Inventory Management in the Washington State Tree Fruit Industry

James Foreman
Advisor: Dr. Chris Caplice
Sponsoring Company: N/A
May 20, 2009
Washington State Fruit Growing Regions

Source: http://treefruit.yakima.wsu.edu/graphics
Agenda

1. Overview of the Tree Fruit Supply Chain

2. Problem #1: Too Much On-hand Inventory
 - The ‘Big Pile, Small Pile’ Problem
 - How costly is the problem?
 • 5-12% of Revenue

3. Problem #2: Too Little On-hand Inventory
 - The ‘Sourcing’ Problem
 - How costly is the problem?
 • 1% of Revenue
1. Tree Fruit Supply Chain

Growers → Storage and Packers → Distributors → Retailers → You

(Sales and Marketers)

Raw Material Storage → Finished Goods Storage

Grower

Packing Facility

Processing Facility

Retailer

You
1. Tree Fruit Supply Chain

(Sales and Marketers)

Growers → Storage and Packers → Distributors → Retailers → You

- Raw Material Storage
- Finished Goods Storage
- Packing Facility
- Processing Facility
- Grower
- Retailer
- You
2. The Big Pile, Small Pile Problem

1. Fruit is not sorted by SKU while in storage.
2. Retailers seek SKU uniformity, and prefer the ‘Big Pile.’
Multivariate Regression Results

<table>
<thead>
<tr>
<th></th>
<th>Apple Model</th>
<th>Pearson Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjusted R²</td>
<td>0.692</td>
<td>0.766</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Coefficient</th>
<th>Significance</th>
<th>Coefficient</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expected Price</td>
<td>$17.74</td>
<td>0.000</td>
<td>$21.05</td>
<td>0.000</td>
</tr>
<tr>
<td>Fruit Age</td>
<td>($0.04)</td>
<td>0.000</td>
<td>($0.01)</td>
<td>0.000</td>
</tr>
<tr>
<td>Shipment Size</td>
<td>($0.00)</td>
<td>0.000</td>
<td>($0.00)</td>
<td>0.000</td>
</tr>
<tr>
<td>Destination</td>
<td>($1.50)</td>
<td>0.000</td>
<td>($1.51)</td>
<td>0.000</td>
</tr>
<tr>
<td>Large Customer</td>
<td>($0.05)</td>
<td>0.005</td>
<td>$0.94</td>
<td>0.000</td>
</tr>
<tr>
<td>Medium Customer</td>
<td>$1.20</td>
<td>0.000</td>
<td>$1.20</td>
<td>0.000</td>
</tr>
<tr>
<td>Quarter 1</td>
<td>($0.80)</td>
<td>0.000</td>
<td>$0.10</td>
<td>0.032</td>
</tr>
<tr>
<td>Quarter 2</td>
<td>$0.83</td>
<td>0.000</td>
<td>($0.31)</td>
<td>0.000</td>
</tr>
<tr>
<td>Quarter 3</td>
<td>$2.64</td>
<td>0.000</td>
<td>$1.48</td>
<td>0.000</td>
</tr>
<tr>
<td>2006</td>
<td>$2.06</td>
<td>0.000</td>
<td>$2.63</td>
<td>0.000</td>
</tr>
<tr>
<td>2007</td>
<td>$2.68</td>
<td>0.000</td>
<td>$1.85</td>
<td>0.000</td>
</tr>
<tr>
<td>2008</td>
<td>$4.28</td>
<td>0.000</td>
<td>$2.01</td>
<td>0.000</td>
</tr>
<tr>
<td>Size Small</td>
<td>($5.05)</td>
<td>0.000</td>
<td>($5.85)</td>
<td>0.000</td>
</tr>
<tr>
<td>Size Large</td>
<td>$2.38</td>
<td>0.000</td>
<td>$2.17</td>
<td>0.000</td>
</tr>
<tr>
<td>Size XL</td>
<td>$2.51</td>
<td>0.000</td>
<td>$5.49</td>
<td>0.000</td>
</tr>
<tr>
<td>Size Specialty</td>
<td>$10.59</td>
<td>0.000</td>
<td>$12.09</td>
<td>0.000</td>
</tr>
<tr>
<td>Grade (20)</td>
<td>-10 to +17</td>
<td>0.000</td>
<td>-9 to +6</td>
<td>0.000</td>
</tr>
<tr>
<td>Variety (99)</td>
<td>-6 to +43</td>
<td>0.000</td>
<td>-8 to +30</td>
<td>0.000</td>
</tr>
</tbody>
</table>
2a. How Costly is the Problem?

Expected Revenue and Costs

\[y = -0.04x + 17.74 \]

- **Expected Sale Price**
- **Expected Cost of Repack**
- **Expected Cost of Rejection**
2a. How Costly is the Problem?

