

PILOT Freight Services Facility Location Optimization for Last-mile Delivery

MIT Research Fest Cambridge, May 21st 2019

Agenda **Background Information Project Introduction** Methodology **Results & Discussion** Recommendation Q&A

Pilot Freight Services

24/7 full-mile Freight Forwarding Services

Privately held; HDQ in Lima, PA

Operations in **more than 75 locations** throughout US & western Europe

Specialized for heavy, bulky goods

- Furniture
- Home Appliances & Electronics
- Sporting Equipment

Strategic acquisition for e-commerce service offering

Introduction

The company seeks to remain competitive by optimizing their network footprint and operating cost for last-mile delivery of heavy-bulky goods.

Supply Chain MANAGEMENT

Project Hypotheses

The objective is to test the hypothesis that establishing additional cross-docking facilities within metropolitan areas would reduce the mileage, and thereby the cost, of travelling from the cross-dock to final delivery.

Data and Methodology

Arriving at a recommendation requires collecting data and understanding the baseline, designing two models, and finally analyzing the results.

Results: Center of Gravity (COG) Analysis

The COG approach aims to select the location of a facility to minimize the weighted-average distance to all the demand points.

Facility Constraint

- The greatest reduction in miles occurs when the first incremental facility is added in a market. Additional facilities were at **diminishing returns**.
- COG provided valuable information to seed the next major stage of our research the MILP model.
- In Atlanta, Dallas and Chicago, a two-station solution is proposed. For California, New York & New Jersey, a four-station is proposed.

Results: Mixed Integer Linear Programming (MILP)

MILP model identifies the optimal combination of locations that leads to the minimum total costs.

Summary

- Concentration of demand is indicated by heat maps
- Recommended sites and flows in each of the five markets is displayed. Existing facilities are included

cross-docking facility

customer node (5-digit zip code)

Results: Volume Allocation

Capacity utilization estimation reveals how recommended cross-docking facilities handle seasonal demand.

Summary

- Graph depicts the four total facilities in California, including the existing facilities
- Average utilization is ~82% for the three facilities carrying the most demand
- During the holiday peak, utilization rate exceeds 100%; outsource or offload to another facility
- Stratford facility is underutilized. The company could look for a smaller space, or it may be a good location to **shift demand** during times like the peak season

Results: Financial Impact

Compared to the baseline, the unconstrained MILP resulted in a 34% cost reduction, while including existing facilities led to a 23% cost reduction, when doubling the total facilities in the network.

Summary

- The **second scenario** reflects a more **realistic** operating footprint because existing facilities remain operational.
- This financial analysis is simplified; only transportation and leasing costs are included.
- Cost reduction estimates indicate directional accuracy. New facilities offer operational efficiency and cost savings.
- More inclusive cost analysis should be done as next step before finalizing network modeling decision.

Results: Break-even Analysis

Estimated transportation savings were calculated as the reduced mileage times the cost per mile. If the market transportation rate increased, the calculated savings would be greater with same distance reduction.

\$/SqFt/Yr	Baseline	Scenario 1		Scenario 2	
	Actual	Average	Breakeven	Average	Breakeven
Atlanta	\$5.94	\$6.00	\$9.67	\$5.97	\$8.65
Dallas	\$6.54	\$4.40	\$5.47	\$5.17	\$5.20
Chicago	\$10.29	\$5.05	\$13.71	\$6.95	\$13.83
California	\$14.09	\$7.86	\$18.76	\$10.79	\$13.87
NY / NJ	\$23.57	\$9.81	\$25.67	\$16.29	\$15.47

Summary

- MILP model allocates facilities nearest to dense demand to reduce the distance to service the customer
- The higher the transportation cost rates, the greater the incentive to invest in additional facilities.
- The break-even unit cost for stations is the **benchmark** for the commercial buildings sourcing. Any unit cost lower than the ceiling would lead to an overall logistics cost (transportation and facility operation cost) savings.

Limitations and Suggestions to Further the Study

Limitations

- Other operational costs are not included in this study
- The nature of dynamic, market-based leasing rates is not captured in the model
- Demand is in a fast growing stage; the most recent peak period is not captured

Suggestions

- Capacity planning based on most recent peak-season shipment data
- Form cross-functional team to discuss strategic network decision: comprehensive real-estate study, network complexity, IT systems changes, retail partners willingness to change

Thank you