Aggregate Production Planning for Engineer-to-Order Products

Cheng Cheng Elizaveta Shafir

Advisor: Dr. Alexander Rothkopf

May 2019

Content

Sponsor Company Overview

Problem Statement & Research Question

Methodology

Results

Conclusion

Industry Overview

Industry Overview

Benefits of Buying from Contract Manufacturers

ZY Machining and Distributions. Ltd

Motivation and Relevance

Production Cost Increased **WHY?**

Isolated, inaccurate planning and production process uncertainty Actual production schedule doesn't stick to initial plan Increased Costs
• Labor resources
• Short-notice outsourcing
• WIP inventory holding
• Penalties for late deliveries

Research Question

Feasible Production Plan for ETO Products

Under Process Uncertainty with Minimum Cost

Methodology Outline

Process for Modelling and Cost Minimization

Methodology

Meet the shipment date / Incur Penalties

Additional Model Characteristics:

- Multiple production stages
- Multi-product model
- Multi-period model
- ETO products
 - no stock
 - deterministic demand = order

Minimize costs

Three Model Options

Methodology

stage **01**

- Run Model under 3 options and all scenarios
- Identify the cost drivers
- Compare costs for different production planning options

stage

- Conduct shadow price analysis
- Calculate final production plan using buffer capacity

Outsourcing Costs vs In-House Production Cost

© 2019 MIT Center for Transportation & Logistics | Page 17

Results

Total Expected Costs for All the Scenarios

□ Option 1: Overtime, Outsource, and Hiring Allowed (¥) Option 2: Only Hiring Allowed (¥) □ Option 3: Only Overtime and Outsource Allowed (¥) 1,600,000 0 0 1,400,000 1,200,000 1,000,000 800,000 600,000 400,000

Total Expected Costs (for All Scenarios) under the Three Model Options

Option 2 is the most expensive:

- 1. Outsourcing is cheaper for some product / stages
- 2. Employees can't be fired
- 3. Not enough capacities to produce on-time \rightarrow penalties

Option 1 achieved a cost reduction of **11.9%** compared to Option 3.

Model	Option 1,	Option 3,	Cost Change,
Option	¥	¥	%
Total Expected Cost	714,247	810,364	-11.86%

Shadow Price Analysis

Workforce re-allocation:

0.52% total expected cost reduction without

headcount increase

Adding 1 equipment unit gives only 0.18% total expected cost reduction while investments required

Final Plan Calculation with the Buffer Capacity

A single plan for execution:

We add buffer capacity to the base plan until production cost is equal to the total expected cost

7% capacity buffer is required for the data provided (for 4.3% additional cost vs base scenario)

Recommendation for the Sponsor Company

12.3% COST SAVINGS

© 2019 MIT Center for Transportation & Logistics | Page 21

General Recommendations for the Company

Reco

THANK YOU!

Questions?

Cheng Cheng

<u>Liz Shafir</u>

Back up slides

APP LP Model

Back-Up

$Min \ z = \sum_{i} \sum_{s} \sum_{t} \left(P_{ist} L_{is} C_{is}^{P} I_{ist} + I_{ist} C_{is}^{In} + U_{ist} C_{is}^{U} \right)$		<u>Indices:</u> i – product, 1 <i<n s – production stage, 1<s<s< th=""></s<s<></i<n
+ $\sum_{s} \sum_{t} (W_{st}C_s^W + O_{st}C_s^{Ov}) + \sum_{i} \sum_{t} (B_{it}C_i^{Pen})$	$\forall i, \forall s, \forall t \in \{1 T\}$ (1)	t - time period, 0 < t < T
s.t.		<u>Decision variables:</u> A _{st} - employees to hire at start of period t, stage s
$\sum_{i} (P_{ist}L_{is} - (HW_{st} + O_{st}) * z \le 0$	$\forall s, \forall t \in \{1 T\}$ (2)	W_{st} - employees in the end of period t, stage s O_{st} - overtime hours to work in period t, stage s
$\sum_{i} (P_{ist} L_{is} - (P_s^{Max} * 24 * 6) * z \le 0$	∀s, ∀t ∈ {1 T} (3)	P_{ist} - units to produce internally, period t, stage s, product i U_{ist} - units to outsource, period t, stage s, product i
$W_{st} - W_{st-1} - A_{st} = 0$	$\forall s, \forall t \in \{1 T\}$ (4)	B_{it} – units of backlog by product by week
$O_{st} - O^{max}W_{st} * z \leq 0$	$\forall s, \forall t \in \{1 T\}$ (5)	<u>Input data:</u> D _{it} - demand for product i period t, units
$U_{ist} - U_{is}^{Max} \le 0$	∀i, ∀s, ∀t (6)	L_{is} - production time for stage s product i, hours/unit $W_{s 0}$ - workforce at week 0 stage s, # of employees
$I_{ist-1} - I_{ist} + P_{ist} + U_{ist} - (P_{is+1t} + U_{is+1t}) = 0$	$\forall i, \forall s \in \{1 \dots S - 1\}, \forall t \in \{1 \dots T\} (7)$	O^{max} - max hours of overtime, hours/person/week U_{is}^{max} - max outsourcing product i stage s, units/week
$I_{is t-1} - I_{ist} + P_{ist} + U_{ist} - D_{it} - B_{it-1} + B_{it} = 0$	$\forall i, s=S, \forall t \in \{1 T\}$ (8)	P_s^{Max} - production equipment by stage, units I_{is0} - inventory at week 0 product i stage s, units
$A_{st} W_{st} I_{ist} P_{ist} U_{ist} O_{st} B_{it} \ge 0$	∀s, ∀t (9)	C_{is}^{P} - production cost for product i stage s, \mathbb{Y} /hour C_{s}^{Ov} - cost of overtime hour for stage s, \mathbb{Y} /hour
0 < <i>z</i> < 1	(10)	C_s^W - cost of employee for stage s, Y /person/week C_{is}^{In} - inventory holding cost product i stage s, Y /unit/week C_{is}^U - outsource cost product i stage s, Y /unit
		C^{Pen} – late delivery penalty product i. Y/unit/week

1) Calculation buffer capacity by every production stage based on scenarios probability derived from

historical data (needs to be collected)

- 2) Adding buffer capacity size to the objective function of the LP model
- 3) Adding more constraints and inputs to the model

Aggregate Production Plan (extract)

Back-Up

In-House Production Plan Example for the Base Scenario

Product-Stage	Week 9	Week 10	Week 11	Week 12	Week 13	Week 14
Product 8, Stage 2	0	0	13.1	4.5	0	0
Product 8, Stage 3	1.1	18.1	27.2	16.1	17.5	0
Product 8, Stage 4	0	0	46.4	0	33.6	0
Product 8, Stage 5	0	0	46.4	0	33.6	0

Inventories Level for Work-in-Progress Materials for the Base Scenario

Product-Stage	Week 9	Week 10	Week 11	Week 12	Week 13	Week 14
Product 8, Stage 2	61.4	43.2	29.1	17.5	0	0
Product 8, Stage 3	1.1	19.2	0	16.1	0	0
Product 8, Stage 4	0	0	0	0	0	0
Product 8, Stage 5	0	0	46.4	46.4	8	0

Overtime Hours Planned for the Base Scenario

Stage	Week 9	Week 10	Week 11	Week 12	Week 13	Week 14
Stage 1	0	0	0	0	0	0
Stage 2	0	0	0	0	0	0
Stage 3	0	0	0	0	0	0
Stage 4	0	0	45.6	86.2	43.9	0

Extreme Scenarios Cost Breakdown

52%

Results