Machine Learning; Worth the Price of Admission?

Burak Gundogdu, Jeffrey Maloney

May 2019

Project Sponsor
Agenda

• Motivation and research question
• Current state of research
• Our approach
 • Cube search
 • Data flow
 • Machine learning models
• Results
 • Comparison of models
 • Avoiding overfitting
 • Final model performance
• Financial impact
Motivation and Research Question

• A build to stock company, relying on forecasts generated through an S&OP process to meet customer demand

• Highly seasonal demand, peaks occurring during major US holidays

• Holt-Winters is the current forecast methodology

• High interest in applying machine learning but needs to
 1. Identify which model(s) & data to use
 2. Determine whether the potential improvement justifies the costs

Is the improvement (if any) in demand forecast accuracy from a machine learning process over traditional statistical methods significant enough to justify the increased costs?
Current State of Research

The Current State of Literature

Machine Learning in Time Series Forecasting
- ML has significant potential to improve costs over traditional analytical techniques (Chui et al., 2018)
- Some argue that they will not consistently improve over the forecasts using traditional techniques (e.g. Makridakis, Spiliotis and Assimakopoulos, 2018)

Machine Learning Based Demand Forecasting
- A number of studies focusing on a specific ML model and comparing to traditional methods (E.g. Hribar et. al, 2018 & Saloux and Candanedo, 2018)
- No consistent answer to which model performs best overall

FMCG Demand Forecasting with Machine Learning
- Still in its early stages and there is no one-size-fits-all approach
- The selection of the machine learning model, and the hyperparameters that guide it, play a significant role in the final forecast accuracy

How Our Study Differs?

- Most demand forecasting studies focus on single ML model, with few investigating up to 3
- Compared 5 models, ran ~400 iterations in total

- Current studies use standard error metrics
- Converted the error of the model into the custom loss value that the company actually uses in operations

- We did not come across a study that implements a cost-benefit analysis of using ML to improve demand forecasts
- Calculated the expected savings from inventory and compared to the cost of deploying an ML based demand forecast
Our Approach: Cube search

What features to include?

Tuning the model

Hyper-parameter 1

Hyper-parameter 2

Feature set

3x Cross-validation
Our Approach: Data Flow

Raw Data

Cleaned Data
- Actual Consumption
- Geography
- Socioeconomic
- Climate
- Shipments (Only data source in current approach)

Feature Selector

Created Feature Sets
- Baseline
- All
- Managerial selection

Machine Learning Models
- Random Forest
- Artificial Neural Network
- Support Vector Regression
- Gradient Boosting
- KNN Regression

Cube Search

Final Model

Custom Loss Function

Financial Analysis
Our Approach: Machine Learning Models

Random Forest
- Ensemble method of decision trees
- Decreases the variance by combining trees

Artificial Neural Network
- Consists of nodes that are used to calculate weights of the features in the model
- Nodes are organized in layers

Support Vector Regression
- Employs a decision boundary called a hyperplane
- Approach: Maximize the minimum margin

Gradient Boosting
- An ensemble method where predictors are added sequentially
- In each stage, the new predictor is fit into the residual errors

K-nearest Neighbor Regression
- Value of the target: Average of the k closest observations
- Optimal value of k determined by running multiple models
Results: Comparison of Models

- **KNN consistently had higher R^2** when additional features were added and demand was de-seasonalized.
- In general the **highest mean R^2 came from** de-seasonalized feature sets.
- The **addition of features tended to improve mean R^2 above baseline**.
- **SVR’s performance was lowest**, and it required the longest run time.
Results: Avoiding Overfitting

- Compared the absolute variance between mean R^2 values of the Training and Test data sets from the best models.

- Comparison helps resolve differences between models with similar mean R^2 scores.

- KNN achieved the highest mean R^2, while maintaining a low Train-Test variance when run on de-seasonalized Feature Select 1 set.
Results: Final Model Performance

- The hyper-parameter that achieved the best results for KNN were number of neighbors: 15, and distance: Manhattan.

- The best KNN model achieved a mean R^2 of 0.74 during the cube search.

- The selected model achieved an R^2 of 0.67 on unseen 2018 test data set, similar to scores during cross validation.

- Final validation of the selected model resulted in annual forecast error (WAPE) of 30.5%.
Financial Impact

- Selected KNN model achieved a 3.9% lower forecast error than the current model.
- The ML forecast error driven equation represents a decrease in the level of safety stock of 10%.
- Lower forecast error results in a projected reduction in value of safety stock of >$900k.
- The savings exceeds the annual incremental costs of $500k (data, software, personnel support), justifying the use of the advanced methodology.

