
KEY INSIGHTS 
 
1. Adding a drone to a traditional last-mile 

delivery system that uses trucks only can 
reduce minimum tour time by up to 10%. 

2. Among the four considered drone delivery 
models in this research, shared truck-drone 
model — where truck and drone share same 
area of service — performs superior to other 
three models, providing 100% coverage to all 
customers and reducing minimum tour time 
as high as 80%. 

3. A Memetic Algorithm used for our routing 
optimization proves to be quite robust in 
handling Vehicle Routing Problem (VRP) 
with 50 customers, yielding only 3.7% gap 
from the optimal solution. 
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Summary: With the latest technological advancement, the use of drones has emerged as an innovative and viable 
business solution for last-mile distribution. There are various operating models for a drone-based last-mile delivery 
system from a pure drone delivery model where customers are served by drones (no trucks) to a shared truck-
drone delivery model where customers can be served by either trucks/drones. This thesis quantitatively models 
these different drone-based last-mile delivery systems and compare their relative benefits and shortcomings under 
various operating models. The goal of the thesis is to help the industry understand potential use cases of drones in 
last-mile delivery systems. 
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Introduction 
 
E-commerce continues to outgrow offline retail 
revenues and is expected to reach 15% of global 
retail share in 2020. E-commerce business, growing 
fast pace at 21% annual growth, is fueling global 
parcel distribution, and particularly increasing the 
number of deliveries in the last leg of distribution 
from suppliers to customers (B2C shipments), known 
as the last-mile delivery. Last-mile delivery is one of 

the most complex and inefficient steps in the supply 
chain due to: 
• Fragmentation of deliveries by different players 

with different business models. Examples 
include: integrated logistics players, such as DHL 
and UPS; same-day logistics providers, such as 
Deliv; retailers, such as Amazon; and pure tech 
players, such as UBERRush 

• Inefficient delivery routes caused by urban 
congestion. The United Nations stated that 65% 
of all humans will live in cities by 2050. This rising 
urbanization coupled with unprecedented growth 
in e-commerce is increasing the volume of urban 
freight deliveries and consequently putting a 
strain on cities grappling with congestion 
problems.  

 
These inefficiencies make last-mile delivery as the 
costliest step in the supply chain, accounting for 28–
53% of the total shipment costs.  
 
With the latest technological advancement, the use of 
drones has emerged as an innovative and viable 
business solution for last-mile distribution. Compared 
to traditional last-mile distribution with a truck, a drone 
has competitive advantages such as lower cost 
structure, reduced delivery time, farther reach in poor 
infrastructure areas and less CO2 emission.  
 

Is your last-mile delivery ready for drone? 



This thesis evaluates the optimal design and 
operational performance of different drone delivery 
models to help the industry understand potential use 
cases of drones in last-mile delivery systems 
 
Methodology 
 
There are various operating models for a drone-
based last-mile delivery system from pure drone 
delivery model to unsynchronized/synchronized 
truck-drone delivery system. This thesis focuses on 
and quantitatively models four main drone delivery 
system as shown in Figure 1: 
1. Pure drone delivery: customers are served by 

drones (no trucks) 
2. Drone-inner/Truck-outer: drones to serve 

customers closer from the depot and trucks to 
serve customers farther from the depot 

3. Truck-inner/Drone-outer: trucks to serve 
customers closer from the depot and drones to 
serve customers farther from the depot 

4. Shared Truck-Drone: trucks or drones can serve 
any customers, depending on the optimality of 
objective function (e.g. minimizing tour time) 

 
An efficient drone delivery system has to address the 
classic vehicle routing problem (VRP): "What is the 
optimal set of routes for a fleet of drones to serve a 
given set of customers?". We developed a Memetic 
Algorithm, an extension of a Genetic Algorithm, to 
optimize delivery routes of truck and drones in all the 
four delivery models.  
 
A Memetic Algorithm is a meta-heuristic approach 
that introduces local search to a Genetic Algorithm. 
We selected a Memetic Algorithm to solve the drone 
delivery system problem because it is based on a 
Genetic Algorithm that is quite mature and widely 

used in researches for the Vehicle Routing Problem 
(VRP).  
 
Genetic Algorithm is a numerical optimization 
technique, based on the concept of Darwin’s theory 
of evolution: survival of the fittest individuals. Genetic 
Algorithm will perform natural selection where the 
fittest individuals (the most optimum solutions) are 
selected to produce offspring for the next generation. 
The drawback of a Genetic Algorithm is that it does 
not consider a step of self-improvement within the 
cycle (only based on randomized variation). Hence,  
a Memetic Algorithm introduces a stage of individual 
learning (rather than population), so a new better 
solution that has higher fitness can be selected, 
independent from the rest of the population.   
 
