Incentivizing No-Rush Delivery in Omnichannel Retail

Students: Alison Heuser and Tabjeel Ashraf Advisors: Dr. Eva Ponce and Dr. Sina Golara

E-commerce Sales in the United States

Introduction of the Smart Phone. iPhone released in 2007

(SSSD, 2019)

The Face of the Retail Industry Is Changing

Logistics costs in 2017 represented 7.7% of the US GDP with transportation costs adding up to 64.6% of total logistics costs

(Gilmore, 2018)

Previous work does not study the connection between a detailed delivery cost model and a customer behavior model

Customer behavior model

Chintagunta et al.(2009)

Campell and Savelsbergh (2006) Asdemir et al.(2009)

Incentives to influence customer delivery choice Rabinovich (2018)

What are the right incentives to motivate customers to choose no-rush delivery and minimize total logistics cost?

© 2019 MIT Center for Transportation & Logistics | Page 5

Methodology

Consumer Survey

1. Pre-Questions

2. Experimental Question:

Imagine you are shopping online at your favorite fashion retailer. You are purchasing a basic item (the latest trendy item) for \$40. You are ready to check out

Standard Shipping (2 days) No-Rush Shipping (7 days) (you will receive \$5/\$10 off your order)

3. Demographic Questions

© 2019 MIT Center for Transportation & Logistics | Page 7

Survey Data

The data was randomly split into two groups for analysis in Basic and Trendy Models.

Difference between the two groups was showed to be statistically insignificant with ANOVA: F=1.63 < Fcrit=3.85P=0.20 (tested at 0.05)

Customer Behavior Model: Linear Regression

Target Variable: Lead Time

Experimental Variable: Incentive

Control Variables: Normal Shopping Frequency Usual Shipping Lead Time Gender Employment Status Age Income

Customer Behavior Model: Linear Regression Results

	Bas	ic	Trendy			
	Coefficient	P-Value	Coefficient	P-Value		
Days/\$ incentive	0.85	1.125E-06	0.88	1.655E-07		
Days for daily shopper	-1.32	0.146	-1.06	0.244		
Days for weekly shopper	-1.27	0.143	-0.87	0.186		
Days for biweekly shopper	-0.09	0.915	-0.19	0.725		
Days for monthly shopper	-1.28	0.083	-0.08	0.871		
Days for yearly shopper	-0.84	0.229	-0.01	0.989		
Days for usual wait time of 2 days or fewer	-1.76	0.115	-1.44	0.041		
Days for usual wait time of 3-6 days	-1.48	0.139	-0.15	0.793		
Days for usual wait time of 7 or more days	-1.56	0.218	-0.62	0.291		
Days for female	0.15	0.873	-0.80	0.161		
Days for male	-1.31	0.135	-1.41	0.009		
Days for full-time employees	0.58	0.353	1.46	0.091		
Days for part-time employees	0.62	0.414	1.81	0.069		
Days for students	2.12	0.031	1.87	0.133		
Days for dependents	-1.35	0.008	0.72	0.205		
Days/year	0.02	0.333	-0.02	0.458		
Days/\$ earned	2.08E-05	0.047	5.81E-06	0.531		
Intercept	-1.16	0.496	-2.21	0.025		
R ²	0.67		0.67			

Basic Model: 0.85 days/\$ = \$1.18/day

Trendy Model 0.88 days/\$ = \$1.14/day

Sensitivity Analysis

Probabilistic model was developed and run for 100,000 iterations using Monte Carlo algorithm

Incentive is the most sensitive input to the lead time.

People who shop more often are more responsive to monetary incentive.

Geno choic

Gender has an effect on the choice of lead time

Older people respond less to monetary incentive.

