Last-Mile Optimization with Truck and Drones

Advisor
Dr. Mohammad Moshref-Javadi
Postdoctoral Associate, Megacity Logistics Lab

Advisor
Dr. Matthias Winkenbach
Director, Megacity Logistics Lab

By Justin J. Yoon
Agenda

01 Introduction
02 Problem Formulation
03 Methodology
04 Results & Discussion
05 Conclusion & Future Research
Introduction

Motivating the Research

• $82bn global parcel delivery market (McKinsey, 2016).
• Projected to double in next decade.
• Last mile ~50% of total parcel delivery costs.

Advantages and Limitations

+ Bypass congested roads.
+ Faster than trucks.
+ Significant cost reductions.
- Limited capacity (1 box @ 5 lbs).
- Limited range (10 mi @ 50 mph).
- Dependent on GPS Accuracy.

<table>
<thead>
<tr>
<th>speed</th>
<th>weight</th>
<th>capacity</th>
<th>range</th>
</tr>
</thead>
<tbody>
<tr>
<td>drone</td>
<td>high</td>
<td>light</td>
<td>one</td>
</tr>
<tr>
<td>truck</td>
<td>low</td>
<td>heavy</td>
<td>many</td>
</tr>
</tbody>
</table>

Agatz, 2015
Introduction

Companies
Amazon
Google
DHL
Dominoes
UPS
Agenda

01 Introduction
02 Problem Formulation
03 Methodology
04 Results & Discussion
05 Conclusion & Future Research
Problem Formulation

Problem
• Traveling Salesman Problem

Target Demographic
• Dense Urban Population

Objective
• Minimize Total Cost

Tools
• Python Programming
• Gurobi Optimizer
Agenda

01 Introduction
02 Problem Formulation
03 Methodology
04 Results & Discussion
05 Conclusion & Future Research
Methodology

Key Assumptions

- Manhattan Distance
- One Truck, Multiple Drones
- Drones Serve One Customer per Dispatch
Methodology

Model Notation

- **Indexes**
- **Sets**
- **Parameters**
- **Variables**

<table>
<thead>
<tr>
<th>Indexes</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>h,i,j,k,l,m,o:</td>
<td>Represents Node of Network, Total $c + 1$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n:</td>
<td>Represents Deployed Drones</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sets</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N:</td>
<td>${0,1,...,c+1}$: Set of all nodes in problem</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N_o:</td>
<td>${0,1,...,c}$: Set of all nodes that can be departed from</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N_{t}:</td>
<td>${1,2,...,c+1}$: Set of all nodes that can be arrived to</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C:</td>
<td>${1,2,...,c}$: Set of all customers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D:</td>
<td>${1,...,n}$: Set of available drones for deployment</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameters</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>min_D:</td>
<td>Drone Endurance Time (min)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mph_D:</td>
<td>Drone Speed (mph)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mph_T:</td>
<td>Truck Speed (mph)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_L:</td>
<td>Drone Launch Setup Time (min)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_R:</td>
<td>Drone Retrieval Time (min)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A:</td>
<td>Customer Grid Area (mi^2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_F:</td>
<td>Variable Operating Cost for Truck Fuel (USD/min)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_L:</td>
<td>Variable Operating Cost for Truck Labor (USD/min)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_E:</td>
<td>Variable Operating Cost for Drone Electricity (USD/min)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F_D:</td>
<td>Fixed Cost of Deploying Unique Drone per Tour (USD)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M:</td>
<td>Linking Constraint</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variables</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>τ:</td>
<td>Travel Time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t:</td>
<td>Arrival Time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x:</td>
<td>Binary, Customer Served by Truck</td>
<td></td>
<td></td>
</tr>
<tr>
<td>y:</td>
<td>Binary, Customer Served by Drone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z:</td>
<td>Binary, Drone Deployed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p:</td>
<td>Binary, Tour Order Sequencing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>u:</td>
<td>Binary, Sub-tour Elimination</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Methodology

Decision Variables
- Customer served by truck, \(x_{ij} \)
- Customer served by drone, \(y_{ijk} \)
- Number of drones deployed, \(z_n \)

Objective Function
- \(\text{MinCost} = t_{c+1}(C_F + C_L) + \sum_{i \in N_0} \sum_{j \in N} \sum_{k \in N_+} \sum_{n \in D} y_{ijkn} (\tau'_{ij} + \tau'_{jk}) * C_E + \sum_{n \in D} z_n * F_D \)

Key Constraints
- Subtour Elimination
- Each node visited only one time
- Truck and drones coordinate at launch and rendezvous
- Drone flight endurance limit
- Non-negativity constraint
Methodology

Base Case
- Drone Speed
- Drone Endurance
- Number of Drones Available
- Truck Speed
- Customer Grid

Sensitivity Analysis
- Speed/Endurance
- Available Drones
- Truck Speed
- Grid Area

<table>
<thead>
<tr>
<th>Parameter of Interest</th>
<th>available drones D_n</th>
<th>endurance m_D</th>
<th>drone speed m_D</th>
<th>truck speed m_T</th>
<th>grid area A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed/Endurance</td>
<td>2</td>
<td>20</td>
<td>25</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>30</td>
<td>35</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>Available Drones</td>
<td>1</td>
<td>30</td>
<td>35</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>30</td>
<td>35</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>30</td>
<td>35</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>Truck Speed</td>
<td>2</td>
<td>30</td>
<td>35</td>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>Grid Area</td>
<td>2</td>
<td>30</td>
<td>35</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>225</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15</td>
<td>400</td>
</tr>
</tbody>
</table>
Agenda

01 Introduction
02 Problem Formulation
03 Methodology
04 Results & Discussion
05 Conclusion & Future Research
Results & Discussion

Drone Speed/Endurance

- Savings
Results & Discussion

Drone Speed/Endurance

- Savings
- Drone Usage
Results & Discussion

Number of Drones Available

• Savings
Results & Discussion

Number of Drones Available

- Savings
- Drone Usage
Results & Discussion

Truck Speed

- Savings
Results & Discussion

Truck Speed

- Savings
- Drone Usage
Results & Discussion

Customer Grid Area

• Savings
Results & Discussion

Customer Grid Area

• Savings
• Drone Usage
Agenda

01 Introduction
02 Problem Formulation
03 Methodology
04 Results & Discussion
05 Conclusion & Future Research
Conclusion & Future Research

Conclusion
 • Savings over TSP
 • Base 30%
 • Worst 5%
 • Best 55%
 • Considerable Savings

Future Research
 • Heuristics
 • Genetic Algorithm
 • Ant Colony Algorithm
 • Simulated Annealing
 • Multiple Packages per Drone
 • En Route Drone Launch/Rendezvous