Modeling the Tradeoff between Inventory and Capacity to Optimize Return on Assets in Production Scheduling

Authors: Cindy Wu & Jose A Gonzalez Duhart
Advisor: Dr. Bruce Arntzen

MIT SCM Research Fest
May 22-23, 2013
Introduction
Products We Are Dealing With

Fertilizer

Weed Killer
Problem Description

Find out:

• The optimal mix of production capacity and inventory
• At the highest Return on Operating Assets (ROOA)
• In its net present value (NPV)
Methodology

Production Process

Theory of Constraints

Linear Programming Model
Production Process

Pre-mix Formulation Storage Packaging

Theory of Constraints

1st Constraint
2nd Constraint
3rd Constraint
Linear Programming Model

Objective Function

• **Maximize NPV of Return on Operating Assets (ROOA)**

\[
ROOA = \frac{(Revenue_t - Cost_t) \times (1 - Tax)}{Asset\ Value_t}
\]

• **Maximize NPV of Operating Assets Value Add (OAVA)**

\[
OAVA = (Revenue_t - Cost_t) \times (1 - Tax) - Cost\ of\ Capital \times Asset\ Value_t
\]

• Revenue

• Cost
 • Manufacturing
 • Overtime
 • Outsourcing
 • Holding
 • Depreciation

• Asset Value
 • Equipment
 • Inventory
Linear Programming Model

Constraints

- Meet Demand
- Stage Dependence
- Capacity Limit
- Capacity Expansion

- O
- N
The Model’s Outputs

- Master Production Schedule
- Capacity Increase Options and Timing

<table>
<thead>
<tr>
<th></th>
<th>Y1_Jan</th>
<th>Y1_Feb</th>
<th>Y1_Mar</th>
<th>Y1_Apr</th>
<th>Y1_May</th>
<th>Y1_Jun</th>
<th>Y1_Jul</th>
<th>Y1_Aug</th>
<th>Y1_Sep</th>
<th>Y1_Oct</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prod (kL)</td>
<td>145</td>
<td>303</td>
<td>432</td>
<td>276</td>
<td>160</td>
<td>403</td>
<td>239</td>
<td>339</td>
<td>952</td>
<td>801</td>
</tr>
<tr>
<td>Prod (kL)</td>
<td>307</td>
<td>644</td>
<td>918</td>
<td>586</td>
<td>340</td>
<td>857</td>
<td>508</td>
<td>720</td>
<td>2023</td>
<td>1703</td>
</tr>
</tbody>
</table>

Production	Stage (PCK) prod (1) (kL)	145	303	432	276	160	403	239	339	952	801
	Stage (PCK) prod (2) (kL)	307	644	918	586	340	857	508	1643	1673	1824
	Inv (FG) (1) (kL)	-	-	-	-	-	-	-	-	-	-
	Inv (FG) (2) (kL)	-	-	-	-	-	-	-	924	574	695
	Stage (PM&F) prod (1) (kL)	145	303	432	276	160	403	239	339	952	801
	Inv (int) (1) (kL)	-	-	-	-	-	-	-	-	-	-
	Stage (PM&F) prod (2) (kL)	307	644	918	586	340	857	615	1786	1173	1324
	Inv (int) (2) (kL)	-	-	-	-	-	-	107	250	250	250
The Model’s Outputs

- Master Production Schedule
- Capacity Increase Options and Timing

<table>
<thead>
<tr>
<th>Pre-Mix & Formulation</th>
<th>Y1_Jan</th>
<th>Y1_Feb</th>
<th>Y1_Mar</th>
<th>Y1_Apr</th>
<th>Y1_May</th>
<th>Y1_Jun</th>
<th>Y1_Jul</th>
<th>Y1_Aug</th>
<th>Y1_Sep</th>
<th>Y1_Oct</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binary (PM&F')</td>
<td>1</td>
</tr>
<tr>
<td>Binary (PM&F'')</td>
<td>0</td>
</tr>
<tr>
<td>Binary (PM&F''')</td>
<td>0</td>
</tr>
</tbody>
</table>
Validating the Model

- Inventory
 - Expensive vs. Cheap
 - 4 scenarios

“instead of prebuilding the least expensive products, we should prebuild the ones with the Lowest ratio of \(\frac{\text{value}}{\text{processing time}} \) “

Bradley and Arntzen (1999)
Validating the Model

- **Inventory**
 - Expensive vs. Cheap
 - 4 scenarios
 - Baseline
 - PM&F upgrade
 - PCK upgrade
 - Full upgrade
Model Demonstration
Findings
Research Findings

About Increasing Capacity
- Acquiring New Assets
- Overtime
- Outsourcing

About Asset Utilization
Increasing Capacity

Options:
- Acquiring new assets
- Overtime (25% markup)
- Outsourcing (40% markup)