Lead Time / Final Components Regression Coefficients Incentive Amount / Inputs 0.96 0.13 Daily Shopper / Inputs -Female / Inputs 0.11 2 days wait time / Inputs 0.08 Age / Inputs · Full Time Employee / Inputs 0.07 Median Income / Inputs 0.06 0.8 0.2 8 0.0 0.6 Q 4.0 Coefficient Value

Incentives for the Average Consumer

Delivery Cost Model

How it works

Distribution of Weekly Cost Savings Over 50 Trials

Impact of No-Rush Shipping on Vehicle Routing

Day 1	Original	No-Rush
Distance (miles)	808	730
Time (hours)	35.1	36.9

Full Week	Original	No-Rush
Distance (miles)	5,960.00	5,814.00
Time (hours)	257.00	252.13
Cost Savings Per Order	\$-	\$0.14
Trucks Needed	3	3

----- No-Rush

Day 1	Original	No-Rush
Distance (miles)	764	772
Time (hours)	33.6	34.2

---Original

Full Week	Original	No-Rush
Distance (miles)	5,898.00	3,800.00
Time (hours)	254.93	185.00
Cost Savings Per Order	\$-	\$2.06
Trucks Needed	3	2

Delivery Cost Model: Parameter Variation

Conclusions

Consumer behavior can be influenced by incentives

It is critical to combine the study of consumer behavior with the logistics cost model to determine the effectiveness of incentives to drive cost savings

© 2019 MIT Center for Transportation & Logistics | Page 18

Conclusions

There is a potential to achieve an average of 3% to 32% weekly logistics costs savings, depending on the percent of customers who choose no-rush delivery

Limitations

Survey

Assumptions of Delivery Cost Model

Simulated Package Data

Future Work

Field study with retailer – incentives offered at point of sale, actual package data

Develop delivery cost model with actual distribution network of a retailer

Expand framework to other industries

© 2019 MIT Center for Transportation & Logistics | Page 20

Questions?

Backup Slides

Consumer Survey

Respondents were randomly asked Question A or Question B. All respondents were asked Question C

Imagine you are shopping **online** at your favorite fashion retailer. You are purchasing a **basic** item such as a plain white shirt for \$40. You are ready to check out.

Question A

Please select from the following shipping options:

- O Standard Shipping (2 days)
- O No-Rush Shipping (7 days) (you will receive \$5 off your order)

Question B

Please select from the following shipping options:

- O Standard Shipping (2 days)
- O No-Rush Shipping (7 days) (you will receive \$10 off your order)

Question C

Why did you choose this shipping option?

Imagine you are shopping **online** at your favorite fashion retailer. You are purchasing the latest **trendy** item from the cover of this week's fashion magazine for \$40. You are ready to checkout.

Question D

Please select from the following shipping options:

- O Standard Shipping (2 days)
- O No-Rush Shipping (7 days) (you will receive \$5 off your order)

Question E

Please select from the following shipping options:

- O Standard Shipping (2 days)
- O No-Rush Shipping (7 days) (you will receive \$10 off your order)

Question F

Why did you choose this shipping option?

Respondents were randomly asked Question D or Question E. All respondents were asked Question F

ANOVA Showed no significant difference between 2 groups of Survey Data

Source of Variation	SS	df	MS	F	P-value	F crit
Sample	59030673	1	59030672.6	1.629189729	0.201970494	3.846337168
Columns	29731178830 2	17	17488928724	482.6775944	0	1.628126381
Interaction	1004142687	17	59067216.86	1.630198315	0.049553912	1.628126381
Within	69132846414	1908	36233148.02			
Total	3.67508E+11	1943				

Customer Behavior Model

$$\begin{split} LT_{Basic} &= \alpha x_1 + \beta_1 x_2 + \beta_2 x_3 + \beta_3 x_4 + \beta_4 x_5 + \beta_5 x_6 + \gamma_1 x_7 + \gamma_2 x_8 + \gamma_3 x_9 + \delta_1 x_{10} + \\ & \delta_2 x_{11} + \zeta_1 x_{12} + \zeta_2 x_{13} + \zeta_3 x_{14} + \eta x_{15} + \theta x_{16} + \kappa x_{17} + \varepsilon \end{split}$$

$$\begin{split} LT_{Trendy} &= \alpha x_1 + \beta_1 x_2 + \beta_2 x_3 + \beta_3 x_4 + \beta_4 x_5 + \beta_5 x_6 + \gamma_1 x_7 + \gamma_2 x_8 + \gamma_3 x_9 + \delta_1 x_{10} + \\ & \delta_2 x_{11} + \zeta_1 x_{12} + \zeta_2 x_{13} + \zeta_3 x_{14} + \eta x_{15} + \theta x_{16} + \kappa x_{17} + \varepsilon \end{split}$$

