes and identifying inventory discrepancies with zero-error precision. This allows for the 

creation of digital twin representations of warehouse stock in real time (Verity, 2024b). Unlike manual 

methods that rely on fossil-fuel-powered lifts and off-hour labor, Verity’s system reduces both physical 

strain and energy consumption while enhancing data accuracy and reducing losses due to shrinkage or 

misplacement. 

This case provides a valuable opportunity to quantify both the direct and indirect environmental 

impacts of transitioning to AI-powered warehouse automation. Through our collaboration, we obtained 

drone usage logs, warehouse operational data, and emissions factors. These inputs were used to model the 

GHG emissions associated with this technological shift, including changes in equipment energy demand, 

emissions from employee activities, and material life cycle impacts. 

1.3 Organization of the Capstone Paper 

The remainder of this paper is organized into five chapters. In Chapter 2, we present the literature 

review, outlining key concepts related to emissions modeling, warehouse operations, and automation 

technologies. In Chapter 3, we describe the methodology used to quantify GHG emissions across Scopes 

1, 2, and 3, applying an activity-based modeling framework and standardized emissions factors. Chapter 4 

presents the results of our emissions model, comparing traditional inventory processes with drone-enabled 

automation. In Chapter 5, we conclude the paper by summarizing our key insights, discussing the 

implications of our findings for operational decision-making, sustainability strategy, and policy, and 

suggesting directions for future research.  

2 STATE OF THE PRACTICE 

This chapter explores how automation, particularly autonomous drones, is shaping sustainability 

practices in warehouse operations. It begins with a review of recent literature on automation’s role in 

sustainable supply chains, then narrows its focus to warehouse automation, highlighting its evolving 

application beyond material handling to include inventory counting. The chapter concludes with a 
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structured review of methodologies used to measure Scope 1, 2, and 3 emissions in warehousing contexts, 

offering a foundation for the emissions modeling introduced in the following chapter. 

2.1 Automation and Sustainability in Warehousing 

 The role of automation in promoting sustainability across manufacturing and supply chain 

processes has gained significant attention in recent years (Qu & Kim, 2024). Organizations are now 

prioritizing not only efficiency and cost-effectiveness when implementing new technologies or designing 

processes, but also the environmental and social dimensions of sustainability (Lofti et al., 2023). These 

include reducing energy consumption, minimizing greenhouse gas (GHG) emissions, and improving the 

long-term resilience of operations.  

Within supply chain operations, warehouse activities have historically been studied primarily 

through the lens of operational and economic efficiency. However, emerging research has started to 

incorporate sustainability considerations, particularly through industrial design improvements and the 

integration of Internet of Things (IoT) technologies (Rezaei & Naghdbishi, 2024). Among the many 

automation technologies deployed in warehouses, material handling systems—such as conveyors, sortation 

systems, and automated storage and retrieval systems—have seen the most widespread adoption, driven by 

their clear efficiency benefits (Minashkina et al., 2023). In contrast, the automation of inventory counting 

remains a relatively underexplored area. As Minashkina et al. (2023) note, “the level of automation in 

warehouse stock counting using drones is still at an experimental stage,” highlighting the novelty of this 

approach in current literature.  

To support the selection of new technologies in logistics with sustainability in mind, Ferraro et al. 

(2023) developed a structured evaluation framework grounded in the Triple Bottom Line. Their study 

proposes a three-level Analytic Hierarchy Process (AHP) model that helps organizations compare 

technologies based on six sustainability indicators spanning economic, environmental, and social 

dimensions. The model evaluates emerging tools such as drones, exoskeletons, collaborative robots, and 

additive manufacturing, considering both their operational potential and their alignment with broader 

sustainability goals. This decision-support approach reflects growing interest in sustainable logistics and 

addresses a common challenge: how companies can prioritize investments across a wide range of 

automation options. Among these, autonomous drones have emerged as a particularly promising solution 

for inventory management.  

Early efforts in drone-based inventory management were largely limited to manual piloting or 

simple rule-based automation. However, recent advances in artificial intelligence (AI) have significantly 

enhanced the capabilities of drones in warehouse environments. AI-driven drones can now autonomously 

navigate complex indoor environments, perform inventory scans, and adapt to dynamic warehouse 
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conditions without human intervention (Fernandez-Carames et al., 2024). This evolution marks a 

meaningful shift from traditional automation toward intelligent, adaptive systems. A growing body of 

research has shown that AI-powered drones improve key operational outcomes—such as storage layout, 

picking accuracy, and inventory audits—while enabling real-time, data-driven inventory visibility 

(Fernandez-Carames et al., 2024). These improvements not only enhance efficiency but also contribute to 

measurable sustainability outcomes, such as reduced reliance on fossil-fuel-powered equipment and 

minimized energy use during off-peak hours.  

Despite these advancements, there is still limited empirical research analyzing the sustainability 

impact of drone-based inventory automation, particularly when it comes to quantifying its influence across 

different emissions scopes. This gap underscores the importance of developing structured methodologies 

for evaluating the environmental implications of this emerging technology, a focus explored in detail in the 

following sections. 

2.2 Framework for Emissions Analysis in Warehousing  

We investigated methodologies to measure variables associated with Scope 1, 2, and 3 emissions 

within contexts relevant to warehousing and automation. This review is organized into three segments, each 

corresponding to the respective scope of emissions. It is framed by a structured approach to assessing GHG 

emissions from material handling processes and warehouse operations, aligned with the GHG Protocol and 

recent applications in logistics operations (Perotti et al., 2022), as shown in Error! Reference source not 

found.. 
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Figure 2. Structured Approach to Assessing GHG Emissions (Fichtinger et al., 2015) 

 

2.3 Scope 1: Direct Emissions from Warehouse Operations 

Scope 1 emissions represent the direct GHG emissions generated from warehouse operations. 

These emissions can stem from HVAC systems and forklifts, depending on the energy sources powering 

them. They also encompass fuel consumption by stationary and mobile equipment, including vehicles, with 

emissions varying based on the type of fuel and equipment used. Recent studies highlight the significance 

of managing these direct emissions to enhance warehouse sustainability (Zschausch & Rosenberger, 2023). 

2.4 Scope 2: Indirect Emissions from Energy Consumption in Material Handling 

Scope 2 emissions arise from the indirect consumption of energy within warehouse operations, 

significantly influenced by material handling equipment, lighting, and HVAC systems running on 

electricity. Key characteristics of warehouses, such as illumination and HVAC requirements, are generally 

proportional to warehouse size, which accounts for a substantial portion of emissions in simulation studies 

(Lewczuk et al., 2021). While the size of the warehouse itself may remain constant, the implementation of 
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autonomous drones can alter these characteristics by changing the operational demands for lighting or 

HVAC. 

To achieve a truly comprehensive and sustainable warehouse design, it is essential to consider the 

environmental impact of all material handling equipment. By incorporating emissions from both fixed and 

mobile equipment—such as conveyors, cranes, and forklifts—into optimization models, a more accurate 

assessment of the warehouse's full lifecycle environmental impact can be achieved (Perotti et al., 2022). 

This approach ensures that the indirect contributions of equipment to Scope 2 emissions are properly 

accounted for in sustainable design efforts. 

Moreover, while emissions from drone usage are primarily studied in the context of last-mile 

delivery, researchers have also assessed these emissions based on factors such as drone aerodynamics, mass, 

and battery capacity (RawView, 2024). Considering drones’ potential impact on warehouse characteristics, 

particularly through altered illumination and HVAC needs, it becomes even more critical to integrate these 

variables into a holistic evaluation of warehouse operations and their environmental footprint. 

2.5 Scope 3: Indirect Emissions from the Broader Supply Chain  

Scope 3 emissions encompass a broader range of environmental impacts associated with warehouse 

operations, extending beyond direct energy use to include upstream and downstream processes. For 

instance, improved inventory accuracy and the use of drones for inventory counts can reduce reliance on 

forklifts in warehouse operations. A decreased demand for forklifts lowers the need for their production, 

thereby reducing embodied carbon emissions, as highlighted by Zschausch & Rosenberger (2023) in their 

analysis of logistics equipment. However, introducing drones into warehouse systems also necessitates 

evaluating the emissions associated with their production and operation, particularly for battery-powered 

drones. These emissions align with findings by RawView (2024), who analyzed the environmental impact 

of drones in warehouse inventory management. Balancing these trade-offs is critical to assessing the overall 

sustainability impact of warehouse automation. 

Beyond equipment impacts, inventory automation fundamentally reshapes employee workflows, 

enabling greater operational efficiency and reducing the need for additional labor. Automated inventory 

checks and reduced trips from misplaced inventory streamline operations, allowing warehouses to function 

effectively without expanding headcounts. This shift not only boosts efficiency but also decreases emissions 

tied to employee commutes, as analyzed by Zschausch & Rosenberger (2023), who measured commute-

related environmental impacts. 

Enhanced inventory accuracy contributes to optimizing economic order quantity (EOQ) and 

reducing wastage. Incorporating environmental costs such as transportation emissions and waste into the 

EOQ models enables larger lot sizes and less frequent orders, striking a balance between cost efficiency 
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and sustainability (Perotti et al., 2022). These changes have far-reaching implications for upstream 

production, where improved order quantities can refine production schedules and delivery frequencies, 

reducing lead times, transportation costs, and CO₂ emissions. 

These insights inform the hypothesis-driven model introduced in Section 3, where we map expected 

changes in emissions to operational variables such as inventory accuracy, forklift usage, and workforce 

footprint. The model builds on the structure of Perotti et al. (2022) and adapts variable mapping practices 

described in Fichtinger et al. (2015), whose structured approach is visualized in Figure 3.  

This study builds on prior literature and expert input to define the operational variables most likely 

to be affected by inventory automation. The hypothesis mapping in Chapter 3 is informed by a triangulated 

review of peer-reviewed research, insights from drone system providers, and practitioner knowledge of 

warehouse operations. These sources guided the formulation of expected variable shifts and modeling 

assumptions, helping ensure the framework’s relevance to real-world warehouse dynamics. While the 

literature on drone-enabled stock counting remains nascent (Minashkina et al., 2023), our synthesis offers 

a grounded basis for evaluating sustainability impacts. 

3 METHODOLOGY  

This chapter describes the step-by-step process used to model the environmental impact of 

autonomous drone-based inventory automation. The methodology is designed to assess emissions across 

Scope 1, 2, and 3, following the GHG Protocol framework. First, we define the operational variables most 

likely to be affected by drone adoption and formulate hypotheses about their expected behavior. Next, we 

explain how data was collected from warehouse systems, drone logs, and interviews. We then justify our 

selection of emissions factors and outline the emissions modeling framework, which integrates both 

activity-based and life cycle assessment (LCA) methods. Finally, we describe our comparative before-and-

after modeling structure and present the sensitivity analysis design used to explore the robustness of results. 

3.1 Key Variable Definitions 

To develop this framework, we identified the key variables to be evaluated and the emissions scopes 

they influence. Variables were selected by prioritizing those most likely to be affected by the adoption of 

drone-based inventory automation and those with significant potential impact on overall emissions. Factors 

such as packaging materials and last-mile transportation were excluded, as they fall outside the scope of 

internal warehouse operations and are not materially influenced by drone deployment. 

To enhance clarity and facilitate modeling, we systematically defined each variable, including its 

unit of analysis and associated emission scope. These variables were grounded in warehouse operations 
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data, drone specifications, and emissions modeling literature. The definitions below form the analytical 

foundation for our emissions estimation model and scenario analysis. 

• Drone Usage (kWh/year) – Electricity consumed by drones performing inventory scans. This 

variable contributes to Scope 2 emissions and scales with drone activity levels. 

• Forklift Usage (kWh/year) – Energy consumed by forklifts for manual cycle counts and associated 

lifecycle emissions from equipment manufacturing.  

• Fixed Material Handling Equipment (FMHE) Usage (kWh/year and units) – Energy 

consumption and embodied emissions related to equipment such as AS/RS. Although hypothesized 

to decrease, FMHE usage was later excluded from final modeling due to lack of observed variation. 

• Lighting and HVAC Usage (kWh/year) – Electricity required for lighting and temperature control. 

While hypothesized to shift with drone implementation, as drones do not require lighting or HVAC 

to operate 

• Employee Commuting (miles/year) – Distance traveled by staff dedicated to inventory counting. 

Modeled under Scope 3 using region-specific emissions factors. 

• Inventory Write-Offs (units/year) – Quantity of inventory scrapped due to misplacement or 

inaccuracy. The term “units” is warehouse-dependent and refers to the inventory handling level 

used at the facility, such as individual items, cases, or pallets, depending on how products are 

stored, tracked, and accounted for. This variable is a key driver of Scope 3 emissions from waste 

and replacement production. 

• Addressing Inventory Discrepancies (kWh/year) – Forklift energy expended in addressing 

inventory discrepancies. Emissions are attributed to Scope 2. 

• Drone Manufacturing (kg CO₂e/unit) – Embodied emissions from drone production, normalized 

over a 5-year lifespan and categorized under Scope 3 (LCA). 

• Forklift Manufacturing (kg CO₂e/unit) – Lifecycle emissions from forklift equipment, amortized 

over a 10-year lifespan and attributed to Scope 3 (LCA). 

 

These definitions inform the variable classification and emissions modeling structure shown in 

Figure 3, which maps each operational variable to its corresponding GHG emissions scope. 
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Figure 3. Categorization of Model Variables by Scope 

 

 

With these variables identified, we developed a methodology that aims to quantify total GHG 

emissions from key operational activities, compare emissions before and after drone implementation, and 

analyze the sensitivity of the results to changes in critical input variables. This multi-step approach begins 

by selecting the operational variables most likely to be affected by the adoption of drone technology and 

formulating hypotheses about their expected direction of change. We then describe the data collected to 

quantify these variables and justify the sources and assumptions used. To estimate emissions, we apply 

standardized emission factors from established sources such as the EPA Emission Factors for Greenhouse 

Gas Inventories from GHG Emissions Factors Hub (2024). These are integrated into a mathematical model 

that links activity levels to emissions outputs through formula-based calculations. The model is then applied 

to simulate emissions for both the baseline (manual operations) and post-implementation (drone-enabled) 

scenarios, using actual operational data and carefully constructed assumptions where needed. Finally, a 

sensitivity analysis explores how variations in key variables influence the overall emissions outcome, 

allowing us to identify which factors have the greatest potential for reducing environmental impact. 