Statistically, the KNN model outperforms the current method:

- **Statistical Model Annual Error:** 34.4%
- **KNN Model Annual Error:** 30.5%

Definitely worth the price of admission!
Further Investigation

• Expand model evaluation to new model types

• Increase the range and granularity of hyper-parameters

• Evaluate additional features for significance

• Perform comprehensive financial analysis on impact of improved forecast accuracy

• Adapt process to gain additional insights
 • Forecast consumption demand
 • Forecast at the customer account level
 • Expand upon feature selection process to understand key business drivers and customer composition
Questions?
Appendices

• Data sources and overall methodology
• Detailed data flow
• Feature importance curve
• Tuned hyper-parameters
• KNN seasonal vs de-seasonalized performance
• KNN hyper-parameter performance curves
• Comparison of model run time
• Aggregated demand distribution by region
Data Sources and Overall Methodology

Data Sources
- **ERP Shipment Data**
 - Product Type
 - Date/Time
 - Seasonality Calendar
 - Quantity Shipped
 - Geographic Attributes
- **Consumption Data**
 - Product Type
 - Date/Time
 - Price
 - Quantity Sold
 - Geographic Attributes
- **Census Data**
 - Geographic attributes
 - Population attributes
 - Household attributes
 - Income attributes
 - Ethnic attributes
 - Education attributes
- **Climate Data**
 - Geographic attributes
 - Calendar attributes
 - Severe climate Characteristics

Proposed Methodology

Data Exploration
- Statistical Characteristics
- Trends, variation and seasonality
- Outliers and exceptions

Data Pre-Processing
- Filter out aggregated accounts
- Restrict data to those present in both shipment and consumption data sets
- Aggregate data to weekly level
- Aggregate data to state level

Data Cleaning
- Clean and Standardize Data
- Impute Missing Data with Averages
- Drop SKUs with insufficient history

Feature Engineering
- Random Forest
- Management Expertise

Machine Learning Models
- Neural Net (MLP)
- GB
- SVR
- Random Forest

Performance Measurement
- Forecast Error: Regional & Annual
- Mean R2
- Weighted Absolute Percent Error

Financial Impact
- Change in Safety Stock Investment
- Comparison of Savings vs Model Cost
Detailed Data Flow

Cube Search Process

- Model
 - Exploratory Model Analysis
 - Model List
 - Hyper-Parameter ranges
 - Cube Search (Hyper-Parameter 1, Hyper-Parameter 2, Feature Set) with 3-Fold Cross Validation For every Model
 - Results of Cube Search
 - 2D Visual Plots
 - 3D Visual Plots

- Cleaned Data
 - Feature Selector RF
 - Feature Selector Management
 - Select Feature 1
 - Select Feature 2
 - Baseline All
 - Split Data
 - Y Train
 - X Train
 - X Test
 - Y Test
 - Transformation Pipelines
 - Transformed X Train Data
 - Transformed X Test Data
 - Selected Model, Features and Hyper Parameters
 - Final Model Validation on Test Data
 - Fit, Predict Model
 - Custom Loss Function
 - Inventory, Financial Analysis

Legend

- Process Function
- Data Object
Feature Importance Curve

Feature Importance Curve. Number of features plotted against the cumulative weighted value for each feature according to the Random Forest classifier, with the threshold indicating cumulative importance captured in features selected.
Tuned Hyper-parameters

<table>
<thead>
<tr>
<th>Model</th>
<th>Hyperparameter 1</th>
<th>Hyperparameter 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support Vector Regression</td>
<td>C: The penalty for the error</td>
<td>Epsilon: The margin of tolerance for errors</td>
</tr>
<tr>
<td>Artificial Neural Network</td>
<td>Number of layers</td>
<td>150 neurons per layer</td>
</tr>
<tr>
<td>Random Forest</td>
<td>Max depth: Limits the depth and fit of the tree</td>
<td>Max features: Defines the limit of features considered for each split</td>
</tr>
<tr>
<td>Gradient Boosting</td>
<td>n estimators: Sets the number of boosting stages</td>
<td>Min sample split: Defines the samples required to split a node</td>
</tr>
<tr>
<td>K-Nearest Neighbor Regressor</td>
<td>P: The Minkowski distance parameter</td>
<td>n neighbors: Determines the number of neighbors evaluated for each observation</td>
</tr>
</tbody>
</table>
KNN Seasonal vs De-seasonalized Performance

Comparison of Seasonal vs De-Seasonalized

KNN Seasonal vs De-Seasonalized Performance. Comparison of mean R^2 values for all KNN hyper-parameters tested on seasonal vs de-seasonalized feature sets
KNN Hyper-parameter Performance Curves

KNN P hyper-parameter Performance Curve. Comparison of Train-Test mean R^2 for the two different values of the p-parameter which determine the distance calculation on the de-seasonalized Feature Select 1 set.

KNN N-Neighbors hyper-parameter Performance Curve. Comparison of Train-Test mean R^2 for varying values of the number of neighbors on the de-seasonalized Feature Select 1 set.
Comparison of Model Run Time

Comparison of Model Run Time. Log time in seconds for each feature set run during cube search.
Aggregated Demand Distribution by Region

Geographic Distribution Regions. The states included in each aggregated region for forecast evaluation and comparison.