
 
KEY INSIGHTS  
 
1. Aerial drones can improve last-mile 

delivery performance over truck alone. 
 

2. A genetic algorithm can be used to find 
and optimize last-mile routing solutions. 

 
3. The efficient launch and retrieval of 

drones may determine success of drone 
deployment in dense urban centers. 
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Summary: This research contributes to furthering the understanding of the application of autonomous flying 
drones for improving parcel delivery performance within the constraint of the current state of the technology. An 
optimization algorithm is created to obtain the best route of truck and drones for delivery of packages. The 
analysis completed and lessons learned can be broadly applied to a wide range of truck-and-drone routing 
problems. The software developed from this research has additional value as blueprint for a future product that 
can provide tactical scheduling and decision optimization functionality to drone embedded systems in the field. 
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Introduction 
 
The last-mile delivery problem from a DC to a group 
of customers can be accomplished in three ways 
with respect to the usage of drones: 
 
1. The deliveries can continue in the traditional 

method with just trucks running from the DC to 
each end customer without the assistance of 
drones. 

2. The deliveries can be accomplished using only 
drones ferrying packages directly from DC to 
each customer. 

3. The deliveries can be accomplished with trucks 
that take packages from DC and then deliver 
them to customers by a combination of truck 
deliveries and/or deploying drones from the 
truck.  

 
Method (2) is difficult for generalized deployments 
due to the number of deliveries that will require 
going back-and-forth from full length of the distance 
of DC to each customer, as well as the inability for 
drones to carry large packages. It can be a 
supplementary solution for a niche percentage of 
deliverables consisting of high value parcels that are 
light and going to places inefficient to route the 
truck. Method (3) is a widely accepted method. For 
method (3), important considerations have to be 
made on where and when to deploy the drone, as 
well as how many drones should be available for 
each truck route. If these considerations are not 
made well then the solution of (3) may be 

suboptimal to (1); squandering the drone use-case 
and underselling the potentials of the technology. 
 
This research explores the optimization of a specific 
Mixed Integer Linear Programing (MILP) 
mathematical formulation for a method (3) truck-and-
drone paired delivery system. In this system, a truck 
leaves the DC carrying multiple aerial drones. At any 
given delivery point, the truck can choose to launch 
one or multiple drones it is carrying to make single 
delivery trips to selected customers and thereby 
saving the truck from making that trip. The drones 
can then return to the truck as it moves along its 
more optimized route and the trip ends with the truck 
returning to the DC with the all drones it left with. 
When optimized for total costs of the delivery given 
real world cost and performance assumptions, the 
investment in drones can be shown to have 
significant savings over traditional usage of trucks 
alone in some conditions. The brute force 
optimization for a problem as complex as the one 
formulated in this MILP is highly cumbersome and it 
takes long computation times to obtain an optimal 
solution with more than 10 customers. In a real world 
scenario, where a truck may deliver to as many as 
100 customers on its route, it is difficult to assert that 
a method that works well with just 10 customers can 
sustain that advantage without additional analysis. 
In order to justify the employment of this 
synchronized truck-and-drone delivery in practice, it 
is important to reduce the optimization time for real 
world scale problems to minutes from possibly days 
or weeks.  
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There are generally three paths to deal with the real-
world optimization complexity of problems like this. 
One path is focused on algorithms that reduce the 
complexity of a realistically-scaled problem to an 
extent that its exponential scaling can be tolerated. 
As the network becomes much larger, a different set 
of paths are necessary to achieve efficiency. This 
set of paths are termed “heuristics” where inexact 
solutions are yielded but the algorithm complexity is 
reduced from exponential to polynomial. Under the 
general heuristics umbrella, one path is to focus on 
short-cut methods specific to routing; another path 
focuses on the transformation of the problem space 
to fit a discipline-agnostic “metaheuristic” method. 
Metaheuristic methods typically have a record of 
success across many disciplines. 
 
This research uses metaheuristics to optimize a very 
specific type of the truck-and-drone delivery problem 
for large scale networks. 
 