3.2 Variable Selection and Hypothesis Mapping 

Building on the variable definitions presented above, we now organize them into five operational 

categories and outline the expected direction and rationale of change. 
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The starting point of this analysis is to identify the operational variables most likely to be affected 

by the introduction of the new technology to perform inventory counting. Understanding how these 

variables change is essential to quantifying the sustainability impact of the technological shift and 

structuring the emissions model accordingly. To guide this analysis, we formulated a set of hypotheses 

about the expected direction and rationale of change for each variable. These hypotheses are based on a 

review of relevant literature, discussions with drone system providers, and our understanding of warehouse 

operations. 

The affected variables span across five main operational categories: 

1. Energy Consumption and Infrastructure 

Lighting and HVAC: Changes in operating hours due to drone implementation may affect lighting 

and HVAC needs. Drones can operate without lighting, and fewer employees on the warehouse 

floor could lead to optimized HVAC settings. 

2. Material Handling Equipment 

Forklifts (Mobile MHE): We hypothesize a decrease in the usage and number of forklifts. Drones 

are expected to reduce the need for forklifts to perform inventory checks, as they can capture data 

without interrupting warehouse flow. 

Fixed Material Handling Equipment (FMHE): A decrease in the usage and number of FMHEs is 

anticipated. Drones can verify inventory in its current location, potentially reducing the need for 

Automated Storage and Retrieval System (AS/RS) cycles. 

3. Drone Usage 

Drone Operations: The implementation of drone operations in the warehouse is expected to 

increase electricity consumption, as these devices require energy for their operation regardless of 

operational efficiency. Consequently, the overall energy demand within the facility is expected to 

rise in direct proportion to the number of drones deployed. 

4. Inventory Management 

Inventory Levels and Accuracy: The implementation of drones is expected to enhance inventory 

accuracy by reducing instances of misplaced or unaccounted-for stock. Through automated and 

frequent cycle counting, drones can help identify discrepancies more quickly than manual cycle 

counts, minimizing errors in recorded inventory levels. This improvement reduces the likelihood 

of inventory being written off as obsolete or scrapped due to misplacement. Additionally, drones 

can assist in real-time inventory tracking, enabling warehouse personnel to locate items efficiently, 

thus preventing unnecessary replenishment orders and optimizing storage utilization. 
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5. Employee-Related Factors 

Employee Commute: The implementation of drone-assisted inventory cycle counts is expected to 

reduce the aggregate employee commute distance. This reduction is primarily due to a decreased 

need for dedicated personnel performing manual cycle counting. By automating part of the 

inventory process, drones can free up human resources, leading to potential changes in standard 

work processes and overall staffing requirements related to physical inventory management.  

 

To organize these hypotheses and structure the subsequent emissions analysis, Table 1 presents the 

selected variables, their expected direction of change, and the corresponding emissions scopes under the 

GHG Protocol. 

 

Table 1. Key Variables, Expected Direction of Change, and Emissions Scope 

 
These hypotheses were used to guide both the design of the emissions model and the structure of 

the data request submitted to the warehouse and drone service provider Verity. Interviews were held with 

the companies involved, particularly with the warehouse operations teams, to validate and quantify the 

above hypotheses and ensure they accurately reflect real-world processes on the warehouse floor.  

3.3 Data Collection and Source Justification 

To quantify the variables in this study, it was essential to define the type of data associated with 

each variable and identify their respective sources. Data collection methods included structured interviews 

with warehouse personnel, warehouse management system (WMS) reports, and outputs from the 

Variable Expected Direction of Change GHG Emissions Scope 

Use of drones for inventory counting Increase ↑ Scope 2  
Use of forklifts for inventory tasks Decrease ↓ Scope 2  
Fixed material handling equipment use Decrease ↓ Scope 2  
Energy consumption (drone charging) Increase ↑ Scope 2 
Energy consumption(forklift charging) Decrease ↓ Scope 2 
Employee commute Decrease ↓ Scope 3 
Inventory write-offs Decrease ↓ Scope 3 
Addressing Inventory Discrepancies Decrease ↓ Scope 2  

Lighting and HVAC usage Decrease or shift in timing 
(fewer operating hours) ↓ Scope 2 

Drone lifecycle emissions (LCA) Increase (introduced new 
equipment) ↑ Scope 3 (LCA) 

Forklift lifecycle emissions (LCA) Decrease (partial allocation) ↓ Scope 3 (LCA) 
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autonomous drone system. These sources were selected to provide both quantitative and qualitative insights 

into inventory operations before and after automation. 

The primary dataset was collected from a fulfillment warehouse located in the United States, 

covering operations from January to March in both 2024 and 2025. This facility was selected based on the 

availability of comparable pre- and post-drone implementation data within the designated time window. 

According to warehouse management, overall throughput volumes during these two quarters were 

consistent, supporting the validity of before-and-after comparisons for inventory-related activities. 

Operational data was extracted from the WMS and included detailed records of cycle counts, such 

as date, number of locations counted, item descriptions, license plate number (LPN) counts, system-

recorded quantities, quantities counted, and both net and absolute discrepancies. This dataset enabled the 

historical analysis of inventory accuracy, identification of discrepancies, and inference of manual counting 

efforts using forklifts. Structured interviews with warehouse staff were conducted to contextualize the data, 

validate modeling assumptions, and understand operational nuances, such as manual error rates, scheduling 

practices, and workforce allocation to inventory tasks. 

Drone performance specifications and usage logs were provided by Verity. This dataset included 

the number of drone cycles performed, average cycle duration, energy consumption profiles, and the 

number of items or locations scanned. The system also logged discrepancies detected by drones, allowing 

for the calculation of issue rates and scan coverage. 

Where inconsistencies or gaps were found across datasets, proxy values were derived using 

industry benchmarks, academic literature, or expert insights from warehouse personnel. These assumptions 

were validated through cross-referencing with available site data or by triangulating multiple sources to 

ensure robustness.  

In addition to raw inputs, several intermediate variables—such as the number of personnel needed 

for inventory counting, forklift allocation, and the manual share of locations—were calculated using 

warehouse-specific assumptions to perform the sensitivity analysis, including scan capacities, shift 

durations, and drone coverage capabilities. These values were not treated as static inputs but rather modeled 

dynamically in response to operational parameters detailed in Section 3.6. Table 2 summarizes the key 

warehouse-specific inputs and assumptions used in the development of the emissions model. 
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Table 2. Warehouse-Specific Inputs and Assumptions 

Input Variable Value Units Source 
Total warehouse locations 97,165 locations WMS / facility layout 
Locations scannable by drones 78,560 locations Warehouse standard 
Locations not scannable by drones 18,605 locations Calculated (difference) 
Inventory loss rate (before 
implementation) 1.60% % of total 

inventory NRF Survey (2023) 

Issue rate (Locations counted manually) 17.51% % of locations WMS historical data 

Issue rate (Locations counted by Drones) 6.59% % of locations Verity logs (drone-only 
scans) 

Weekly scans (post-implementation) 8,836 scans/week Verity 

Average employee commute distance 47.80 miles/day Employee survey / 
assumption 

Human counting capacity 60 locations/hour Warehouse operations 
Shifts per day 2 shifts/day Warehouse standard 
Hours per shift 8 hours Warehouse standard 
Working days per week 5 days Warehouse standard 
Counting cycle length 12 weeks Operational policy 

Forklift energy consumption 2.8 kWh/hour Estimated based on battery 
specifications 

Drone energy consumption 0.0167 kWh/hour Verity 
Drone operating time (per drone) 14.40 hours/week Verity 

3.4 Emission Factor Selection 

To convert measurements into emissions calculations and assess their sustainability impacts, we 

adopt a systematic approach using emissions factors (EFs). These coefficients quantify the GHG emissions 

associated with specific operational or life cycle activities, such as electricity consumption, employee 

commuting, equipment production, or inventory disposal. Emissions factors link measurable activities to 

emissions outputs and allow us to consistently estimate impacts across Scopes 1, 2, and 3 as defined by the 

GHG Protocol. 

Given the diversity of activities included in this analysis, ranging from equipment operation to 

waste generation and lifecycle emissions from material handling equipment, we sourced emissions factors 

from a combination of government publications, vendor-provided data, and peer-reviewed databases. Each 

factor was selected based on its relevance to warehouse operations, the geographic location of the case 

study, and the specificity of the activity measured. 

For operational activities such as drone energy use and forklift charging, we used emissions factors 

from Verity (2024a) and the U.S. Energy Information Administration. For employee commuting, we relied 

on standard emissions factors provided by the U.S. Environmental Protection Agency (2024), as commuting 

data was not provided. For example, drone energy consumption was modeled using Verity’s equipment-
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specific performance data, and forklift electricity use both applied an emissions factor (EF) of 0.5289 kg 

CO₂e/kWh, aligned with the fulfillment center’s regional electricity grid mix (U.S. EIA, 2024; XtraPower 

Batteries; Dobers & Jarmer 2023). Employee commuting emissions were calculated using the U.S. EPA 

standard of 0.4 kg CO₂e/mile, consistent with national averages for passenger vehicle use (EPA, 2024). 

Table 3 summarizes the emissions factors applied to operational activities, organized by source 

category and citation. 

 

Table 3. Operational & Commute Related Emission Factors 

Category Activity Emission Factor (EF) Source / Citation 

Labor People commute 0.4	𝑘𝑔𝐶𝑂₂𝑒/𝑚𝑖𝑙𝑒 U.S. Environmental Protection Agency. 
(2024). Average passenger vehicle emissions. 

Forklift Ops 

Cycle Count 

0.5289	𝑘𝑔𝐶𝑂!𝑒/𝑘𝑊ℎ 
U.S. Energy Information Administration 
(2024) 
XtraPower Batteries. (n.d.) Addressing 

Inventory 
Discrepancies 

Waste Inventory disposal 12.892𝑘𝑔𝐶𝑂₂𝑒/𝑘𝑔 Carbonfact (2023), WRAP (2020),  
Textile Exchange (2021) 

Drone Ops Cycle Count 0.5289	𝑘𝑔	𝐶𝑂₂/𝑘𝑊ℎ 
U.S. Energy Information Administration 
(2024) 
XtraPower Batteries. (n.d.) 

 

In addition to operational emissions, we accounted for Scope 3 emissions from equipment 

production and transportation by applying life cycle assessment (LCA)-based emissions factors. These 

factors represent the cradle-to-gate embodied carbon of material handling equipment, normalized over 

estimated equipment lifespans. Drone production emissions were modeled based on material-level 

assessments provided by Verity and supported by LCA databases and literature (Liang, Q., & Yu, L. M.  

,2023; American Chemistry Council, 2022). For forklifts, production emissions were significantly higher 

due to the scale, material intensity, and battery systems involved, with estimates drawn from comprehensive 

electric MHE lifecycle analyses (Hao et al., 2017; Net Zero Carbon Guide; Sipert et al., 2024). 

Transportation-related emissions were modeled using DEFRA-based emissions factors (UK Department 

for Energy Security and Net Zero, 2024), accounting for delivery distances and equipment weight. 

Table 4 outlines the LCA-related emissions factors used in the model, covering both production 

and transportation stages. 

 

 

 

 



 21 

Table 4. LCA-Related Emission Factors 

Emission Source Emission Factor (EF) Source / Citation 

Drone Production 10.98	𝑘𝑔	𝐶𝑂₂𝑒 
Liang, Q., & Yu, L. M. (2023); City of Winnipeg (2012); 
American Chemistry Council (2022); CarbonChain (n.d.); 
Verity (2024a) 

Drone Transportation 16.675	𝑘𝑔	𝐶𝑂₂𝑒 UK Department of Energy Security and Net Zero (2024) 

Forklift Production 1,171.48	𝑘𝑔	𝐶𝑂₂𝑒	 
Net Zero Carbon Guide (n.d.); Hao et al. (2017); 
CarbonChain (n.d.); Sipert et al. (2024); ScienceDirect 
(2024) 

Forklift Transportation 2,295.22	𝑘𝑔	𝐶𝑂₂𝑒 UK Department of Energy Security and Net Zero (2024) 
 

By triangulating multiple sources and aligning factors to the specific processes observed in the 

warehouse, this emissions factor framework supports robust and transparent modeling. Full derivations of 

emissions equations and assumptions associated with each EF are presented in Appendix A. 

3.5 Mathematical Modeling of Emissions 

A core component of this analysis involves evaluating the impact of operational changes on both 

direct and indirect GHG emissions. Emphasis is placed on quantifying emissions associated with inventory 

discrepancies, especially write-offs caused by misplaced or inaccurately counted items, as these serve as a 

critical lever for emissions reduction. Improvements in inventory accuracy through drone-based cycle 

counting are expected to reduce the frequency and severity of such discrepancies. To validate this 

assumption and improve model fidelity, structured interviews were conducted with warehouse personnel to 

understand the practical consequences of these discrepancies and their operational context. 

Based on this investigation, we identify four primary emissions outcomes associated with poor 

inventory accuracy: 

1. Operational Overhead: Increased labor and equipment usage for manual cycle counting and 

addressing inventory discrepancies. 

2. Inventory Write-Offs: Items that are lost, unaccounted for, or later deemed unsellable due to 

mishandling, leading to waste and replacement emissions. 

3. Expedited Shipments: Triggered by stockouts from inaccurate inventory data, often involving air 

freight or other high-emissions transport modes. 