In our drone delivery model, we also consider several 
specific constraints of the drones, such as the 
operational limit of the drones (e.g. distance covered, 
endurance, payload) and unique technical 
characteristics of drone delivery (e.g. one package 
per time, no pick-up). 
 
Developed solution 
 
In order to conduct an evaluation of the drone delivery 
system, we built a complete solution deployed on 
Google Cloud, along with a complete setup of the SQL 
database to record the results of the experiments. The 
solution was built using Python programming 
language and the database was deployed with 
PostgresSQL.  
 
The interface of the solution is shown in Figure 2. In 
this solution, a user can change various variables 
such as Memetic Algorithm parameters (e.g., the 
number of generations, population, etc.), Drone 
Delivery operating parameters (e.g., the number of 

Figure 1 – Four different drone delivery models 



drones/trucks, speed or flight limit of drone, etc.) as 
well as the four different drone delivery systems 
outlined above. 
 
Results 
 
Our research shows that our Memetic Algorithm is 
quite robust in handling “eil51” Travelling Salesman 
Problem (TSP) that is commonly used in routing 
research. eil51 is a 51-city TSP problem with a single 
depot and 50 customers located in Euclidean space 
with optimum routing solution of 426. We tested our 
algorithm against this problem, yielding only 3.7% 
gap from the optimal solution. 
 
We then use this algorithm to solve four different 
drone delivery models on six problem instances. 
Each of these problems has 100 customers with 
different locations. The customer locations are from 
a real case study from a major package delivery 
company in the state of Massachusetts, USA. 
Baseline operating parameters that we use are 2 
drones (flight speed of 45 km/h and flight limit of 30 
mins) and 2 trucks (truck speed of 30 km/h). 
 
The result of the analysis is shown in Figure 3. The 
bar chart at the top is the last return time to a depot 
(minimum tour time) in minutes. There are six bar-
charts representing six problem instances for each 

of the four drone delivery models. Correspondingly, 
the line chart at the bottom shows the number of 
customers not served for that particular problem 
instance and drone delivery model.  
 
We can derive insights as follow from our analysis: 
• Model 1 (pure drone delivery) and model 3 (truck-

inner/drone-outer) did not manage to serve all the 
100 customers in each of the 6 problem instances 
due to drone flight limit. These models performed 
relatively acceptable in problem instance 4, 
where we have most customers located near the 
depot 

• Model 2 (drone-inner/truck-outer) and model 4 
(shared truck-drone) managed to serve all the 
customers in all the six problem instances, 
indicating that these models are more adaptable 
for different scenarios. 

• Model 4 (shared truck-drone) was expected to 
yield the most optimum result because there is no 
restriction as to which customer is served by 
truck/drone. The result of model 4 performed 
especially well in problem instance 3 and 4 where 
model 4 only needed 1/3 to 1/5 of time required 
by model 2 to serve all customers 

 

Figure 2 – Interface of developed solution: Drone delivery evaluation in last-mile delivery 



Sensitivity analyses for various operating 
parameters also yield several interesting insights, 
particularly on Model 2 (drone-inner/truck-outer) and 
Model 4 (shared truck-drone). 
 
Increasing drone speed and flight time limit has an 
adverse impact on Model 2 (drone-inner/truck-outer) 
because more customers at farther distances are 
assigned to drones instead of trucks. Therefore, we 
can conclude that trucks are more suitable to serve 
farther customers since drones are limited to deliver 
one package per trip. We also found that in Model 2 
(drone-inner/truck-outer), increasing number of 
drones has positive impacts because increasing 
drones from 1 to 2 reduces minimum tour time by 
50% and further increasing number of drones to 3 
reduces time by 29%.  
 
In Model 4 (shared truck-drone), increasing drone 
speed from 45 km/h to 60 km/h reduces minimum 
tour time by 4%. We also doubled the drone flight 
limit from 30 minutes to 60 minutes, however there is 
no impact because the bottleneck is with the trucks. 
 
Finally, we also conducted an analysis to understand 
the impact of introducing drones on a pure truck 
delivery system. We found that adding a drone in the 
pure truck delivery system can reduce minimum tour 
time by up to 10%. 
 
For future research areas, in order to make a more 
holistic review of the drone delivery system, we can 
take into accounts vehicle capacity. Our research 
assumed uncapacitated truck and single package 
capacity for the drone. In real life, the truck has 

space limitation in the number of packages it carries. 
A drone even has more limitation in the packages it 
can carry (e.g. limited by weight, dimension or 
package type). Another extension of this research is 
to consider different customers’ delivery windows. 
This constraint should be incorporated into the model, 
and the algorithm has to be able to optimally conduct 
vehicle assignment to deliver all packages within a 
specific customers delivery window. 

Figure 3 – Drone delivery model performance 


