Effects and Mitigation of Natural Hazards in Retail Networks

Student: Jorge García Castillo – SCMb

Advisor: Dr. Jarrod Goentzel

logyca

Motivation

Motivation

If I give you \$100,000 to invest in resilience,

What do you do?

Context

Available data:

- Daily sales and inventory of a major retailer in Colombia (> 500 POS)
- 20 years of historical data of natural emergencies in Colombia

Objectives:

- Understand the effects of natural hazards in retail sales
- Provide a framework to invest against the effects in retail networks

Methodology to Invest in Resilience

- 1. What is the **frequency**, **impact** and **location** of natural hazards?
- 2. What are the **effects** in sales for different products?
- 3. What are the possible **investments** for resilience?
- 4. What is the **risk profile** of the organization?
- 5. What is the **future cost** from the investments

1. Natural Hazards

Frequency of Natural Hazards

- 166 natural emergencies per year
- 75 natural emergencies per year affecting > 100 people
- Power Law Distribution

MIT Supply Chain

Location of Natural Hazards

- Not uniformly distributed
- Average of 15 natural emergencies per region
- Range between 5 and 43 emergencies

Seasonality of Natural Hazards

2. Impact on sales

Retail Network

Impact on Sales

Products analyzed:

- Beer
- Family Pasta
- Coffee
- Personal Care

Results:

- People drink 21% less beer
- People eat similar pasta
- People drink 120% more coffee
- People buy 18% more personal care

 $\Delta sales = \frac{sales \ after \ emergency \ - \ regular \ sales}{stdv \ of \ regular \ sales}$

3. Resilience Options

Two ways to Invest in Resilience

Additional Buffer Stock

- Purchased at the beginning of the planning period
- Allocated for each region
- Consumed only when emergencies occur

Real Options Contract

- Optional fixed capacity purchased to the supplier
- Executed only after a declared emergency and non-refundable if there is no emergency
- Price based on discount from product cost

Resilience Investment Model (RIM)

4. Risk Profiles

They are **preferences** of the decision maker over the possible future costs of an investment

They **shape** the distribution of future outcomes

Profiles used (You, Wassick & Grossman (2008):

- **Risk Neutral:** No preference for large deviations
- Variance Minimization: Minimize the dispersion of future costs
- Variability Index: Minimize scenarios with cost over average
- Probabilistic Financial Risk: Minimize any scenario above a cost target
- Downside Risk: Minimize deviations over a cost target

Risk Profiles (Example)

5. Future Costs

Selected Investments

We want the investment with sampled cost closer to the optimal cost This investment will maximize the Value of the Stochastic Solution VSS = Cost of Stoch. Solution – Cost of Mean Value Solution

RIM Results

PROFILE	REGIONS INVESTED	% ACQUIRED STOCK	% OPTIONS CONRACT
NEUTRAL	14	10.3%	89.7%
VARIANCE REDUCTION	13	12.4%	87.6%
VARIABILITY INDEX	11	3.4%	96.4%
PROB. FINANCIAL RISK	17	0.6%	99.2%
DOWNSIDE RISK	14	11.9%	87.8%

Future Costs – Risk Neutral

Future Costs – Variance Minimization

Distribution of Investments

MIT Supply Chain

Key Insights

- 1. There is a variety of effects of natural hazards per product category
- 2. Risk neutral profile produce worst-case scenarios 15% worse than risk averse profiles with only 2% lower cost
- 3. The budget available needs to be high enough to mitigate the variability generated by natural hazards
- 4. Real options contracts provide a risk sharing strategy between manufacturers and retailers.

Thank you

MANAGEMENT

minimize $\mathbb{E}(Q(\omega, y)) + \mathcal{R}(Q(\omega, y))$ $\sum_{r \in \mathcal{R}} (\theta * c * z_r + c * v_r) \le L$ $z_r - \theta \sum_{k=1}^{\infty} (k * \mu_r * y_{r_k}) = 0, \forall r \in \mathbb{R}$ $b_{r(i)it}^{\omega} + x_{iit}^{\omega} - x_{i'it}^{\omega} = 0, \forall t \in [0, T], \forall i \in I_d, \forall j \in I_p, \forall j' \in I_s, \forall \omega \in \Omega$ $\delta_{it}^{\omega} + \delta_{it-1}^{\omega} + x_{ijt}^{\omega} - x_{i'it}^{\omega} = 0, \forall t \in [0,T], \forall i \in I_p, \forall j \in I_d, \forall j' \in I_c, \forall \omega \in \Omega$ $x_{iit}^{\omega} + u_{it}^{\omega} \ge d_{it}^{\omega}, \forall t \in \forall t \in [0, T], \forall i \in I_p, \forall j \in I_c, \forall \omega \in \Omega$ $\xi_{r(i)it}^{\omega} + b_{r(i)it}^{\omega} + x_{iit}^{\omega} + u_{it}^{\omega} + u_{it}^{\prime\omega} = (1 + \gamma^{\omega}) * d_{it}^{\omega}, \forall t \in \Phi_i^{\omega}, \forall i \in I_p, \forall j \in I_c, \forall \omega \in \Omega$ $x_{iit}^{\omega} + x_{i'it}^{\omega} \le m_i, \forall t \in [0, T], \forall i \in I_d, \forall j \in I_p, \forall i' \in I_s, \forall \omega \in \Omega$ $\delta_{it}^{\omega} \leq m_i, \forall t \in [0, T], \forall i \in I_p, \forall \omega \in \Omega$ $\sum_{r(i)it} \xi^{\omega}_{r(i)it} \leq v_r, \forall r \in R, \forall i \in I_p, \forall \omega \in \Omega$ $b_{r(i)it}^{\omega} \leq 0, \forall t \notin \Phi_i^{\omega}, \forall i \in I_p, \forall \omega \in \Omega$ $b_{r(i)it}^{\omega} \leq z_r, \forall t \in \Phi_i^{\omega}, \forall i \in I_p, \forall \omega \in \Omega$ $x_{iit}^{\omega} \ge 0, \forall i, j \in I, \forall t \in [0, T], \forall \omega \in \Omega$ $u_{it}^{\omega}, u_{it}^{\prime \omega}, \delta_{it}^{\omega} \geq 0, \forall t \in [0, T], \forall i \in I_n, \forall \omega \in \Omega$