4. Intra-Network Transfers: When items must be shipped from alternate warehouse locations to 

fulfill orders, resulting in additional transportation emissions. 

 

These emissions consequences were modeled using a before-and-after comparative design focused 

on operations at the selected warehouse where autonomous drones were introduced in January 2025. The 
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model quantifies changes in emissions across key activities using operational data and emission factors 

detailed in Section 3.3. 

3.5.1 Modeling Approach and Workflow 

Our emissions estimation follows a four-step process that aligns with methodological best practices 

outlined in Dobers and Jarmer’s (2023) GHG accounting guide for logistics hubs, particularly in its 

functional area-based allocation of electricity and ISO 14083-compliant reporting: 

1. Pre-Implementation Baseline Estimation: Establishing GHG emissions from traditional inventory 

management operations (Jan–Mar 2024). 

2. Post-Implementation Projection: Simulating emissions under drone-enabled inventory automation 

(Jan–Mar 2025). 

3. Sensitivity Analysis: Exploring how variations in key assumptions affect emissions outcomes 

(detailed in Section 3.6). 

4. Result Interpretation: Estimating net emissions impact and identifying primary drivers of 

sustainability gains or trade-offs. 

Emissions are calculated using a standard activity-based modeling framework in which each 

variable is represented as  

 
𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠	𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦	 = 	𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦	𝐿𝑒𝑣𝑒𝑙	 × 	𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛	𝐹𝑎𝑐𝑡𝑜𝑟 

 
where Activity Level refers to a measurable quantity such as kWh consumed, miles traveled, or 

items scrapped, and Emission Factor (EF) refers to the carbon intensity of that activity, typically expressed 

in kg CO₂e per unit. 

3.5.2 Activity-Based Emissions Modeling 

The model evaluates a set of selected operational activities expected to be influenced by drone 

deployment, such as employee commuting, forklift usage, energy consumption for drone charging, and 

inventory write-offs. Emissions for each activity are calculated separately for both the baseline and post-

implementation periods using the formulas and variables defined in Table 5. 
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Table 5. Emissions Model Structure by Activity 

Category Activity Activity Level Formula 
Emission 
Factor (EF) 

Emissions 
Equation 

Labor (Scope 
3) 

Employee 
commuting 

𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠 × 𝐷𝑎𝑦𝑠	𝑐𝑜𝑚𝑚𝑢𝑡𝑒𝑑
× 𝐴𝑣	𝑀𝑖𝑙𝑒𝑠	𝑡𝑟𝑎𝑣𝑒𝑙𝑒𝑑 

0.4 kg CO₂e 
/ mile 𝐸	 = 	𝑀𝑖𝑙𝑒𝑠 × 𝐸𝐹  

Drone 
Operations 
(Scope 2) 

Drone 
inventory 
scans 

𝐷𝑟𝑜𝑛𝑒𝑠	
× 	𝐴𝑣𝑔	𝐷𝑟𝑜𝑛𝑒	𝐹𝑙𝑦	𝑇𝑖𝑚𝑒	𝑝𝑒𝑟	𝑊𝑒𝑒𝑘	
× 	𝐴𝑣𝑔	𝑃𝑜𝑤𝑒𝑟	𝐷𝑟𝑎𝑤	𝑝𝑒𝑟	𝐹𝑙𝑖𝑔ℎ𝑡 

0.5289 kg 
CO₂e / kWh 𝐸	 = 𝐸𝑛𝑒𝑟𝑔𝑦 × 𝐸𝐹 

Forklift 
Operations 
(Scope 2) 

Inventory 
counting 

𝐹𝑜𝑟𝑘𝑙𝑖𝑓𝑡𝑠	𝑢𝑠𝑒𝑑	𝑓𝑜𝑟	𝐶𝑜𝑢𝑛𝑡𝑖𝑛𝑔
× 	𝑊𝑜𝑟𝑘𝑖𝑛𝑔	𝐻𝑜𝑢𝑟𝑠		
× 	𝐴𝑣𝑔	𝐸𝑛𝑒𝑟𝑔𝑦	𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛	𝑝𝑒𝑟	𝐻𝑜𝑢𝑟 

0.5289 kg 
CO₂e / kWh 𝐸	 = 𝐸𝑛𝑒𝑟𝑔𝑦 × 𝐸𝐹 

Inventory 
Management 
(Scope 3) 

Inventory 
write-offs 𝐼𝑡𝑒𝑚	𝐿𝑜𝑠𝑠	𝑅𝑎𝑡𝑒	 × 	𝑇𝑜𝑡𝑎𝑙	𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 12.892 kg 

CO₂e / item 𝐸	 = 𝐼𝑡𝑒𝑚𝑠 × 𝐸𝐹 

Forklift 
Operations 
(Scope 2) 

Inventory 
Discrepancies 

𝐹𝑜𝑟𝑘𝑙𝑖𝑓𝑡𝑠	𝑢𝑠𝑒𝑑	𝑓𝑜𝑟	𝑑𝑖𝑠𝑐𝑟𝑒𝑝𝑎𝑛𝑐𝑖𝑒𝑠	
×𝑊𝑜𝑟𝑘𝑖𝑛𝑔	𝐻𝑜𝑢𝑟𝑠
× 	𝐴𝑣	𝐸𝑛𝑒𝑟𝑔𝑦	𝐶𝑜𝑛𝑠𝑢𝑝𝑡𝑖𝑜𝑛	𝑝𝑒𝑟	𝐻𝑜𝑢𝑟	 

0.5289 kg 
CO₂e / kWh 𝐸	 = 𝐼𝑡𝑒𝑚𝑠 × 𝐸𝐹 

Lifecycle 
(Scope 3) 

Drone 
manufacturing 𝐷𝑟𝑜𝑛𝑒𝑠	𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑑 5.531 kg 

CO₂e / unit 𝐸	 = 𝑈𝑛𝑖𝑡𝑠 × 𝐸𝐹 

Lifecycle 
(Scope 3) 

Forklift 
manufacturing 𝐹𝑜𝑟𝑘𝑙𝑖𝑓𝑡𝑠	𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑑 1401 kg 

CO₂e / unit 𝐸	 = 𝑈𝑛𝑖𝑡𝑠 × 𝐸𝐹 

 

In Appendix B, we include all the assumptions we use in each formula—such as scan rate, power draw, 

and average distance per forklift cycle—which we also examine through sensitivity analysis in Section 3.6.  

3.5.3 Life Cycle Assessment Integration 

To enhance the environmental impact assessment, a Life Cycle Assessment (LCA) was 

incorporated to quantify emissions generated across the full lifecycle of key equipment used in inventory 

counting operations. LCA provides a standardized, data-driven framework to evaluate environmental 

footprints from material extraction and manufacturing to transportation, use, and eventual disposal 

(International Organization for Standardization [ISO], 2006a). Unlike activity-based emissions, which 

focus on operational energy use, LCA offers a more comprehensive evaluation by capturing the embodied 

carbon in warehouse assets and infrastructure. 

We structured the life cycle assessment (LCA) according to the phases outlined in ISO 14040 and 

ISO 14044 (ISO, 2006b). In the goal and scope definition phase, we defined the objective as a comparison 

of annualized emissions from drones and conventional forklifts used for inventory counting. The system 

boundary encompasses production, transportation, and the operational lifespan of each equipment type. In 

the life cycle inventory (LCI) phase, we gathered data on material inputs, energy consumption, logistics, 

and manufacturing processes for both systems. During the life cycle impact assessment (LCIA), we 

quantified GHG emissions using the Global Warming Potential (GWP) metric, expressed in kilograms of 
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CO₂ equivalent (CO₂e). Finally, in the interpretation phase, we validated the results, addressed data 

uncertainties, and contextualized the findings within the broader emissions model of the warehouse 

operation. 

For our model, LCA calculations were based on data from manufacturer specifications, academic 

literature, and government databases. For instance, Verity (2024a) and Liang & Yu (2023) provided 

component-level data on the autonomous drones, while the Raymond 560-OPC30TT forklift was modeled 

using emissions factors from published LCA studies (Hao et al., 2017; UK Department of Energy Security 

and Net Zero, 2024). 

Total cradle-to-gate emissions for the forklift were estimated at approximately 14,010 kg CO₂e 

over a 10-year lifespan (or 1,401 kg CO₂e/year), reflecting contributions from steel, lithium-ion batteries, 

plastics, and transportation. In contrast, the autonomous drone system, composed primarily of lightweight 

polymers, optics, and a small battery, was found to have a total lifecycle footprint of 27.65 kg CO₂e over a 

5-year lifespan (or 5.53 kg CO₂e/year). 

LCA was applied across three impact categories: 

1. Inventory Write-Offs and Waste Reduction  

Misplaced or lost inventory leads to unnecessary disposal and emissions from replacement 

production. By improving inventory accuracy, drones reduce write-off frequency and minimize 

associated embodied emissions. We apply an average embodied carbon factor of 12.892 kg CO₂e 

per unit based on category-level apparel data (WRAP, 2020; Carbonfact, 2023). 

2. Mobile Equipment Utilization  

Conventional forklifts are a significant source of Scope 2 and 3 emissions. Drone adoption displaces 

these emissions through reduced equipment cycles. Based on revised LCA inputs, forklifts 

contribute approximately 1,401 kg CO₂e/year, while drones contribute only 5.53 kg CO₂e/year, a 

>99% reduction in embodied equipment emissions. 

3. Drone Infrastructure Emissions  

Although drones reduce operational emissions, they introduce emissions from equipment 

production and infrastructure (e.g., charging stations, battery systems). These impacts were 

estimated and incorporated into the annual emissions model, ensuring a balanced view of both costs 

and benefits. 

By integrating LCA with operational modeling, we obtain a comprehensive assessment of 

emissions impacts and can more accurately evaluate the net sustainability benefit of drone-based inventory 

automation. A detailed explanation of assumptions and calculations is provided in Section 3.4.4 and 

Appendix A. 
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3.5.4 LCA Calculation Approach 

To quantify life cycle emissions of both drone systems and conventional forklifts, we developed a 

Life Cycle Inventory (LCI) based on component-level material breakdowns, energy usage, logistics, and 

equipment lifespan. Emission factors were applied using data from peer-reviewed studies, government 

databases, and environmental modeling platforms (e.g., UK Government GHG Conversion Factors, 

CarbonChain, ScienceDirect). 

Forklift System (Raymond 560-OPC30TT) 

The LCI was based on an industrial-grade forklift weighing 3,882 kg, including: 

• Steel frame: 2,254 kg × 2.8 kg CO₂e/kg = 6,311.2 kg CO₂e 

• Lithium-ion battery (27.9 kWh): 61.5 kg CO₂e/kWh × 27.9 = 1,715.85 kg CO₂e 

• Other mixed materials (483 kg): 7.635 kg CO₂e/kg = 3,687.69 kg CO₂e 

• Transport emissions (800 km trucking): ≈ 295.26 kg CO₂e 

Total emissions: 11,714.76 + 295.26 = 14,010 kg CO₂e  

Annualized over 10 years: 1,401 kg CO₂e/year 

 

Drone System (Verity Autonomous Drone) 

The drone system was modeled using component-level mass and specific emissions factors: 

• PA12 frame (0.5 kg): 5.7 kg CO₂e/kg = 2.85 kg CO₂e 

• PC/ABS housing (0.2 kg): 4.518 kg CO₂e/kg = 0.90 kg CO₂e 

• Optics and electronics (0.15 kg): 24.865 kg CO₂e/kg = 3.73 kg CO₂e 

• Lithium-ion battery (0.25 kg): ≈ 3.5 kg CO₂e 

• Transport emissions (air and truck): 16.675 kg CO₂e 

Total embodied emissions: 11.0 + 16.675 = 27.65 kg CO₂e  

Annualized over 5 years: 5.53 kg CO₂e/year 

All lifecycle emissions were normalized to the same functional unit: kg CO₂e per year per 

equipment unit, ensuring comparability between conventional and automated inventory solutions. The 

results reinforce the significant sustainability advantage of drone adoption in inventory operations, 

particularly in contexts where forklifts are primarily used for counting rather than material movement. 

3.6 Before-and-After Scenario Modeling 

To assess the net impact of drone implementation on sustainability outcomes, we developed two 

modeled scenarios representing operations before and after the introduction of autonomous drones. These 

scenarios are based on actual warehouse data and are supplemented with validated assumptions, as detailed 

in earlier sections. 
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Each scenario incorporates emissions from various sources, categorized according to the GHG 

Protocol into Scopes 2 and 3, and life cycle emissions. Scope 2 includes electricity consumption associated 

with drone charging, forklift operations, and other energy-dependent warehouse activities. Scope 3 covers 

indirect emissions from employee commuting, inventory write-offs and losses, addressing inventory 

discrepancies, and the manufacturing and transportation of operational equipment. Lifecycle emissions 

represent the embodied carbon from the production, delivery, and use-phase amortization of drones and 

forklifts, based on values derived through life cycle assessment (LCA) modeling. 

Scope 1 emissions were intentionally omitted from this analysis. Scope 1 typically includes direct 

emissions from on-site fossil fuel combustion—such as diesel-powered material handling equipment or 

natural gas-based HVAC systems. However, during interviews and follow-up validation with warehouse 

personnel, it was confirmed that the implementation of drone-based inventory automation did not alter on-

site fuel usage patterns. The warehouse maintained consistent HVAC schedules and operational settings 

both before and after drone deployment. Therefore, as no change in Scope 1 emissions could be attributed 

to the technology transition, they were excluded from the comparative emissions modeling. 

The modeled scenarios are designed to represent a three-month operational window, covering 

January through March for the years 2024 (pre-implementation) and 2025 (post-implementation). All 

variables were either measured directly or derived from structured interviews, WMS datasets, and Verity 

drone flight data. Where data was missing, assumptions were calculated or conservatively estimated using 

industry benchmarks and validated against contextual information. 

