Biofuel Supply Chain Challenges and Analysis

Sooduck Chung
Michael Farrey

Objectives of Research

- Identify current biofuel supply chain challenges.
 - Ethanol can only be sustainable if it is cost competitive

- Performed cost analysis of ethanol production using switchgrass
 - Performed deep dive into supply chain issues specific to switchgrass
Growth in Ethanol Fuel Production

- **Ethanol Production**

![U.S. Ethanol Production graph](source: U.S. DoE, Alternative Fuels & Advanced Vehicle Center)

Biofuel Supply Chain

- **Overview of Biofuel Supply Chain**
 - Feedstock Production → Feedstock Logistics → Biofuels Production → Biofuels Distribution → Biofuels Enduse
 - Choosing which feedstock to grow
 - Harvesting
 - Storage
 - Preprocessing
 - Delivery
 - Conversion of feedstock into biofuel
 - Delivery to the mixing stations
 - Blend with fossil fuels
 - Serving end customers
Biofuel SC Challenges

- **Feedstock Production Challenges**
 - Cost reduction
 - Improvement of yield
 - Inexpensive cultivation techniques
 - Sustainability
 - Environmental implication
 - Net energy balance
 - Improvement of yield
 - New feedstock
 - Behavioral inertia of farmers
 - Cropland availability

- **Feedstock Logistics Challenges**
 - Stable Supply
 - Seasonality of harvest
 - Fluctuation of yield
 - Crop rotation
 - Design of network
 - Network of storage facilities
 - New delivery schemes
 - Preprocessing
 - Density-cost tradeoff
Biofuel SC Challenges

❖ Biofuel Production Challenges

- Conversion yield
- Co-products
- Benchmark

- Research enzymes and bacteria
- Biodegradable plastic from switchgrass
- Research thermal breakdown of materials
- High protein animal feed from corn
- Developing advanced catalysts
- Best practices of related industries

❖ Biofuel Distribution Challenges

- Geographical dislocation of supply and demand
- Delivery Capacity
Biofuel SC Challenges

- **Biofuel Enduse Challenges**
 - Meeting growing demand
 - Forecast of future demand
 - Assessment of impact of higher yield
 - Increasing blend
 - Chemical stability
 - Possible corrosion

Diversity of Feedstock

- **Ethanol Feedstock**
 - Virgin Grain: Corn, Wheat, Sorghum
 - Non-grain: Sugarcane, Sweet Potato, Switchgrass
 - Non-virgin (Recycled): Crop residue, Wood residue

Monosaccharide (Sugars) → Fermentation → Ethanol
Diversity of Feedstock

- Yield of biofuel from each feedstock

Ethanol Yield (L/ha)

Switchgrass Ethanol SC Challenges

- Switchgrass Production Issues
 - Dislocation of available cropland and cropland with high switchgrass yield

- Cropland available for switchgrass production
- Cropland with high switchgrass yield

Source: Brown, L. Plan B 2.0: Rescuing a Planet Under Stress and a Civilization in Trouble
Source for Switchgrass: Sokhansanj et al. (2009), Schmer et al. (2007)

Source: U.S. Department of Agriculture
Source: Sungrant Bioweb
Cost Analysis of Switchgrass Ethanol

- Cost analysis of harvesting and preprocessing options
 - Combinations of preprocessing and plant size
 - Preprocessing: Bailing (No preprocessing), Grinding, Pelletizing
 - Plant Size: Small (2000 Mg/day), Large (5000 Mg/day)

- Combined method: lowest transportation costs
 - Within 22 miles → grind switchgrass
 - Over 22 miles → pelletize switchgrass
Cost Analysis of Switchgrass Ethanol