 $LT = chosen \ lead \ time \ (days)$ $x_{1} = incentive \ (\$)$ $x_{2} = daily \ shopper \ \{0,1\}$ $x_{3} = weekly \ shopper \ \{0,1\}$ $x_{4} = biweekly \ shopper \ \{0,1\}$ $x_{5} = monthly \ shopper \ \{0,1\}$ $x_{6} = yearly \ shopper \ \{0,1\}$ $x_{7} = usual \ wait \ time: 2 \ or \ fewer \ days \ \{0,1\}$ $x_{8} = usual \ wait \ time: 3 - 6 \ days \ \{0,1\}$

 $x_9 = usual wait time: 7 or more days {0,1}$ $x_{10} = female {0,1}$ $x_{11} = male {0,1}$ $x_{12} = employed full time {0,1}$ $x_{13} = employed part - time {0,1}$ $x_{14} = student {0,1}$ $x_{15} = dependents {0,1}$ $x_{16} = age$

 $x_{17} = median \ household \ income \ (\$)$

Correlation Analysis of Basic Model

	LT	X1	X2	X 3	X4	X5	X6	X 7	X8	X 9	X10	X12	X13	X14	X15	X16	X 17
LT	1.00																
X 1	<mark>0.66</mark>	1.00															
X2	-0.18	-0.12	1.00														
X 3	0.05	0.13	-0.10	1.00													
X4	0.22	0.14	-0.11	-0.14	1.00												
X5	-0.18	-0.24	-0.21	-0.26	-0.29	1.00											
X6	0.07	0.11	-0.19	-0.24	-0.26	-0.49	1.00										
X 7	-0.02	-0.01	-0.12	-0.15	0.14	-0.09	0.18	1.00									
X 8	-0.11	-0.07	0.00	0.21	-0.03	0.14	-0.19	-0.74	1.00								
X 9	0.16	0.10	0.19	-0.10	-0.11	-0.06	0.12	-0.12	-0.50	1.00							
X10	0.11	-0.17	-0.06	-0.07	0.21	0.19	-0.22	0.03	0.07	-0.06	1.00						
X12	-0.03	0.04	-0.03	-0.04	0.24	-0.17	0.01	-0.05	-0.07	0.11	0.06	1.00					
X13	-0.02	-0.18	0.08	0.01	-0.17	0.14	-0.05	-0.18	0.25	-0.12	0.24	-0.48	1.00				
X14	0.02	-0.09	-0.09	0.09	-0.13	0.04	0.07	0.04	-0.11	0.15	-0.40	-0.37	-0.14	1.00			
X15	-0.30	-0.20	0.11	0.08	0.24	-0.08	-0.25	0.06	0.02	-0.18	0.21	0.22	-0.05	-0.10	1.00		
X16	0.08	-0.03	0.07	0.05	0.04	0.08	-0.17	0.05	0.09	-0.19	0.34	-0.22	0.21	-0.18	0.14	1.00	
X1 7	0.16	0.01	0.07	0.20	-0.02	-0.03	-0.10	0.09	-0.19	0.23	0.03	-0.13	0.07	0.00	0.09	-0.03	1.00

Correlation between incentives and lead time

Correlation between variables describing usual shopping frequency

Correlation between variables describing variables describing usual wait time for package delivery