A central feature of the model is the introduction of a target percentage of locations counted by 

drones, which acts as the master variable governing several downstream operational and emissions 

outcomes. According to the warehouse operator, the planned future state will allow drones to complete 90% 

of all cycle counting tasks for the reserve storage area, which includes 78,560 out of 97,165 total warehouse 

locations. This means that only 7,800 reserve locations will continue to require manual counting, while an 

additional 18,605 locations, which are not drone-accessible, will always be counted manually. This 

assumption creates a calculated manual share of locations, which becomes the primary driver for estimating 

required personnel and equipment for cycle counting in the after-implementation sensitivity analysis. 

The drone coverage percentage also influences inventory accuracy by lowering the average issue 

rate (percentage of scanned locations that trigger discrepancies) and, indirectly, the inventory loss rate 

(percentage of inventory written off). Both values are modeled as linear functions of drone coverage, based 

on observed issue rates in drone-scanned and manually counted locations. 

For the post-implementation scenario, the initial values for issue rate and inventory loss rate were 

not directly observed but calculated using calibrated linear relationships based on available warehouse data. 
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The model uses a target drone coverage percentage as a control variable, which influences accuracy-related 

metrics. Specifically, the issue rate was modeled using the equation 

 

𝐼𝑠𝑠𝑢𝑒	𝑅𝑎𝑡𝑒	𝑡𝑜𝑡𝑎𝑙 = 6.59% × 𝑝𝑑 + 17.51% × (1 − 𝑝𝑑)	 

 

where 𝑝𝑑 is the proportion of drone-scannable locations covered by drones, and the constants were 

derived from observed rates in manually and drone-scanned areas. The inventory loss rate was assumed to 

improve at the same proportional rate as issue rate and is calculated using 

 

𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦	𝐿𝑜𝑠𝑠	𝑅𝑎𝑡𝑒	𝑡𝑜𝑡𝑎𝑙 = 1.6% × (
𝐼𝑠𝑠𝑢𝑒	𝑅𝑎𝑡𝑒	𝑡𝑜𝑡𝑎𝑙

17.5%
)	 

 

These equations reflect operational data showing that drone-scanned locations have significantly 

lower discrepancy rates and that improvements in inventory visibility reduce the likelihood of write-offs. 

In the initial post-implementation model, current drone coverage was estimated at 64% out of the 90% goal, 

based on WMS cycle count logs and interviews with warehouse personnel. At this coverage level, the model 

produced an estimated issue rate of 10.53% and an inventory loss rate of approximately 1.0%. 

In addition to calculating inventory issues and loss rate, the model also estimates forklift utilization 

for addressing inventory discrepancies based on the number of locations flagged as issues during drone 

scans. These locations require manual verification and physical access using forklifts. The number of 

locations with issues per week was calculated as 

 

𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠	𝑤𝑖𝑡ℎ	𝑖𝑠𝑠𝑢𝑒𝑠	𝑤𝑒𝑒𝑘 = 𝑊𝑒𝑒𝑘𝑙𝑦	𝑆𝑐𝑎𝑛𝑠 × 𝐼𝑠𝑠𝑢𝑒	𝑅𝑎𝑡𝑒	 

 

This value was then used to determine the weekly workload associated with misplacement retrieval. 

To translate this into energy use and equipment needs, the model calculates the fraction of a forklift needed 

using the following logic: given a known capacity for how many locations a forklift-and-operator team can 

address in a week, the total number of locations with issues is divided by that capacity to yield a fractional 

equipment count. This figure is multiplied by the number of operational hours per week and the average 

power draw per hour to determine forklift energy consumption. Forklift energy for addressing issues is 

calculated as 

𝐹𝑜𝑟𝑘𝑙𝑖𝑓𝑡	𝐸𝑛𝑒𝑟𝑔𝑦	𝐷𝑖𝑠𝑐𝑟𝑒𝑝𝑎𝑛𝑐𝑖𝑒𝑠 = (
𝑀
𝐶!
) × 𝐻 × 𝑃	 
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where 𝑀 represents the number of locations requiring issue resolution each week, 𝐶! the known 

capacity of a forklift-and-operator team to process a given number of locations per week, 𝐻 the number of 

working hours per week, and 𝑃 is the average energy consumption per hour. This value is modeled as 

continuous and fractional to reflect real-world resource sharing, rather than assuming full-time equipment 

is dedicated to misplacement recovery. 

It is important to note that for this initial baseline comparison, the number of personnel and forklifts 

for inventory counting operations was treated as static input values derived from current warehouse 

operations. While later sensitivity analyses model these resources dynamically as a function of drone 

coverage and task demand, the base after-implementation scenario preserves actual staffing levels to anchor 

the model in real-world conditions. 

By simulating the same operational setting with and without drone-enabled inventory automation, 

this scenario-based modeling approach isolates the marginal impact of drone deployment on key 

sustainability indicators. The emissions outcomes from these scenarios serve as the basis for the 

comparative analysis presented in Section 4 and the sensitivity analysis in Section 3.6. 

To quantify the environmental impact of drone implementation, we calculated the net emissions 

change across each modeled activity using the following formulation 

 

∆	𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠	 = 	𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠	𝑝𝑟𝑒	– 	𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠	𝑝𝑜𝑠𝑡 

 

A negative value of ∆	𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 indicates a reduction in GHG emissions attributable to drone 

deployment. 

3.7 Sensitivity Analysis Design 

To better understand the influence of key drivers, a sensitivity analysis is conducted. This 

component of the methodology aims to identify which input variables—such as labor requirements, 

inventory accuracy, or equipment allocation—have the most significant effect on sustainability outcomes, 

and how variations in these factors affect total emissions. Rather than isolating causal effects through 

statistical control groups or regression models, this approach focuses on estimating plausible impacts by 

systematically testing how changes in operational assumptions shape emissions outcomes. 

The sensitivity analysis quantifies the emissions impact of individual parameters by evaluating the 

change in total emissions relative to percentage changes in each variable. This helps determine which 

variables produce the largest emissions shifts when adjusted and informs recommendations by highlighting 

which levers are realistically modifiable in practice. The model supports a range of operational levers, 

including personnel allocation strategies, inventory counting coverage, and discrepancy resolution effort. 
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This enables supply chain stakeholders to explore implementation scenarios and evaluate emissions savings 

under varied warehouse conditions. 

The target percentage of locations to be counted by drones is the central feature of the model’s 

sensitivity structure. This variable represents the share of drone-scannable locations covered by autonomous 

drones and is varied across a range of values, from the current estimated state (64%) to the warehouse’s 

future target (90%), and up to 100% to assess the implications of maximum achievable automation. As this 

percentage increases, the manual share of locations to be counted decreases accordingly, and this directly 

impacts the number of human personnel and forklifts required for inventory counting. 

Personnel needed for manual inventory counting is dynamically calculated as a function of the 

remaining locations to be counted and the scanning capacity of an operator. Forklift needs for this task are 

set to match the number of people assigned, assuming a 1:1 human-equipment ratio. In contrast, the number 

of forklifts needed for addressing inventory discrepancies is determined independently, based on the 

number of issues flagged per week, calculated from the average issue rate and weekly scan volume, and the 

weekly capacity of a forklift team. This ensures that misplacement-related activity remains partially 

independent and responsive to the issue rate, which itself is also modeled as a function of drone coverage. 

All personnel values—whether for inventory counting or issue resolution—are aggregated and 

rounded up to determine total headcount for commuting emissions (Scope 3). The number of forklifts is 

then derived as a ratio of total personnel, assuming that forklifts can operate across two shifts per day, while 

employees only cover one. This ratio-based calculation enables fractional allocations of emissions in both 

Scope 2 (energy) and Scope 3 (lifecycle) categories, reflecting shared asset use in practice. 

Inventory accuracy metrics, specifically the issue rate and inventory loss rate, are also dynamically 

modeled as linear functions of drone coverage. As drone coverage increases, the model assumes 

proportional improvements in these metrics, based on observed data from manually and drone-scanned 

areas. These improvements reduce both the number of discrepancies requiring manual intervention and the 

number of items written off entirely, thereby lowering emissions associated with waste and retrieval labor. 

By structuring the model this way, the sensitivity analysis not only identifies the most impactful 

variables but also shows how they interact. This is particularly valuable for illustrating operational trade-

offs, such as how increasing drone coverage beyond 90% continues to reduce emissions, but with smaller 

incremental gains. Similarly, staffing requirements decrease with automation, but tend to level off once 

most manual tasks have already been replaced. Line graphs and scenario-based comparisons, presented in 

Section 4, illustrate how emissions change in response to incremental increases in drone adoption and 

provide actionable insight for warehouse operations planning. 
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4 RESULTS AND DISCUSSION  

This chapter presents the results of the emissions modeling and scenario analysis comparing manual 

inventory processes with drone-enabled inventory automation. We begin by reporting total modeled 

emissions across Scope 1, 2, and 3 under both the baseline and post-implementation scenarios. Next, we 

analyze emissions changes by operational category, highlighting the specific variables that drove 

reductions or increases in each scope. We then examine the results of the sensitivity analysis, which 

evaluates how variation in key input assumptions—such as drone energy usage, inventory accuracy 

improvements, and employee commute distance—affect total emissions. Finally, we present a 

comparative summary that integrates these findings and quantifies the net sustainability impact of drone 

adoption under different modeling assumptions. 

4.1 Results 

Following the application of the mathematical model, the first step involved calculating the total 

emissions generated by each activity category using the activity-based formulas developed in Section 3.4. 

Emissions for each activity were determined by multiplying its modeled activity level by the corresponding 

emissions factor. To enhance the understanding of environmental impact, the total emissions were 

annualized. Although the dataset was initially provided at a quarterly level (Q1), the cyclical nature of 

inventory counting—defined as a scheduled and repetitive process—justifies replicating Q1 operational 

parameters across all four quarters of the year. This practice reflects industry standards where inventory 

cycle counts are consistently performed each quarter to achieve full inventory coverage targets. 

Summing the emissions from all categories yielded a total footprint for each scenario: pre- and 

post-implementation of drone technology. Additionally, the model calculated the percentage contribution 

of each activity to total emissions, facilitating the identification of the most significant emission contributors 

and the changes observed between the two scenarios. 

The initial results indicated that total annual emissions decreased from 609,451 kg CO₂e to 358,619 

kg CO₂e, representing a reduction of 41%. This net decrease of approximately 250,832 kg CO₂e was 

primarily driven by changes in waste from inventory write-offs. Table 6 disaggregates emissions by 

category, showing emissions before and after implementation, the absolute change, and each category's 

share of the total footprint. 
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Table 6. Scenario 1 Annual Emissions by Category: Before vs. After Implementation 

Category Activity 
Before: 

Emissions 
(kg CO2e) 

After: 
Emissions 
(kg CO2e) 

Δ 
Emissions 
(kg CO₂e) 

% Change 
% of Total 

Carbon 
Footprint 

Labor People commute 29,827.20 14,913.60 -14,913.60 -50.0% 4.16% 
Forklift 
Operations 

Forklift energy 
(inventory count) 16,662.19  5,014.77 -11,647.42 -69.9% 1.40% 

Drone 
Operations 

Drone inventory 
energy 0 26.38 26.38 N/A (new 

source) 0.01% 

Waste Inventory disposal 556,939.53 334,647.19 -222,292.35 -39.9% 93.32% 

Forklift 
Operations 

Forklift energy 
(addressing 
discrepancies) 

1,819.69 1,193.18 -626.52 -34.4% 0.33% 

Equipment Drone LCA 0.00 22.12 22.12 N/A (new 
source) 0.01% 

Equipment Forklift LCA 4,203.00 2,802.00 -1,401.00 -33.3% 0.78% 
  Total 609,451.61  358,619.23  -250,832.38  -41.16%   

 

A closer examination of the results shows that inventory disposal (waste) was the leading 

contributor to emissions in both the before and after implementation scenarios, accounting for about 93% 

of total emissions. This outcome is due to the modeling assumption that each lost inventory unit corresponds 

to an individual item, with a total inventory of 2.7 million units. This approach significantly overstates the 

environmental impact of waste, as in practice, the warehouse stores items in cases or boxes rather than at 

the single-item level. In the absence of actual data on inventory scrap rates, the model utilized an industry 

average of 1.6% inventory loss, based on the NRF Survey (2023). 

To better align the model with the operational structure of the warehouse, we refined the original 

assumption regarding inventory granularity. Instead of modeling emissions from item-level inventory (2.7 

million individual units), we redefined the inventory as 129,381 cases, which better reflects how products 

are physically handled and stored on site. This adjustment significantly altered the magnitude and 

distribution of modeled emissions and yielded the revised results presented in Scenario 2 (Table 7). Under 

this case-based model, total annual emissions prior to drone implementation were calculated at 79,200 kg 

CO₂e, while post-implementation emissions dropped to 40,008 kg CO₂e, reflecting a 49.48% reduction in 

relative terms. Compared to Scenario 1, this change also resulted in a 87% decrease in the total magnitude 

of modeled emissions, emphasizing the impact of inventory-level assumptions on absolute emissions 

figures. 
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Table 7. Scenario 2 Annual Emissions by Category: Before vs. After Implementation 

Category Activity 
Before:  

Emissions  
(kg CO2e) 

After:  
Emissions  
(kg CO2e) 

Δ 
Emissions 
(kg CO₂e) 

% 
Change 

% of Total 
Carbon 

Footprint 
Labor People commute 29,827.20 14,913.60 -14,913.60 -50.0% 37.28% 
Forklift 
Operations 

Forklift energy 
(inventory count) 16,662.19 5,014.77 -11,647.42 -69.9% 12.53% 

Drone 
Operations 

Drone inventory 
energy 0 26.38 26.38 N/A (new 

source) 0.07% 

Waste Inventory disposal 26,687.92 16,035.92 -10,652 -39.9% 40.08% 

Forklift 
Operations 

Forklift energy 
(addressing 
discrepancies) 

1,819.69 1,193.18 -626.52 -34.4% 2.98% 

Equipment Drone LCA 0 22.12 22.12 N/A (new 
source) 0.06% 

Equipment Forklift LCA 4,203 2,802 -1401 -33.3% 7.00% 
  Total 79,200 40,008 -39,192 -49.48%  

 

The redistribution of emissions across categories in Scenario 2 is particularly notable. While 

inventory disposal remains the largest contributor post-implementation, its share of total emissions dropped 

dramatically from 93% in Scenario 1 to 40%. At the same time, employee commuting rose from just 4.16% 

to 37.28% of total emissions, becoming the second-largest contributor. This shift underscores the 

importance of properly calibrating inventory structure and activity volumes to operational realities, as 

category weightings are highly sensitive to underlying assumptions. The emissions share from forklift 

operations also increased proportionally, moving into third place at 12.5% of the total. 