Approach 
 
The classic TSP, its derivative VRP, and the 
innovative truck-and-drone problems are universally 
accepted as “NP hard” as of the writing of this thesis. 
The effort required to solve these problems scales 
exponentially rather than as a polynomial with 
respect to the number of nodes in the problem space. 
An algorithm towards an exact solution to this type of 
problem can be computationally inefficient for a large 
network. Every unique sequence of order of delivery 
is a unique solution. When the problem is explored 
with drones, there is a large range of combinations of 
which customers are served by drones and which 
customers are served by trucks for each sequence of 
delivery order. The problem this research explores 
introduces additional complexities, including how 
many drones a truck should carry, where to launch a 
drone, how many drones to launch, and where to pick 
up used drones.  
 
The complexity of the problem and the real-world 
applications of its solution made it a good fit for 
heuristics problem solving. In assessing strategic 
impacts of brand new techniques, the exact optimal 
solution should not be much more informative than 
one a few percentage points away. The magnitude of 
complexities of the problem makes it more ideal to 
leverage higher-order metaheuristic artificial 
intelligence techniques rather than simple rule-based 
heuristics. This research uses metaheuristics in an 
algorithm to produce a “good enough” solution to the 
truck-and-drone problem. The algorithm orchestrates 
pseudo-random generations of many feasible 
solutions that are selected into a solution set. The 
quality of the solution set becomes better and better 
over time until continuous improvement becomes so 
difficult that there is confidence that a good solution 
has been reached. 
 

Algorithm 
 
The base framework of the algorithm is the genetic 
algorithm (GA). The principles of GAs adhere closely 
to their biological roots.  Parents pass genetic 
information to their children in form of information 
captured in chromosomes. At each generation, the 
parental traits that make offspring most suited to 
survive are pass on. Those offspring stuck with less 
desirable traits fail to reproduce. Generation after 
generation, the genetic material gets stronger without 
the benefit of specific guidance. 
 
At the beginning of each generation, the solution 
generation process builds up a large population of 
solutions using either two strong parental solutions 
from the previous generation, mutating one parental 
solution from the previous generation, or using 
pseudo-random methods with no parental information. 
The initial generation of solutions use only pseudo-
random methods. As generations progress, more 
solutions in the base solution set are dependent on 
parental solution guidance. At the end of each 
generation, the algorithm updates machine learning 
paths data and strengthen the pseudo-random path 
selection that is core to the solution generation 
process and then prunes the solution set to retain the 
most fit parent solutions for the next generation. The 
process continues to the next generation until the exit 
conditions are met. The exit conditions are that a 
minimum amount of execution time has been exerted 
in the effort and also that a set amount of generations 
or processing time has passed without a meaningful 
improvement to the solution quality.  
 
All algorithms were developed using the Spyder 3.3.3 
Scientific Python Development Environment on 
Python 3.7. and implemented on a PC desktop with 
Intel Core i7-7700 3.60 GHz processor and 16 GB of 
RAM running on Windows 10 operating system. 
Solutions were captured in excel and explored with 
desktop version of Tableau 2018.3. 
 
 

 
Figure 1: A poor random solution before optimization 
 
 
 



 
Figure 2: An optimized solution returned by algorithm 

 
 
Results 
 
This thesis took a metaheuristic approach that 
played the game of generating pseudorandom 
solutions round after round that fit within the 
feasibility constraints of the real world application of 
the problem. At the end of each round, the algorithm 
learns which decisions tend to be associated with 
high quality solutions and bias the next generation of 
solutions towards generating better solutions. This is 
not unlike what powers the concept of survival of the 
fittest in genetic engineering. 
 
A truck capable of efficiently deploying and 
retrieving autonomous drones to make delivery will 
generally be able to see a savings in the form of 
reduced time cost to the delivery truck dampened by 
some costs to acquire and operate the drones. 
While having more drones available, having drones 
that can travel to targets with Euclidean distance, 
having faster drones, and having drones with more 
battery range can all have positive effects on the 
cost savings of the system, the effects are not equal. 
 