Correlation between variables describing employment status

Correlation Analysis of Trendy Model

	LT	X 1	X 2	X3	X4	X5	X6	X 7	X8	X9	X10	X12	X13	X14	X15	X16	X1 7
LT	1.00																
X1	<mark>0.62</mark>	1.00															
X2	-0.06	0.13	1.00														
X3	-0.01	-0.13	-0.08	1.00													
X4	-0.12	-0.15	-0.17	-0.13	1.00												
X5	-0.01	0.03	-0.26	-0.20	-0.44	1.00											
X6	0.17	0.10	-0.17	-0.13	-0.29	-0.44	1.00										
X 7	-0.19	-0.34	0.18	0.09	0.20	-0.30	-0.03	1.00									
X 8	0.14	0.28	-0.20	-0.01	-0.12	0.24	-0.02	-0.70	1.00								
X 9	0.02	0.01	0.07	-0.09	-0.07	0.02	0.06	-0.18	-0.57	1.00							
X10	0.20	0.10	-0.01	0.19	-0.03	-0.03	-0.03	-0.01	0.20	-0.26	1.00						
X12	0.00	-0.09	-0.17	0.01	0.11	-0.02	0.02	-0.15	0.00	0.17	0.13	1.00					
X13	0.08	0.13	0.12	-0.08	-0.17	0.13	-0.02	0.01	0.08	-0.12	0.12	-0.43	1.00				
X14	-0.01	-0.18	-0.11	0.17	-0.05	0.07	-0.05	0.13	-0.14	0.04	-0.32	-0.48	-0.11	1.00			
X15	-0.26	-0.36	0.02	0.21	0.19	-0.05	-0.26	0.12	0.06	-0.23	0.31	0.23	0.02	-0.17	1.00		
X16	0.20	0.21	-0.11	-0.08	-0.07	0.13	0.04	-0.25	0.37	-0.22	0.25	0.04	0.19	-0.33	-0.08	1.00	
X1 7	0.12	0.10	0.19	0.06	0.02	-0.02	-0.16	-0.03	-0.02	0.06	0.08	-0.24	0.12	-0.07	-0.04	-0.07	1.00

Correlation between incentives and lead time

Correlation between variables describing usual shopping frequency

Correlation between variables describing variables describing usual wait time for package delivery

Correlation between variables describing employment status

References

- Agatz, N., Campbell, A. M., Fleischmann, M., van Nunen, J., & Savelsbergh, M. (2013). Revenue management opportunities for Internet retailers. Journal of Revenue and Pricing Management, 12(2), 128–138. <u>https://doi.org/10.1057/rpm.2012.51</u>
- Asdemir, K., Jacob, V. S., & Krishnan, R. (2009). Dynamic Pricing of multiple home delivery options. European Journal of Operational Research, 196, 246–257.
- Bell, D. R., Gallino, S., & Moreno, A. (2014). How to Win in an Omnichannel World. MIT Sloan Management Review, 56(1), 44– 53. <u>https://doi.org/10.1287</u>
- Campbell, A. M., & Savelsbergh, M. W. P. (2005). Decision Support for Consumer Direct Grocery Initiatives. Transportation Science, 39(3), 313–327. <u>https://doi.org/10.1287</u>
- Campbell, A. M., & Savelsbergh, M. (2006). Incentive Schemes for Attended Home Delivery Services. Transportation Science, 40(3), 327–341. <u>https://doi.org/10.1287</u>
- Chintagunta, P. K., Chu, J., & Cebollada, J. (2009). Quantifying Transaction Costs in Online/Offline Grocery Channel Choice. Marketing Science, 31(1). <u>https://doi.org/10.2307/41408452</u>
- Gilmore, D. (2018, June 21). State of the Logistics Union 2018. Retrieved May 16, 2019, from http://www.scdigest.com/firstthoughts/18-06-21.php?cid=14356
- Rabinovich, E., Sousa, R., Park, S., & Golara, S. (2018). Omnichannel Retailing as a Balancing Act between In-Store and Home Fulfillment (SSRN Scholarly Paper No. ID 3113878). Retrieved from Social Science Research Network website: <u>https://papers.ssrn.com/abstract=3113878</u>
- Sheffi, Y., & Blanco, E. (2018). Balancing green: when to embrace sustainability in a business (and when not to). Cambridge, MA: The MIT Press.
- SSSD, A. M. R. (2019). US Census Bureau Monthly & Annual Retail Trade. Retrieved May 3, 2018, from https://www.census.gov/retail/index.html#ecommerce