Despite these shifts, drone implementation continues to offer strong sustainability gains while 

introducing only marginal emissions from new activities. Drone electricity consumption contributed just 

26.4 kg CO₂e per year, and drone lifecycle emissions added 22.1 kg CO₂e, together accounting for only 

0.12% of post-implementation emissions. Meanwhile, energy use from forklifts performing inventory 

counts was reduced by approximately 70%, falling from 16,662.2 kg CO₂e to 5014.8 kg CO₂e, as drone 

automation replaced a substantial portion of manual activity. Lifecycle emissions from forklift equipment 

also dropped by one-third, from 4,203 kg CO₂e to 2,802 kg CO₂e, while drones contributed only a negligible 

addition. 

To help interpret the shifting impact of individual emissions categories, Figure 4 provides a side-

by-side bar chart comparing the percentage of emissions reductions by category for Scenario 2, and Figure 

5 illustrates how each category contributes to total emissions savings.  These visualizations support a more 

intuitive understanding of how drone implementation reshapes the emissions profile of warehouse 

inventory operations and helps identify the most significant levers for sustainability improvements. 
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Figure 4. Comparison of Emissions Reduction by Category 

 
 

Figure 5. Contribution of Each Category to Emissions Savings 
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To complement the absolute emissions analysis, we developed a comparative line graph that 

visualizes the relative contribution of each emissions category to total emissions before and after drone 

implementation. Figure 6 and 7 illustrate how the percentage share of each activity evolves across scenarios, 

highlighting the redistribution of carbon intensity within warehouse operations. For instance, emissions 

from drone operations—nonexistent in the baseline—appear in the post-implementation scenario, 

increasing modestly from 0% to 0.07% for drone energy and 0.06% for drone manufacturing. These 

additions remain minimal, underscoring the carbon efficiency of the drone system. 

More revealing, however, are the shifts among traditional emission sources. While total emissions 

from inventory disposal decreased in absolute terms, their share of the total footprint increased from 33.7% 

to 40%. This relative growth reflects the fact that other categories, such as operational energy use, declined 

even more dramatically. Forklift lifecycle emissions followed a similar pattern, rising from 5.31% to 7%, 

despite a drop in equipment quantity, due to slower depreciation relative to faster-declining operational 

activities. 

In contrast, people commuting, once the largest contributor at 37.66%, fell to 37.28% of total 

emissions, and forklift energy use for inventory counting dropped from 21% to 12.5%. These changes 

demonstrate how drone automation reduces labor requirements and equipment energy use, shifting the 

emissions profile from labor- and equipment-heavy operations toward a structure where waste and capital 

goods play a larger role. 

This visual representation helps isolate not just which categories have grown or diminished, but 

how automation reconfigures the emissions landscape. It offers a clearer view of the new sustainability 

profile emerging from drone adoption—not only through overall reductions, but through a fundamental 

change in which activities drive warehouse emissions post-automation. 
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Figure 6. Change of Drone Contribution to Total Carbon Footprint 

 
 

Figure 7. Change in Contribution to Total Carbon Footprint by Activity 
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To further contextualize the emissions distribution in the post-implementation scenario, we 

introduced two additional visual breakdowns. Figure 8 categorizes emissions by operational source, 

showing that waste and transportation account for the vast majority of the warehouse’s footprint, 

contributing 40.1% and 37.3%, respectively. Emissions from core warehouse operations account for 15.6% 

total footprint, while equipment-related emissions make up just 7.1%. This breakdown reinforces the earlier 

finding that even after automation, the warehouse’s emissions profile is still shaped largely by upstream 

and downstream activities, such as product loss and employee commuting. 

In parallel, Figure 9 disaggregates emissions by GHG Protocol scope, highlighting the dominance 

of Scope 3 emissions, which account for 84.4% of the total footprint. Scope 2 emissions from electricity 

usage are still significant, accounting for 15.6% of emissions, and Scope 1 emissions are entirely absent, 

consistent with the facility’s use of electric equipment and external service providers. This scope-based 

visualization emphasizes that the environmental impact of drone adoption lies primarily in its ability to 

reduce indirect emissions—especially those related to labor, transportation, and waste—rather than altering 

the facility’s direct energy footprint. 

 

Figure 8. Emissions by Operational Category – Post-Implementation Scenario 
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Figure 9. Emissions by GHG Protocol Scope – Post-Implementation Scenario 

 

4.1.1 Drone Coverage Sensitivity Analysis  
 

For the sensitivity analysis, we transitioned from using fixed warehouse inputs to modeling key 

variables as functions of the target percentage of locations to be counted by drones. This parameterized 

approach allowed us to explore how incremental increases in drone adoption influence emissions outcomes 

by dynamically adjusting related operational factors, such as labor requirements, inventory accuracy, and 

equipment usage. 

We began by calculating the manual share of locations, which determines the number of inventory 

locations requiring human verification. This is calculated as the difference between the total scannable 

locations and those covered by drones, combined with a set of locations that drones can never count due to 

layout or classification constraints. Formally 
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where 𝑝𝑑 is the target percentage of drone coverage, and for this warehouse, 78,560 out of 97,165 

total locations are considered drone-countable, while 18,605 locations are not. As a result, even at 100% 
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drone coverage, a significant portion of the facility—approximately 19%—will still require manual 

inventory operations, implying that a fully autonomous solution is operationally unattainable in this context. 

From the manual locations, we calculated the number of people needed for inventory counting by 

dividing the total by the number of locations one operator can scan over a full inventory cycle. Assuming 

a 12-week cycle, 8-hour shifts, 5 days per week, and a counting capacity of 60 locations per hour, each 

operator can verify 28,800 locations per cycle: 

 

𝑃𝑒𝑜𝑝𝑙𝑒𝑐𝑜𝑢𝑛𝑡𝑖𝑛𝑔 =
𝑀𝑎𝑛𝑢𝑎𝑙	𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠

28,800
	 

 

We separately modeled the labor required for addressing inventory discrepancies, which depends 

on the issue rate, itself a weighted average of drone and manual performance based on coverage: 

 

𝐼𝑠𝑠𝑢𝑒	𝑅𝑎𝑡𝑒 = 𝑝𝑑 × 𝐷𝑟𝑜𝑛𝑒	𝐼𝑠𝑠𝑢𝑒	𝑅𝑎𝑡𝑒 + (1 − 𝑝𝑑) × 𝑀𝑎𝑛𝑢𝑎𝑙	𝐼𝑠𝑠𝑢𝑒	𝑅𝑎𝑡𝑒	 

 

Multiplying this rate by the average number of locations scanned weekly yields the number of 

locations with issues per week, which we then use to calculate the labor and equipment needed to resolve 

discrepancies. Rather than treating issue resolution as a separate process, we assume that each flagged 

discrepancy requires an operator to return to the affected location and perform a manual verification. This 

aligns with actual warehouse behavior and allows us to treat issue resolution as an extension of the cycle 

counting task. 

Although the labor requirements for inventory counting and discrepancy resolution were calculated 

independently, we summed both to determine the total number of people commuting for inventory-related 

tasks. The total was rounded up to the nearest whole number, reflecting the warehouse's practice of 

assigning staff to full 8-hour shifts. While this rounding was necessary to calculate Scope 3 commuting 

emissions, tracking the contributions of each activity separately helped identify the proportional labor 

intensity of each task. 

For forklifts, we applied the same division between inventory counting and issue resolution, but 

modeled the energy consumption of each as a fractional value based on the time spent on each activity. 

Unlike personnel, forklifts can remain idle or be reassigned when not in use. However, for lifecycle 

emissions (Scope 3), we estimated the number of forklifts as a function of total personnel. Since forklifts 

can be used across two shifts per day, we assumed each unit serves two employees. Thus, the required 

number of forklifts was calculated as the ceiling of half the total number of commuting personnel 
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𝐹𝑜𝑟𝑘𝑙𝑖𝑓𝑡	𝐿𝐶𝐴 = ⌈
𝑃𝑒𝑜𝑝𝑙𝑒𝑡𝑜𝑡𝑎𝑙

2
⌉ 

 

This assumption reflects standard warehouse practices for equipment utilization and reduces the 

emissions attributed to capital assets. We then applied life cycle emissions factors based on this adjusted 

equipment count, linking drone coverage not only to energy and labor but also to infrastructure-related 

emissions. 

To evaluate the potential for further emissions reduction through increased automation, we modeled 

the impact of expanding drone coverage from the current post-implementation level of 64% to the 

warehouse’s target of 90%, and then to a hypothetical maximum state of 100%. These scenarios allow us 

to assess not only the carbon savings associated with incremental drone adoption, but also how operational 

parameters and emissions distributions shift as drone deployment expands. 

As shown in Table 8, increasing drone coverage to 90% would reduce total annual emissions from 

40,008 kg CO₂e to 26,801 kg CO₂e, representing a 33% reduction relative to the current state. Compared to 

the baseline scenario (before implementation), this equates to a 66.16% total reduction. In a maximum 

coverage scenario, where all drone-compatible reserve locations are automated, emissions would fall 

further to 19,202 kg CO₂e, yielding a 75.76% reduction compared to the baseline and a 52% improvement 

over the current post-implementation performance. 

These reductions are largely driven by declines in labor demand, energy consumption, and waste. 

As drone coverage increases, the number of inventory personnel drops from 3 to 2, and then to 1; forklifts 

for inventory counting decrease accordingly. Although drone usage remains constant at 4 units, greater 

coverage increases the efficiency of each drone cycle; however, their relative share of the total footprint 

increases slightly, reflecting the declining contributions from traditional activities. Still, these drone-related 

emissions remain minor—collectively under 1% of the total carbon footprint—highlighting the efficiency 

of automation even at full deployment. Lifecycle emissions from forklift equipment drop as fewer assets 

are required, while inventory loss rate improves from 0.96% to 0.70%, and further to 0.60% in the full 

automation scenario. The misplacement issue rate, which drives the labor and energy required for item 

retrieval, declines in parallel, from 11% to 8%, and finally to 6.59% when 100% of locations are counted 

by drones. 
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Table 8. Emissions and Emissions Share by Category – Current vs. Future State (90% Drone Coverage) 

Activity 

Current 
State 

Emissions 
(kg 

CO2e) 

Future State 
Emissions (kg 

CO2e) 

Δ Emissions 
(kg CO₂e) 

% 
Change 

Current 
% of 
Total 

Carbon 
Footprint 

Future % 
of Total 
Carbon 

Footprint 

People commute 14,913.60 9,942.40 -4,971.20 -33.3% 37.3% 37.1% 
Forklift energy 
(inventory count) 

5,014.77 2,830.15 -2,184.63 -43.6% 12.5% 10.6% 

Drone inventory energy 26.38 26.38 0.00 0% 0.1% 0.1% 
Inventory disposal 16,035.92 11,708.44 -4,327.48 -27% 40.1% 43.7% 
Forklift energy 
(addressing 
discrepancies) 

1,193.18 871.19 -321.98 -27% 3.0% 3.3% 

Forklift LCA 2,802.00 1,401.00 -1,401.00 -50% 7.0% 5.2% 
Drone LCA 22.12 22.12 0.00 0.0% 0.1% 0.1% 
Total 40,008 26,801.67 -13,206.3 -33% 

  

 

To better illustrate the operational drivers behind these reductions, we present Table 9, which 

summarizes how key activity parameters shift across the three modeled scenarios. Labor, equipment needs, 

and accuracy-based metrics (inventory loss and issue rate) all respond to increased drone coverage. As 

shown, greater automation translates directly into fewer people and forklifts needed for inventory 

operations. 

 

Table 9. Operational Parameters Across Drone Coverage Scenarios 

Parameter Current State 
Post-Impl 

Future Desire 
State Maximum State 

Target percentage of locations counted by drones 64.0% 90.0% 100.0% 
Inventory personnel 3 2 1 
Forklifts (inventory counting) 1.63 0.92 0.65 
Drones (inventory counting) 4 4 4 
Forklifts (LCA) 2 1 1 
Drones (LCA) 4 4 4 
Inventory loss rate (%) 0.96% 0.70% 0.60% 
Misplacement issue rate (%) 10.52% 7.68% 6.59% 
Total emissions reduction vs. Before Implementation -49.49% -66.16% -75.76% 

Additional savings vs. Current scenario – -16.67% -26.27% 

 

To illustrate the cumulative emissions savings across the three modeled scenarios, Figure 10 

presents a bar chart comparing total annual emissions at 64%, 90%, and 100% drone coverage levels. This 

visual highlights the magnitude of improvement associated with reaching the warehouse’s future target and 

demonstrates the additional gains that could be unlocked through full drone coverage. The chart clearly 
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shows that increasing drone coverage from 64% to 90% yields a substantial additional reduction of 16.67%, 

while pushing toward full automation provides a further 9.6% reduction beyond that. However, the visual 

also helps emphasize that while total emissions continue to decrease, the rate of improvement begins to 

taper as automation approaches its upper limit, suggesting diminishing returns in some categories. This 

representation reinforces the value of reaching the 90% goal while also supporting a cost-benefit analysis 

of pursuing complete coverage. 