<table>
<thead>
<tr>
<th>Supply Chain Stages</th>
<th>Details</th>
<th>Cost /Gallon</th>
<th>Cost /Gallon</th>
<th>Cost /Gallon</th>
<th>Cost /Gallon</th>
<th>Cost /Gallon</th>
<th>Cost /Gallon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planting & Cultivation</td>
<td>Current Technology</td>
<td>$0.413</td>
<td>$0.413</td>
<td>$0.413</td>
<td>$0.413</td>
<td>$0.413</td>
<td>$0.413</td>
</tr>
<tr>
<td>Harvest and Storage</td>
<td>Baling System</td>
<td>$0.236</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Loafling System</td>
<td>$0.174</td>
<td>$0.174</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grinding at Farm</td>
<td>$0.101</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grinding at Plant</td>
<td>$0.101</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pelletizing</td>
<td>$0.179</td>
<td>$0.179</td>
<td>$0.174</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transport to Refinery</td>
<td></td>
<td>$0.174</td>
<td>$0.108</td>
<td>$0.196</td>
<td>$0.131</td>
<td>$0.060</td>
<td>$0.103</td>
</tr>
<tr>
<td>Subtotal (from cropland to refinery)</td>
<td></td>
<td>$0.924</td>
<td>$0.796</td>
<td>$0.816</td>
<td>$0.946</td>
<td>$0.819</td>
<td>$0.817</td>
</tr>
</tbody>
</table>

$240,000 Annual Savings!!

Cost to Produce Cellulosic Ethanol $2.200
Cost to Transport Ethanol (1500 Miles, from South Dakota to SFC or NYC) $0.837
Subtotal (from cropland to refinery) $0.796 $0.818
Total Costs $/ Gal $3.833 $3.854

Delivered cost of switchgrass ethanol

- Avg. U.S. gasoline price = $2.864 (all states)
 - On average 23% of this price is taxes

→ Switchgrass ethanol is not yet economically sustainable!
Conclusion

❖ Most urgent supply chain issues
 ◼ Biofuel cost
 ◼ Still requires government subsidy
 ◼ Farmers’ resistance to new feedstocks
 ◼ Must be solved to improve cost competitiveness
 ◼ Delivery capacity
 ◼ Shortage of delivery capacity would increase landed cost of biofuel

❖ Tradeoff
 ◼ High yield cropland ↔ Land cost
 ◼ Feedstock density ↔ Low cost
 ◼ Size of refinery ↔ Shipping cost to refinery

Thank You!
Biofuel SC Challenges

Feedstock Production Challenges
- Cost reduction
 - Improvement of yield
- Sustainability
 - Assessment of environmental implication and net carbon reduction
 - Net energy balance
 - Improvements in farming techniques to increase yield
- Adoption of new feedstocks
 - Behavioral inertia of farmers
 - Cropland availability

Biofuel Production Challenges
- Increasing conversion yield
 - How to reduce ‘recalcitrance’ (In the case of cellulosic ethanol)
 - Improving understanding of thermal breakdown of materials
 - Improving knowledge of microbes and enzymes
- Development of valuable co-products
 - e.g. Biodegradable plastic from switchgrass
- Leverage best practices of related industries
 - Petroleum refining, chemical manufacturing, and bioengineering
Biofuel SC Challenges

Feedstock Logistics Challenges
- Stable feedstock supply
 - Seasonality of feedstock harvest & Quality degradation over time
 - Annual fluctuation of yield
 - Crop rotation
- Design of logistics network
 - Number of storage facilities & their network
 - Inventing new ways of delivery
- Preprocessing
 - Tradeoff of feedstock density vs. cost

Biofuel Distribution Challenges
- Geographical dislocation of supply and demand
 - Biofuels are currently refined near crop location, typically rural, then shipped to where the demand is
- Delivery Capacity
 - Not enough ethanol rail cars and hazmat drivers.
 - Not enough blending stations and transportation capacity
 - Possibility of using pipeline to deliver ethanol
Biofuel SC Challenges

- **Biofuel Enduse Challenges**
 - Matching supply and demand
 - Adoption of E85 compatible engines will require much more ethanol and capacity to transport ethanol compared to today
 - Increasing biofuel blend
 - Chemical stability during transportation
 - Possible corrosion