Industry Efficiency = \frac{\text{Adjusted Revenue}^* \times \text{Percentage of Boxes Sold}}{\text{Full Revenue}^* \times \text{Percentage of Boxes Sold}} = 88-95%
2b. It’s a Big Problem, So Now What?

Four Ways to Improve the Shrinkage Problem

1. Improve Visibility of Packing
 • Pre-sort Inventory
 • Reduce the number of Stock-keeping units (SKUs) available

2. Improve Visibility of Demand
 • Use point-of-sales (POS) data from retailer to improve forecasting
 • Establish vendor-managed inventory (VMI) relationship

3. Improve visibility of on-hand inventory to Buyers
 • Establish an e-Commerce platform

4. Shape Customer Demand through Pricing
 • Use Adjusted Revenue Curve
3. The Sourcing Problem

• In the event of a stock-out, Sales Managers have four possible decisions:

1. Move: Intra-shed Transfer
2. Buy: Inter-shed Purchase
3. Make: Emergency Production
4. Reject: Cancel Order
3a. Managing Stock-outs

- How often do Stock-outs occur?
- What choices do manager currently make?
3a. Managing Stock-outs

- How often do Stock-outs occur?
- What choices do manager currently make?

Average Stock-out Rate = 7.5%
1. Define Decision Variables
 - What SKU?
 - How many boxes?
 - From where should I source?
 - Where do I consolidate?
 - What mode should I use?

2. Define Objective Function
 - Cost of Intra-Shed Transfer = Transportation + Labor + Inventory Costs
 - Minimize $\sum a_{ijk}(b_{ijk}-c_i d_{ijk}) + e_j f_j + g_k h_k + I_{ijk} m_{ijk} + n_{ijk} o_{ijk}$

3. Define Constraints
 - Demand- How many boxes are needed?
 - Capacity- How many trucks/trailers are available?
 - Inventory- What is on-hand inventory at each warehouse?
Minimize: $\sum_{ijk} a_{ijk}(b_{ijk} - c_i d_{ijk}) + e_j f_j + g_k h_k + l_{ijk} m_{ijk} + n_{ijk} o_{ijk} + \varepsilon$

Subject to the following constraints:

- $\sum\sum_{ijk} a_{ijk} = q_i$
- $\sum_{ijk} a_{ijk} \leq r_{ij}$ for all j
- $\sum_{ijk} a_{ijk} - p_1 e_j \leq 0$ for all j
- $\sum_{ijk} a_{ijk} - p_2 y_{ik} \leq 0$ for all k
- $\sum g_k \leq 1$
- $\sum l_{ijk} \leq s_{ijk}$ for all j
- $\sum n_{ijk} \leq t_{ijk}$ for all j
- $\sum_{ijk} a_{ijk} - p_3 l_{ijk} - p_4 n_{ijk} \leq 0$ for all j

$b, c, f, h, m, o =$ continuous

$e, g =$ binary

$a, d, i, j, k, l, n, q, r, s, t =$ integer

Where: a through $z \geq 0$

Average cost per box = $0.75 - 1.00$
3c. It’s a Small Problem, So Now What?

![Graph showing percentages of all sales for different types of transactions.](image)

- **Intra-Shed Transfer**: Average Transfer Cost = 4-6% of Full Value
- **Inter-Shed Purchase**: Average Purchase Premium = 8% of Full Value

- **Emergency Production**
- **Cancel Order**
Sales Organization Interface

<table>
<thead>
<tr>
<th>Stock Keeping Unit (i.e. P.ORA.WFC.042.X2AL.CP.K.X.X.X.83916)</th>
<th>P.ORA.WFC.042.X2AL.CP.K.X.X.X.83916</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Boxes Ordered (i.e. 30 or 131 or 1070)</td>
<td>399</td>
</tr>
<tr>
<td>Maximum Pickup Locations Allowed (i.e. 1 or 2 or 3)</td>
<td>1</td>
</tr>
<tr>
<td>Diesel Price ($/gallon) (i.e. 2.14)</td>
<td>2.25</td>
</tr>
<tr>
<td>Total Cost of this Transfer (don’t enter anything here, cost will be entered for you)</td>
<td>$604.05</td>
</tr>
</tbody>
</table>

Instructions

Move **250** boxes from **Apple-House** to **Silverstone** using **1** trailer.

Move **29** boxes from **Greenlake** to **Silverstone** using **1** trailer.

Silverstone has **120** boxes of inventory on-hand.

The retailer pickup location is **Silverstone**.
Recommendations and Expected Results

1. Implement Policies to Reduce On-hand Inventory
 - Pre-sorting of Raw Material Inventory, SKU Reduction
 - Establish VMI relationship or get POS data from buyer
 - Establish e-Commerce model and shape demand via pricing

2. Use optimization model to find low-cost sourcing decision
 - No major firms in the industry use optimization software

The tree fruit industry in Washington State has revenues of over $2 billion. The current costs of shrinkage and stock-outs range from 6-13% of revenue, or $120 – 260 million.