 

Figure 10. Total Emissions Reductions Across Drone Coverage Scenarios (64%, 90%, 100%) 

 
Building on the total emissions analysis, we disaggregated reductions by activity category across 

four drone coverage levels: 25%, 64%, 90%, and 100%. Figure 11 presents this multi-line chart, illustrating 

how key operational emissions decline as drone adoption increases. 
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Figure 11.  Emissions Reduction by Category as a Function of Drone Coverage 

 
The results show that employee commuting and forklift energy use for inventory counting 

experience the steepest and most consistent declines, reaching over 80% reduction at full drone coverage. 

This reflects the direct replacement of manual labor and operational forklift usage as drones take over an 

increasing share of cycle counting. These categories are highly sensitive to automation because their 

emissions are tightly coupled with the volume of human-driven activity. 

Inventory disposal—representing emissions from scrapped goods due to miscounts or 

misplacements—also exhibits a significant decline of over 60% by the time drone coverage reaches 100%. 

This trend confirms the hypothesis that increased automation leads to improved inventory accuracy, 

reducing the number of items written off and the upstream emissions associated with producing 

replacements. The curve is somewhat less steep than that of commuting, reflecting the fact that inventory 

loss is influenced not only by the quantity of manual counting but also by systemic processes, operator 

behavior, and detection capabilities. 

Similarly, forklift energy for addressing inventory discrepancies shows a clear downward trend as 

issue rates decline with higher drone adoption. The reduction surpasses 50% at full drone coverage, 

illustrating how drone-generated visibility reduces the operational effort required to resolve discrepancies. 

This category, while smaller in overall contribution, demonstrates how automation helps reduce emissions 

even from secondary activities like discrepancy resolutions. 
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In contrast, forklift lifecycle emissions decrease in stepwise increments rather than a smooth curve. 

A reduction of 33% occurs between 64% and 90% drone coverage—likely the point at which one piece of 

equipment is no longer needed—reflecting further workforce consolidation. Because lifecycle emissions 

are amortized over fixed equipment units rather than tied to marginal usage, their reductions occur only 

when a full asset can be removed from operations. 

This visualization illustrates how drone implementation not only reduces total emissions but also 

transforms the structure of operational demand. High-frequency, labor- and equipment-intensive tasks 

shrink steadily, while capital-dependent emissions decline in fixed intervals. As drone coverage increases, 

warehouses can expect emissions reductions to occur both continuously (through efficiency gains) and 

structurally (through changes in equipment and staffing requirements). These insights provide a clearer 

understanding of where sustainability gains are most responsive to automation, and where diminishing 

returns may appear as operations become increasingly optimized. 

4.1.2 What-If Sensitivity Analysis 

We conducted a series of what-if scenarios to evaluate how the model responds to deviations from 

key assumptions and edge-case operational conditions. Unlike previous analyses where drone coverage was 

the main variable, these scenarios test the robustness of emissions reductions under alternate conditions. 

Each test isolates a specific factor, such as initial inventory accuracy, drone system enhancement, or failure 

to improve accuracy with automation, and evaluates its impact on overall emissions and emissions structure. 

Scenario 1: High-Accuracy Baseline 

To evaluate whether drone implementation remains a valuable emissions reduction strategy in 

warehouses that already operate with high inventory accuracy, we modeled a scenario where both the initial 

inventory loss rate and the issue rate were set significantly lower than in the baseline analysis. Specifically, 

we assumed a starting loss rate of 0.5% and an issue rate of 7%, simulating an environment where manual 

processes already perform with relatively low error. The goal was to test whether drone automation would 

still yield meaningful emissions savings when improvements to accuracy—and therefore to waste 

reduction—are limited. 

Even under this high-accuracy baseline, drone adoption continues to deliver notable emissions 

reductions, though the magnitude is somewhat lower than in the original model. The transition from a 

manual system to 64% drone coverage resulted in a 48% total emissions reduction, compared to 49.5% in 

the original model. Increasing drone coverage to 90% improved total emissions reduction to 62.4%, and 

extending it to full (100%) drone-compatible coverage further reduced emissions by 72% relative to the 

high-accuracy baseline. However, these values are slightly lower than in the base case (where reduction 

reached 75.8%), indicating that the benefits of automation diminish when fewer errors can be prevented. 
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The improvement in inventory disposal was relatively modest, with emissions decreasing from 8,340 kg 

CO₂e to 8,027 kg CO₂e—an absolute drop of only 3.8%. This reflects the smaller baseline of avoidable 

waste. 

Importantly, the emissions profile shifted heavily toward commuting, which represented 49% of 

pre-implementation emissions, and remained the largest contributor post-implementation. In contrast, 

inventory disposal accounted for just 13.7% before and 25.4% after drone adoption, highlighting how 

category importance is relative to the total. These findings confirm that automation remains beneficial even 

in accurate systems, largely by eliminating manual labor and equipment reliance, but its impact on waste 

reduction is naturally constrained. 

An interesting finding from this scenario is that emissions from forklift energy used to address 

inventory discrepancies show a temporary increase of approximately 5% after drone implementation 

begins. As illustrated in Figure 12, this occurs because the number of locations scanned per week increases 

significantly with drone deployment, while the inventory issue rate does not decrease at the same pace. As 

a result, the absolute number of discrepancies identified rises, which increases the operational demand for 

addressing them. This intermediate effect reflects the lag between expanded coverage and improved 

accuracy, and highlights how partial automation, without concurrent improvements in data quality, can 

temporarily increase workload in secondary activities like item retrieval, even as total emissions decline. 

Over time, as accuracy improves further, this category returns to a downward trend. 

Table 10 summarizes the emissions breakdown across key categories, while Figure 12 displays the 

shift in total emissions as drone coverage increases within a high-accuracy environment. 

 

Table 10. Operational Parameters – High-Accuracy Baseline Scenario 

Parameter Before 
Impl. 

Current State 
Post-Impl 

Future Desire 
State Maximum State 

Target percentage of locations counted 
by drones 0.0% 64.0% 90.0% 100.0% 

Inventory personnel 6 3 2 1 
Forklifts (inventory counting) 5.76 1.63 0.92 0.65 
Drones (inventory counting) 0 4 4 4 
Forklifts (LCA) 3 2 1 1 
Drones (LCA) 0 4 4 4 
Inventory loss rate (%) 0.50% 0.48% 0.47% 0.47% 
Misplacement issue rate (%) 7.00% 6.74% 6.63% 6.59% 
Total Emissions Reduction vs. Before 
Implementation   -48.12% -62.41% -72.05% 

Additional savings vs. Current scenario – – -14.29% -23.93% 
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Figure 12. Emissions Changes by Category – High-Accuracy Baseline 

 
Scenario 2: Adding a Drone to Improve Frequency and Accuracy 

In this scenario, we explored the impact of adding a fifth drone beyond the warehouse’s target of 

90% inventory coverage. While total coverage remains constant, the intent behind this adjustment is to 

increase scanning frequency—allowing the drone system to revisit locations more often—and to test 

whether doing so yields additional emissions savings through improved inventory accuracy. We assumed 

that enhanced scanning would reduce the inventory issue rate for drone-counted locations to 5%, and that 

this would translate into a lower overall inventory loss rate of 0.46%. 

Despite the slight increase in drone-related emissions—drone electricity usage rises by 25%, and 

drone LCA emissions increase proportionally due to the additional hardware—the total warehouse 

emissions drop meaningfully. Total annual emissions decline from 40,008 kg CO₂e to 24,470 kg CO₂e, 

representing a 38.9% improvement over the current post-implementation state, and a 69.1% reduction 

compared to the pre-drone baseline. This makes it the largest reduction observed across all modeled 

scenarios. 

Notably, this strategy also reshapes the emissions distribution across categories. The percentage of 

total emissions attributed to inventory disposal falls from 40.1% to 39%. Conversely, commuting emissions 

become more prominent (increasing from 37.3% to 40.6%), becoming the largest contributor, simply 

because they decline at a slower rate compared to the accelerated improvements in other categories. This 
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shift indicates that increasing drone performance does not only reduce absolute waste-related emissions—

it also changes the emissions structure, making waste a less dominant share of the overall footprint.  

Drone-related emissions—both in terms of energy (up from 26.38 to 33 kg CO₂e) and equipment 

(LCA rising from 22.1 to 27.7 kg CO₂e)—increase modestly and remain marginal in relative terms (still 

under 0.2% combined). These additions are more than offset by the substantial gains in inventory accuracy, 

reduced issue rates, and lower equipment use from cycle counting and item retrieval. 

This scenario demonstrates that even in a highly automated warehouse, investing in drone system 

performance can yield additional sustainability gains, especially in areas where automation improves data 

quality and operational accuracy. While it introduces minor emissions costs, the environmental return on 

that investment, particularly in reducing waste and increasing system-wide efficiency, is clearly positive. 

To illustrate the impact of enhanced scanning frequency, Table 11 summarizes how each variable 

changes with adding a fifth drone, and Table 12 shows emissions by category when evaluating the future 

state of 90% coverage under this scenario vs the current scenario. Figure 13 visualizes the changing 

emissions structure, quantifying each category’s contribution to total emissions. These results show that 

modest increases in drone-related emissions are offset by significant reductions in inventory disposal, 

reinforcing the value of performance-driven automation strategies. 

 

Table 11. Operational Parameters – Adding One More Drone and Improving Accuracy Scenario 

Parameter Before 
Impl. 

Current State 
Post-Impl 

Future Desire 
State 

Maximum 
State 

Target percentage of locations counted by 
drones 0.0% 64.0% 90.0% 100.0% 

Inventory personnel 6 3 2 1 

Forklifts (inventory counting) 5.4 1.6 0.9 0.6 

Drones (inventory counting) 0 4 5 5 

Forklifts (LCA) 3 2 1 1 

Drones (LCA) 0 4 5 5 

Inventory loss rate (%) 1.60% 0.96% 0.57% 0.46% 

Misplacement issue rate (%) 17.50% 10.52% 6.25% 5.00% 
Total emissions reduction vs. Before 
Implementation   -49.49% -69.10% -79.03% 

Additional savings vs. Current scenario – – -19.62% -29.54% 
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Table 12. Emissions by Category With Addition of a Fifth Drone (90% Drone Coverage, 5% Issue Rate) 

Activity 
Current State (64%) 
Emissions (kg CO2e) 

Future State 
(90%) Emissions 

(kg CO2e) 
Δ Emissions 
(kg CO₂e) % Change 

People commute 14,913.60 9,942.40 -4,971.20 -33.3% 
Forklift energy (inventory 
count) 5,014.77 2,830.15 -2,184.63 -43.6% 

Drone inventory energy 26.38 32.97 6.59 25.0% 
Inventory disposal 16,035.92 9,527.39 -6,508.53 -40.6% 
Forklift energy (addressing 
discrepancies) 1,193.18 708.91 -484.27 -40.6% 

Forklift LCA 2,802 1,401 -1,401 -50.0% 
Drone LCA 22.12 27.66 5.53 25.0% 
Total 40,008 24,470.5 -15,537.5 -38.84% 

 

Figure 13. Category Contribution to Total Emissions (%) – With Fifth Drone Addition in Future State 

 
Scenario 3: Stress-Testing the Assumption of Improved Accuracy 

This final scenario reverses the core assumption that automation always improves performance. 

Instead, we modeled a situation where inventory loss increases with higher drone coverage, whether due to 

implementation issues, poor integration, or over-reliance on automation. The goal was to identify the break-

even point where inventory disposal emissions outweigh the reductions from labor and equipment. 
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We found that if the inventory loss rate rises to approximately 3.31%, the system reaches a point 

of zero net emissions benefit. At this level, the emissions generated by increased waste offset all other 

sustainability gains. This threshold marks a critical inflection point: beyond it, further investment in drone 

automation would result in higher total emissions rather than reductions. 

This scenario illustrates the model’s high sensitivity to inventory disposal emissions, which carry 

a much higher carbon intensity per unit than labor or energy-related sources. While categories such as 

commuting and forklift use shrink consistently with automation, waste remains a dominant driver of total 

emissions. At a 3.31% loss rate, emissions from inventory disposal outweigh the reductions achieved 

elsewhere, particularly as other categories begin to plateau with higher drone coverage. This emphasizes 

the importance of ensuring that drone performance translates into measurable improvements in accuracy, 

rather than simply displacing human effort. In this context, drone implementation must be coupled with 

ongoing monitoring, calibration, and error-correction workflows to ensure it achieves its intended 

environmental benefits. 

Figure 14 presents a break-even chart, demonstrating how total emissions increase sharply beyond 

a 3.31% loss rate, emphasizing the model’s sensitivity to inventory disposal and the critical importance of 

maintaining accuracy during automation. 

 

Figure 14. Break-Even Emissions Curve Based on Inventory Loss Rate 
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4.2 Scope Refinement and Excluded Variables 

While the initial hypothesis mapping (Section 3.1) identified a broad range of variables expected to 

be affected by drone implementation, not all were included in the final emissions model due to data 

limitations or lack of observed variation. For instance, lighting and HVAC-related energy usage were 

excluded, as drone operations did not lead to measurable changes in facility runtime, ambient conditions, 

or staffing patterns that would warrant adjustments to energy settings. Similarly, Fixed Material Handling 

Equipment (FMHE), such as automated storage and retrieval systems, showed no meaningful change in 

usage attributable to drone-based inventory scanning and were therefore not modeled. 

Additionally, while inventory accuracy improvements were hypothesized to reduce unnecessary 

replenishment and scrapping, actual order quantities and product ownership remained outside the scope of 

available data and operational control, limiting the ability to quantify downstream impacts such as 

overproduction or transportation emissions. As a result, the emissions model focuses on observable, 

measurable impacts, including energy use from mobile equipment, embodied emissions from capital assets, 

commuting-related emissions, and inventory write-offs. 

