Motivation / Background

Food Traceability is demanded by customers and industry, and mandated by Governments; but it is plagued by challenges:

- Food Supply Chain Complexity and Food Wastage
- Unharmonized global regulations
- Foodborne illnesses, Food Fraud, Food Recalls
- High cost of whole-chain traceability
- Shifting consumer preferences
- Non-Collaborative Trustless Inter-firm relationships

Whole Chain Food Traceability Using Blockchain and IoT

Initial Results

- Suppliers
- Farmer
- Producer
- Consumer
- Distributor
- Retailer
- Customer

Data Capture and Tracking

Blockchain Network

Physical Flow

Digital Flow

Expected Contribution

- Research of current food traceability implementations using Collective Case Study & Content Analysis methodologies.
- Analysis of key learnings, practical insights, business processes, failure points, and critical success factors of food traceability.
- Impact of Blockchain + IoT convergence on addressing the challenges of food traceability.

Key Question / Hypothesis

1. How do the emerging technologies of Blockchain and IoT solve for the main challenges in food traceability?
2. What learnings and practical insights from the existing Blockchain + IoT use cases, startups and applications contribute to making food traceability a reality?

Research Scope

<table>
<thead>
<tr>
<th>TE Food</th>
<th>Provenance</th>
<th>Arc-Net.io</th>
<th>Ambrosus</th>
</tr>
</thead>
<tbody>
<tr>
<td>FoodLogiQ</td>
<td>SKUChain</td>
<td>Ripe.io</td>
<td>Devery</td>
</tr>
<tr>
<td>Circulator</td>
<td>FishCoin</td>
<td>Bext360</td>
<td>VeChain</td>
</tr>
<tr>
<td>Clear Labs</td>
<td>PavoCoin</td>
<td>AgriDigital</td>
<td>ZetoChain</td>
</tr>
<tr>
<td>Filament</td>
<td>FarmShare</td>
<td>HarvestMark</td>
<td>OriginTrail</td>
</tr>
<tr>
<td>OriginTrail</td>
<td>TaniBox</td>
<td>Lokaal Market</td>
<td></td>
</tr>
</tbody>
</table>