The primary improvement opportunity for the studied 
delivery system is to have drones that are capable 
of traveling in a straight-line Euclidean distance 
towards their target rather than following the road 
systems. In rural areas, this is more likely. If delivery 
is made in a very dense metropolitan area, it is 
unlikely to be able to circumnavigate buildings in a 
direct line. However, drone delivery technology 
should be able to take advantage of more freedom 
of movement from ground traffic and set road 
infrastructure to more efficiently get to its target than 
trucks. Investment should be made for autonomous 
drones to handle building obstruction and in-air 
congestion so as to able to take advantage of the 
Euclidean distance savings. For rural maps tested, 
the baseline optimal cost estimate of a single-truck 
solution is improved by an average of 7% to 9% 
when 2 drones are carried and these drones travel 
by actual road distances between customer points. 
The improvement is at an average of 9% to 12% 
when the drones are capable of flying directly and 

the distance becomes Euclidian. This is roughly what 
can be achieved by adding 2 extra drones without 
incurring the added asset costs and planning 
complexity. 
 
The next largest area of opportunity is increasing the 
average speed of the drone. Improving drone 
technology to specialize towards high speed delivery 
of very light packages tends to greatly improve the 
cost savings of using drones. This savings comes 
from being able to reliably send drones off to make 
delivery and come back quickly enough to avoid 
incurring wait penalty from the truck at pickup points. 
There is an interesting tradeoff that takes place. 
Sending fast drones to faraway places saves the 
truck the cost of making that trip, but that drone will 
be unavailable for use until much later when the truck 
makes its way to a pickup point. However, if drones 
are sent to make short delivery trips, the savings 
attained from those drone trips may not be worth the 
two minutes of overhead cost the truck needs to 
launch and then retrieve the drone. 
 
For map instances that were tested in the 
experiments, adding drones to a truck has 
diminishing returns after the second drone. It would 
appear that a truck cannot do much better with 4 
drones in its carrying capacity than it can with 2 or 3. 
Going with higher than 4 drones may be not worth 
the cost of acquiring additional drones. For the map 
instances that were tested, a 30-minute range 
appears to be sufficient to gain most of the savings 
opportunities. Adding more battery capacity and 
drone range does not predictably increase cost 
efficiency for the system under study. 
 
Finally, while both rural maps of low density of 
demand and urban maps of high density of demand 
are studied, the conclusions are mostly attained from 
test results with rural instances. For the parameters 
that were used, urban instance maps where the 
distances between any two given customers are only 
around 3 kms indicates little opportunity for drone 
use. This is because the assumptions are that the 
overhead for deploying and picking up a drone is 2 
minutes of waiting time incurred by the truck. A truck 
could have traveled 1.3 kms at 40 km/h. Much of the 
efficiency advantage the drone can bring over such 
short distances of travel between customer nodes 
would be negated by the truck overhead penalty. If 
drone launch and retrieval technology were to be 
improved to a point where it no longer imposed 
overhead cost to the truck, then drone technology 
should be able to bring dramatic savings 
opportunities to the dense urban customers as well. 



 

 
Conclusions 
 
There are many challenges and complications 
associated with finding the optimal deployment of a 
multimodal truck and drone delivery system for last 
mile delivery. While computing power limits how 
large a problem can be solved exactly, numerous 
methods can be used to quickly and efficiently arrive 
at a good solution that is for all practical purposes 
almost as good as the exact optimal solution.  
After many added features and algorithm tuning, this 
generalized method was able to produce high 
quality solutions within a tolerable margin. This 
algorithm was able to produce these quality 
solutions with great consistency and within a short 
period of computation time across a number of 
maps of real demand data from MIT MLL. 
 
Future work expanding on the approach of this 
research should concentrate on either applying the 
algorithm created in this thesis to more realistic and 
robust problem constructions, or finding new 
approaches to optimize the problem as constructed. 
No matter which avenue of improvement future 
researchers pursue, they can use the algorithm 
framework developed in this thesis to quickly test 
new variables and parameters. The algorithm itself 
is also very adaptable, able to incorporate other 
methodologies into the overall Genetic Algorithm 
structure. This research made it a little easier for 
drone technologists and last mile strategists to 
assess their risks and opportunities and make the 
right decisions on where and how they can improve 
or deploy truck-and-drone systems to enhance the 
lives of their customers. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3: A comparison of sensitivity tests 