4.3 Implications 

The analysis reveals several critical insights for warehouse sustainability strategy and technology 

adoption. First, the deployment of AI-powered drone inventory automation has the potential to significantly 

reduce total carbon emissions associated with inventory counting processes by nearly 50% in both modeled 

scenarios, and up to 79% in enhanced drone configurations. However, the magnitude and distribution of 

these reductions are highly sensitive to operational parameters and foundational modeling assumptions, 

reinforcing the need for context-aware implementation. 

A key modeling insight involves the definition of inventory units. The contrast between Scenario 1, 

which used item-level inventory assumptions, and Scenario 2, which modeled inventory at the case level, 

underscores the importance of aligning emissions calculations with actual warehouse storage and counting 

practices. Under item-level assumptions, waste emerged as the dominant emissions category due to high-

volume multipliers. When revised to a case-based inventory structure, commuting overtook waste as the 

largest emissions contributor, shifting the emissions profile and highlighting how data granularity and 

modeling precision shape sustainability conclusions. 

Several operational design choices also emerged as influential emissions drivers. One such factor is 

the total number of locations that drones are eligible to count, which, in this study, was capped at 78,560 of 

97,165 locations. The presence of non-droneable areas effectively establishes a ceiling on automation 

potential, meaning that some manual processes—and their associated emissions—will persist unless 
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warehouse layouts or drone hardware evolve. This highlights the value of including automation 

compatibility assessments in future warehouse planning. 

Another key variable is the target percentage of drone coverage. Although the warehouse currently 

operates at ~64% drone coverage, the model demonstrated that increasing this to 90% or 100% could 

significantly amplify emissions reductions, especially in waste and labor categories. Importantly, the 

inventory issue rate was modeled as 6.59% for drone-counted locations based on current performance, but 

scenario testing showed that this rate can continue to decline with more frequent scans or improved route 

logic. These improvements, in turn, have cascading effects on both inventory loss and addressing inventory 

discrepancies needs, further shrinking emissions. 

The model also accounts for the allocation of labor and equipment across shifts, which has 

implications for equipment-related lifecycle emissions. Forklifts were assumed to be shared across two 

shifts, while employees were allocated on a per-shift basis. This logic allowed for reduction in total forklift 

assets even when headcount remained constant. In parallel, operator counting capacity, set at 60 locations 

per hour, determined how many staff were required to cover the remaining manual locations in each drone 

coverage scenario. Together, these assumptions show that even modest changes in workforce efficiency or 

shift strategies can have outsized effects on both Scope 2 (energy) and Scope 3 (lifecycle and commuting) 

emissions. 

From a broader sustainability planning standpoint, these findings suggest that drone automation 

introduces minor new emissions but enables significant reductions in legacy emissions categories, most 

notably waste, manual labor energy use, and commuting. These benefits are amplified by the intelligence 

layer provided by AI, which enables dynamic route optimization, real-time discrepancy detection, and 

proactive operational adjustments. 

The model also reveals overlooked opportunities, such as employee transportation. In revised 

scenarios, commuting became the largest single contributor to emissions. This suggests that sustainability 

initiatives should expand beyond equipment and automation to include transport policy interventions like 

carpooling incentives, electric shuttle fleets, or remote inventory reconciliation roles. 

Finally, this study demonstrates the value of pairing operational innovation with emissions modeling 

to support strategic decision-making. The findings confirm that automation alone is not sufficient: the 

emissions benefits depend on how technologies are implemented, how performance is monitored, and how 

surrounding workflows are optimized. As AI-powered drone adoption continues to scale, warehouses can 

expect to capture meaningful emissions reductions, particularly when modeling frameworks are grounded 

in site-specific data, operational constraints, and measurable performance metrics. 
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4.4 Limitations 

While this study presents a comprehensive assessment of the environmental impact of drone-based 

inventory automation, several limitations must be acknowledged regarding the modeling scope, data 

availability, and generalizability of results. We categorized these limitations across seven thematic areas, 

reflecting both methodological constraints and contextual boundaries that influence the interpretation and 

application of the findings. 

1. Modeling Approach Limitations 

The emissions model employed is a deterministic, rule-based framework rather than a probabilistic 

or statistical model. It does not attempt to quantify uncertainty or variability in operational conditions. 

As such, factors such as fluctuating energy loads, equipment degradation, drone idle time, and manual 

override events are excluded. Additionally, the model does not capture temporal variations such as 

peak vs. off-peak electricity use. These simplifications are necessary for tractability but limit the 

model’s real-world fidelity. 

Similarly, sensitivity analyses were conducted under deterministic assumptions, varying one 

parameter at a time without accounting for interaction effects or confidence intervals. The absence of 

probabilistic modeling (e.g., Monte Carlo simulation) restricts our ability to assess the robustness of 

results under real-world variability. 

 

2. Lifecycle Emissions Estimation 

Lifecycle emissions estimates for drones and forklifts were derived from secondary sources (e.g., 

Net Zero Carbon Guide) and sponsor input, relying on average material compositions and production 

energy profiles. These sources lack granularity, omitting emissions from smaller subcomponents such 

as PCBs, sensors, and lithium controllers. Moreover, no data was available on supplier-specific 

practices (e.g., use of recycled materials, green manufacturing) or end-of-life treatment. Consequently, 

these LCA estimates represent high-level approximations rather than full cradle-to-grave footprints. 

 

3. Data Availability and Input Assumptions 

Several data-related constraints shaped the modeling boundaries: 

Transportation Emissions: Logistics-related Scope 3 emissions were estimated using average 

distances along assumed trade routes, as specific supplier origins for drones and forklifts were not 

disclosed. 

Equipment Composition: Component-level detail (e.g., motors, controllers) was unavailable, 

requiring aggregation based on dominant materials (e.g., steel, batteries, polymers). 
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Inventory Data: The sponsor-provided data excluded SKU-level and financial details, limiting the 

model’s ability to reflect emissions variability tied to non-standard SKUs or seasonal fluctuations. 

Commute Emissions: Scope 3 employee commuting emissions were modeled using average 

regional distances, not individual employee data. Variations in carpooling, home locations, and remote 

work practices were not captured. 

Collectively, these assumptions affect the precision of Scope 1, 2, and 3 emissions estimates, 

particularly for categories sensitive to input heterogeneity. 

 

4. Assumptions About Operational Substitution 

The model assumes that drones fully replace manual inventory checking within the process scope. 

However, in practice, hybrid workflows may persist due to contractual or operational requirements 

mandating human oversight. In such cases, drones act as supplementary tools rather than replacements, 

which could lead to an underestimation of operational emissions and an overstatement of potential 

GHG savings. 

 

5. Emissions Factor Generalization 

Emission factors were sourced from public databases and applied as regional or global averages: 

Grid Emissions: Regional average emission factors do not capture hourly or seasonal carbon 

intensity variations. 

Material Emissions: Factors for materials such as steel, aluminum, and batteries reflect global 

averages and overlook specific supplier or facility characteristics like renewable energy use or 

recycled content. 

While these factors provide accessible benchmarks, they may either overstate or understate true 

emissions depending on the actual sourcing and energy infrastructure. 

 

6. Generalizability and Context Dependency 

This analysis is based on a single warehouse in the United States, and its conclusions are context 

dependent. Operational emissions are influenced by facility layout, labor scheduling, energy 

infrastructure, and storage systems. In warehouses located in regions with different emissions intensity 

or labor policies—or in those handling irregular or non-palletized goods—automation's sustainability 

benefits may vary. The modeling framework should be adapted to local operational and regulatory 

contexts for broader application. 
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5 CONCLUSION 

Sustainability has become a critical priority in modern logistics, driven by growing stakeholder 

expectations, regulatory pressures, and the increasing urgency of climate action. Warehouses, as key nodes 

in the supply chain, offer meaningful opportunities for emissions reduction through the adoption of 

intelligent technologies. This research evaluated the environmental impact of AI-powered inventory 

automation, focusing on the use of autonomous systems that replace manual cycle counting with real-time, 

data-driven visibility.  

To assess the emissions impact of this transition, we developed a methodology grounded in the GHG 

Protocol. The model integrated activity-based accounting with LCA to evaluate Scope 1, 2, and 3 emissions 

across traditional and AI-automated inventory workflows. Key operational variables, such as forklift usage, 

energy consumption, inventory discrepancies, and labor requirements, were analyzed to understand how 

intelligent automation reshapes emissions profiles at the warehouse level.  

Our results show that AI-driven inventory automation can reduce total annual GHG emissions by 

approximately 50% compared to manual operations. These reductions are primarily driven by decreased 

labor-related emissions, lower energy consumption from forklifts, and reduced inventory waste. Together, 

these three drivers account for over 95% of the modeled emissions savings, while the AI-powered drone 

system itself contributes negligible direct emissions. This demonstrates that intelligent automation’s true 

environmental value lies in its ability to reshape broader warehouse operations.  

Sensitivity and scenario analyses validated the robustness of these findings under varied assumptions 

of drone coverage, scan frequency, and operational structure. This confirms the broader potential of AI-

powered systems to serve as levers for emissions reduction in warehouse environments. 

To operationalize these insights, we developed a set of managerial recommendations (Section 5.1) 

for logistics and sustainability leaders—ranging from emissions modeling alignment to phased equipment 

retirement and drone eligibility expansion. These actionable strategies are intended to guide implementation 

decisions and ensure that automation investments translate into measurable sustainability outcomes.  

Finally, we propose two directions for future research (Section 5.2): expanding the empirical rigor 

of this analysis through a Difference-in-Differences (DiD) framework and enhancing model realism 

through mathematical simulations of operational scenarios. Together, these future steps will enable broader 

generalization and continuous improvement of emissions modeling in warehousing contexts.  

Ultimately, this study contributes a replicable framework for evaluating automation’s sustainability 

impact and highlights the critical role of AI in shaping the future of decarbonized logistics. By embedding 

intelligent systems into inventory operations, warehouse managers can achieve operational excellence 

while meaningfully advancing environmental goals. 
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5.1 Managerial Insights 

The findings of this study yield several actionable insights for warehouse operations and 

sustainability management. The following recommendations are proposed to guide strategic decision-

making and facilitate the adoption of low-carbon inventory practices. 

Prioritize AI-powered drone inventory automation. The implementation of drone-based 

inventory counting is associated with a substantial reduction in total annual emissions of approximately 

50% in both scenarios. Management should consider scaling the deployment of drone technology, 

particularly in facilities with high inventory turnover or frequent cycle counting requirements, to capitalize 

on its environmental and operational benefits. 

Align emissions modeling with operational realities. The comparative analysis between unit-

level and case-level modeling underscores the importance of accurately reflecting warehouse inventory 

structures in emissions estimation. Future sustainability assessments should incorporate site-specific data 

on inventory loss rates, packaging units, and activity frequencies to improve the fidelity of emissions 

modeling and ensure appropriate allocation of mitigation resources. 

Leverage AI-powered drone coverage as a master lever for emissions optimization. The model 

demonstrated that drone coverage acts as a central driver of emissions performance by influencing multiple 

downstream variables, most notably the number of manual locations to be counted, employee headcount 

for inventory operations, forklift equipment requirements, and indirectly, the inventory loss and issue rates. 

Sensitivity and what-if analyses showed that increasing drone coverage yields compounded environmental 

benefits, not only by directly reducing labor and equipment emissions, but also by improving inventory 

accuracy and reducing waste. Accordingly, the target percentage of drone-covered locations should be 

treated not as a fixed operational decision but as a strategic lever. Management should periodically reassess 

drone eligibility criteria and explore layout changes or technology upgrades to increase the share of drone-

accessible locations over time. 

Address Scope 3 emissions from employee commuting. In the revised modeling scenario, 

employee commuting emerged as the primary contributor to post-implementation emissions. Although 

often overlooked in operational decarbonization strategies, Scope 3 emissions from workforce 

transportation represent a significant opportunity for reduction. Management may consider implementing 

employee mobility programs, such as subsidized public transit, carpooling incentives, or flexible work 

arrangements, to further reduce the warehouse’s indirect carbon footprint. 

Phase out high-impact legacy equipment. As drone coverage expands, reliance on traditional 

inventory scanning equipment, such as forklifts, is expected to decline. Management should develop a 

phased retirement strategy for high-emission equipment, informed by life cycle assessment (LCA) data, to 

support emissions reduction while maintaining operational continuity. 
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Incorporate life cycle emissions in capital investment decisions. The LCA analysis of drone 

hardware demonstrated a significantly lower embodied emissions profile relative to traditional machinery. 

As such, future procurement processes should integrate life cycle emissions as a criterion for evaluating 

new technologies. This approach aligns procurement strategy with broader organizational sustainability 

objectives. 

Ensure AI-powered drone adoption delivers measurable accuracy gains. The model reveals 

that emissions from inventory disposal carry significantly higher carbon intensity than those from labor or 

equipment usage. As a result, improvements in inventory accuracy represent one of the most powerful 

levers for reducing warehouse emissions. Management should ensure that drone deployment is not treated 

as a plug-and-play solution, but as a system requiring continuous calibration, monitoring, and integration 

with warehouse processes. Without measurable improvements in discrepancy detection and inventory loss, 

drone implementation may fail to deliver its full environmental benefit. Ongoing performance validation—

such as tracking issue rate reductions and scrap avoidance—is essential for maintaining emissions 

improvements over time. 

Develop a long-term emissions monitoring framework. To ensure accountability and continuous 

improvement, management should establish a standardized emissions monitoring framework. This system 

should leverage available operational data—such as equipment usage logs and energy consumption 

records—to support annual reviews of emissions performance and validate the impact of automation 

technologies over time. 

By adopting these recommendations, warehouse operations can enhance environmental 

performance, improve resource efficiency, and contribute meaningfully to the organization’s overall 

sustainability strategy. 

5.2 Future Work 

To build on this study’s findings and strengthen the generalizability and decision-making utility of 

the model, we propose two key areas for future research. First, we recommend expanding the empirical 

rigor of the analysis through a Difference-in-Differences (DiD) approach that compares warehouses with 

and without AI-powered inventory automation over time. Second, we suggest incorporating mathematical 

modeling techniques to simulate operational dynamics and evaluate emissions outcomes across a range of 

drone deployment scenarios. Together, these efforts can enhance causal attribution, support scenario 

planning, and provide a more robust foundation for sustainable warehouse design. 



 56 

5.2.1 Expanding the Difference-in-Differences (DiD) Analysis 

While this study provides a preliminary assessment of the sustainability impacts of drone 

implementation through Life Cycle Assessment (LCA), future work should incorporate a more robust 

causal inference framework using a Difference-in-Differences (DiD) approach. This method would enable 

the comparison of changes in key operational metrics (e.g., emissions, inventory accuracy, equipment 

runtime) between facilities that adopt drone technology and those that do not, both before and after 

implementation. 

To improve the reliability of the DiD analysis, future work should include: 

• A larger sample size of warehouses across varied operational profiles and geographies. 

• Clear identification of treatment and control groups with similar baseline characteristics. 

• Consistent time intervals for pre- and post-treatment measurements. 

• Integration of LCA-derived metrics (e.g., normalized CO₂e/year) as outcome variables. 

 

This approach would enhance the attribution of sustainability improvements specifically to drone 

implementation, while controlling for unrelated external factors. 

5.2.2 Incorporating Mathematical Modeling for Operational Factors 

Given the sensitivity of emissions outcomes to operational assumptions, future research should 

integrate mathematical modeling to simulate warehouse performance under varying conditions of drone-

assisted inventory management. This approach can help validate empirical findings and enable more 

dynamic scenario planning. Key factors identified from this study that warrant inclusion in future models 

are: 

• Frequency of Cycle Counting: Alters the volume of activity, affecting energy consumption and 

inventory waste rates. 

• Inventory Structure Granularity (Case vs. Unit): Significantly impacts waste emissions 

calculations; models should accommodate toggling between unit and case-level assumptions. 

• Drone Flight Time and Coverage Constraints: Determines how many drones are required and how 

often manual support is needed due to battery or coverage limitations. 

• Equipment Sharing and Utilization Rates: Reflects the interplay between drones, forklifts, and 

forklifts in mixed-technology environments, which influences total energy use and emissions. 

• System Downtime and Maintenance: Incorporating probabilistic maintenance and failure events 

can simulate operational disruptions and their impact on emissions and productivity. 
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These parameters can be modeled using discrete-event simulations, queuing theory, or stochastic 

optimization methods to evaluate cost, emissions, and operational efficiency across different 

implementation scenarios. When combined with LCA data, this modeling approach provides a more robust 

framework for strategic technology adoption and sustainability planning in warehouse operations. 
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APPENDICES 
 
Appendix A 
 
Table A1. Emissions Parameter Table for Drone and Forklift Operations, Transportation, and Lifecycle 

Assessment 

Category Activity Formula with EF Notes / Variables Citations 

Drone Operations 

Cycle Count(daily) E = E! × EF"#$!%"&'()& 𝐸* = 0.01665	𝑘𝑊ℎ, 𝐸𝐹+,-*%"&'()& = 	0.709	CO₂e/kWh	 [1] 

Annual Electricity Consumption 𝐸 = 𝐸* × 𝑁 × 𝐸𝐹+,-*%"&'()& 
N=1,500	cycle/year	à		
E	=	0.01665	x	1,500	x	0.709	=	17.71	kg	CO₂e/kWh	 [1] 

Daily Electricity Consumption 𝐸 =	
𝐴𝑛𝑛𝑢𝑎𝑙	𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦	𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛

250  

250	operating	days/year	assumed	
	
17.71
250 = 0.0708	𝑘𝑔	CO₂e/day	
	

[1] 

Forklift Operations Cycle Count / Addressing 
Discrepancies 𝐸 = 𝐸. × ℎ𝑟 × 𝐸𝐹+,-*%/0	

𝐸. = 1.875	𝑘𝑊ℎ/ℎ𝑜𝑢𝑟, ℎ𝑟	 = 	8	ℎ𝑜𝑢𝑟𝑠/𝑑𝑎𝑦,		
𝐸𝐹+,-*%/0 	= 	0.5289	kg	CO₂e/kWh	 [2] 

Drone Transportation Logistics for component and delivery 𝐸 = 𝐷 × 𝐶𝑖 × 𝑁 × 𝐸𝐹𝑗 
𝐷 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑘𝑚), 𝐶- = 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡	𝑤𝑒𝑖𝑔ℎ𝑡(𝑘𝑔),	 
𝑁	 = 	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑐𝑦𝑐𝑙𝑒,	 
𝐸𝐹1 = 𝑡𝑟𝑎𝑛𝑠𝑚𝑜𝑟𝑡	𝑚𝑜𝑑𝑒	𝐸𝐹(𝑎𝑖𝑟/𝑡𝑟𝑢𝑐𝑘, 𝑘𝑔	CO₂e/ton	km)		 

[3] 

Forklift Transportation Logistics for component and delivery 𝐸 = 𝐷 × 𝐶 × 𝑁 × 𝐸𝐹 𝐷 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑘𝑚), 𝐶 = 𝑝𝑖𝑐𝑘𝑒𝑟	𝑤𝑒𝑖𝑔ℎ𝑡(𝑘𝑔),	 
𝑁	 = 	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑠ℎ𝑖𝑝𝑚𝑒𝑛𝑡, 𝐸𝐹 = 	𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡	𝐸𝐹 [3] 

Drone Production Component EF 𝐸 = ∑𝐶𝑖 × 𝐸𝐹𝑖
𝑉  

𝐶- = 𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙	𝑚𝑎𝑠𝑠	𝑓𝑜𝑟	𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡	𝑖 
𝐸𝐹- = 𝐸𝐹	𝑓𝑜𝑟	𝑃𝐴12, 𝑃𝐶/𝐴𝐵𝑆, 𝑜𝑝𝑡𝑖𝑐𝑠, 𝑉	 = 	5	𝑦𝑒𝑎𝑟𝑠	 
Total	embodied	 = 	5.531	kg	CO₂e  

[4] 

Forklift Production Component EF 𝐸 = ∑𝐶𝑖 × 𝐸𝐹𝑖
𝑉  

V = vehicle life, Ci = component i weight,  
EFi = EF for component i  [4] 

Commute Work commute 𝐸 = 𝐷𝑐 × 𝐸𝐹 𝐷𝑐 = 47.8𝑚𝑖𝑙𝑒𝑠, 
𝐸𝐹 = 0.404𝑘𝑔	CO₂e/𝑚𝑖𝑙𝑒 [5],[6] 

Waste Inventory disposal 𝐸 = 𝐼 × 𝐴𝑉𝐺(𝐸𝐹) I = Lost inventory, AVG[EF] = average carbon intensity factor for lost 
item  [7] 

  
Ref Source 

[1] Verity — Drone energy use and embodied component EF 

[2] XtraPower Batteries. (n.d.); U.S. Energy Information Administration — Forklift energy and grid EF 

[3] UK Department of Energy Security and Net Zero (2024) — GHG Conversion Factors 

[4] Hao, H., Mu, Z., Jiang, S., Liu, Z., & Zhao, F. (2017); Net Zero Carbon Guide (n.d.); CarbonChain (n.d.); American Chemistry 
Council (2022); Liang, Q., & Yu, L. M. (2023); City of Winnipeg (2012); Sipert et al. (2024), Supplychain Connect, ScienceDirect  

[5] EPA — Average passenger vehicle emissions 

[6] Axios – Average commute distance 

[7] WRAP (2020), Carbonfact (2023), Textile Exchange (2021) 

 
The table outlines all major emissions-related parameters, equations, and assumptions used for 

estimating operational and lifecycle carbon impacts.  

• Structure: Category: Operational or lifecycle phase (e.g., drone operations, commute).  

• Activity: Specific function or emission-generating task.  

• Formula with EF: Emissions formula integrating activity-specific emission factors.  

• Notes/Variables: Definition of each variable and any key assumptions.  

• Citations: Reference to data sources used for emission factors or values.  

• Coverage: This framework includes Scope 1 (e.g., on-site energy), Scope 2 (e.g., grid electricity), 

and Scope 3 (e.g., transportation, waste, embodied carbon).  

• Assumptions: 250 operating days/year for drone use. Emission factors aligned with GHG Protocol, 

and EPA. Commute and waste emissions treated with average factors due to data confidentiality. 
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Table A2. Category-Level Inventory Emissions Estimates Using Aggregated Warehouse Data 

Category Units Estimated kg 𝐂𝐎₂𝐞	per unit Proportion to Total Inventory Source/Note 

Boots 11,318 5	 0.0042 Carbonfact (2023); Light polyester or nylon underlayer (e.g., thermals)  

Baselayer 4,766 20 0.0018 WRAP (2020); Includes leather/synthetic boots; assumes mid-range material intensity 

Dress 36,980 22 0.0137 Carbonfact (2023); Mid- to full-length cotton/polyester blend 

Graphic Fleece 35,366 12 0.0131 Carbonfact (2023); Printed polyester fleece sweatshirt with decoration  

Graphic T’s 55,790 7 0.0207 Carbonfact (2023); Printed cotton/polyester blend t-shirts  

Jackets 371,657 25 0.1380 WRAP (2020); Insulated outerwear (synthetic/down fill) 

Knit Bottoms 33,257 7 0.0123 WRAP (2020); Sweatpants or leggings, often cotton/poly blend 

Knit Tops 571,763 6.5 0.2123 WRAP (2020); Basic long-sleeve or short-sleeve knit shirts 

One Piece 2,360 10 0.0009 Textile Exchange (2021); Jumpsuits or bodysuits; midweight mixed fibers 

Outer Layer Polyflc 680,639 18 0.2527 WRAP (2020); Heavyweight fleece jackets with full polyfill 

Pants 11,752 8 0.0044 WRAP (2020); Woven trousers, chinos, or cotton-polyester pants 

Sandals 738 5 0.0003 Carbonfact (2023); Foam or synthetic sandals, minimal upper construction 

Shoes 11,909 13 0.0044 Carbonfact (2023); General athletic shoes made of EVA, rubber, polyester upper 

Sportswear Fleece 71,630 10 0.0266 WRAP (2020); Lightweight athletic fleece jacket 

Vests 14,030 12 0.0052 WRAP (2020); Insulated vest with synthetic fibers 

Woven Bottoms 415,859 9 0.1544 WRAP (2020); Denim or twill trousers 

Woven Tops 363,172 7 0.1349 WRAP (2020); Button-down shirts, light woven fabrics 

Grand Total 2,692,986   
Avg Emissions per Unit: 12.892 kg 𝐂𝐎₂𝐞 
* Weighted average of all inventory units multiplied by their respective per-unit CO₂e 
values. 

* Inventory quantities are based on confidential internal data provided by the warehouse operator and 
aggregated at the product category level. The weighted average emissions figure was calculated by 
multiplying the unit count for each category by its estimated per-unit CO₂e value. 
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Appendix B 
 

Table B1. Variables, Parameters and Sources for Before Implementation Model 

Activity Variable Name Value Units Source / Notes 

People commute 

# of inventory 
personnel 
commuting 6 people 

Ops team / 
assumption 

Days commuted per 
week 5 days Ops team 
Average miles 
traveled per 
individual 47.8 miles Survey / assumption 

Forklift energy  
(inventory count) 

# of forklifts for 
inventory counting 5.41 units Calculated 
Avg inventory 
counting hours per 
week 40 hours/week WMS / estimate 
Avg energy 
consumption per 
hour 2.8 kWh  

Estimated based on 
battery spec 

Inventory disposal Inventory Loss Rate 1.60% items NRF Survey 2023 

Total inventory 129,381 cases WMS  

Forklift energy  
(addressing 

discrepancies) 

Locations count per 
week 8,097.08 locations Ops / assumptions 

Issue rate 17.5%   Verity/Assumptions 
# of locations with 
issues per week 1417.8 pallets/week Ops / assumptions 
Total forklifts used 
for inventory 
discrepancies 0.59 forklifts/week Calculated 
Working Hours per 
Week 40 hours/week Warehouse spec 
Avg energy 
consumption per 
hours 2.8 kWh  

Estimated based on 
battery spec 

Equipment  # of forklifts 3 units Warehouse spec 
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Table B2. Variables, Parameters and Sources for After Implementation Model 

Activity Variable Name Value Units Source / Notes 

People commute 

# of inventory personnel 
commuting 3 people 

Ops team / 
assumption 

Days commuted per week 5 days Ops team 
Average miles traveled per 
individual 47.8 miles Survey / assumption 

Drones energy 
(inventory count) 

# of drones 4 units Verity 
Avg drone cycle time per 
week 14.4 hours/week Verity 

Avg power draw of drone 0.01665 kWh Verity 

Forklift energy  
(inventory count) 

# of forklifts for inventory 
counting 1.63 units Calculated 
Avg inventory counting 
hours per week 40 hours/week WMS / estimate 
Avg energy consumption 
per hour 2.8 kWh per hour 

Estimated based on 
battery spec 

Inventory disposal Inventory Loss Rate 0.96% items per year Calculated 

Total inventory 129,381 cases  WMS 

Forklift energy  
(addressing 

discrepancies) 

# of locations with issues 
per week 929.65 locations Ops / assumptions 

Avg Total Scans per Week 8,836  locations Verity 

Avg Issue Rate 10.5%   Verity 
Total forklifts used for 
addressing inventory 
discrepancies 0.39 forklifts/week Calculated 

Working Hours per Week 40 hours/week Warehouse spec 
Avg energy consumption 
per hours 2.8 kWh per hour 

Estimated based on 
battery spec 

Equipment # of Forklifts 2 units Warehouse spec 

# of Drones 4 units Verity 
 