PM&F Capacity and Production Management in Year 5

- **Options:**
 - Increasing Capacity
 - Overtime (25% markup)
 - Outsourcing (40% markup)

Chart Details:
- **Axes:**
 - Y-axis: Thousands USD
 - X-axis: Months (Jan to Dec)

Legend:
- Demand (prod 1)
- P&MF (prod 1)
- OT (PM&F) (prod 1)
- Outsourced (prod 1)
- Demand (prod 2)
- P&MF (prod 2)
- OT (PM&F) (prod 2)
- Outsourced (prod 2)
Increasing Capacity

Options:
- Acquiring new assets
- Overtime (25% markup)
- Outsourcing (40% markup)

PCK Capacity and Production Management in Year 8

Options:
- PM&F
- PCK
- Intermediate 2
- FG2
- Demand
- Raw Materials
- Intermediate 1
- FG1

Options:
- Demand (prod 1)
- P&MF (prod 1)
- OT (PM&F) (prod 1)
- Outsourced (prod 1)

Options:
- Demand (prod 2)
- P&MF (prod 2)
- OT (PM&F) (prod 2)
- Outsourced (prod 2)
About Asset Utilization

<table>
<thead>
<tr>
<th>Asset Utilization</th>
<th>Optimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Utilization (PM&F)</td>
<td>79%</td>
</tr>
<tr>
<td>Average Utilization (Storage)</td>
<td>25%</td>
</tr>
<tr>
<td>Average Utilization (PCK)</td>
<td>66%</td>
</tr>
<tr>
<td>Holding Cost</td>
<td>$1,583,940</td>
</tr>
<tr>
<td>Manufacturing Cost</td>
<td>$851,769,273</td>
</tr>
<tr>
<td>Outsourcing Cost</td>
<td>$55,372,450</td>
</tr>
<tr>
<td>Overtime Cost</td>
<td>$52,295,046</td>
</tr>
<tr>
<td>Depreciation</td>
<td>$8,791,694</td>
</tr>
<tr>
<td>Proxy Capacity Value</td>
<td>$4,395,847</td>
</tr>
<tr>
<td>Inventory Value</td>
<td>$1,055,960</td>
</tr>
<tr>
<td>10Y NPV OAVA</td>
<td>$123,127,204</td>
</tr>
</tbody>
</table>

Should we maximize asset utilization? **No**
Recommendations

• Combine resources strategically
• Communicate effectively across teams
• Set relevant success metrics
• Use the model wisely
• Revise continuously
Thank you!
Methodology – Setting Up a Linear Programming Model

Objective Function

\[
MAX: \quad Z = \sum_{t=0}^{T} \left((Revenue_t - Cost_t) \times (1 - Tax) - Cost of Capital \times Asset Value_t \right) \times (1 + r)^t
\]

\[
Revenue_t = \sum_{v_1} \left(D_{t,t} \times \sum_{v_2} (R_{m,t} + L_{m,t} + U_{m,t}) \right) \times F_{rev}
\]

\[
Holding Cost_t = \sum_{v_3} \left(\frac{Inv_{M,t,t-1} + Inv_{M,t-1}}{2} \times \sum_{m=1}^{M} \left(R_{m,t} + L_{m,t} + U_{m,t} \right) \right) \times r
\]

\[
Manufacturing_t = \sum_{v_4} \left(P_{M,t,t} \times (R_{m,t} + L_{m,t} + U_{m,t}) \right)
\]

\[
Outsourcing_t = \sum_{v_5} \left(Out_{t,t} \times \sum_{v_2} (R_{m,t} + (L_{m,t} + U_{m,t}) \times F_{out}) \right)
\]

\[
Overtime_t = \sum_{v_6} \left(Over_{M,t,t} \times (R_{m,t} + (L_{m,t} + U_{m,t}) \times F_{over}) \right)
\]

\[
Depreciation_t = \sum_{v_7} \left(B_{M,t,k} \times \frac{V_{M,k}}{L_M} \right)
\]

\[
Proxy Capacity Value = \frac{1}{n} \times \sum_{t=1}^{n} \sum_{v_2} \left(B_{M,t,k} \times \frac{V_{M,k}}{2} \right)
\]

\[
Inventory Value = \frac{1}{n} \left(\sum_{v_2} \left[\frac{Inv_{M,t,t} + Inv_{M,t-1}}{2} \times \sum_{m=1}^{M} (R_{m,t} + L_{m,t} + U_{m,t}) \right] \right)
\]

May 22-23, 2013

MIT SCM Research Fest
Methodology – Setting Up a Linear Programming Model

Constraints

- Meet Demand

- Stage Dependence

- Capacity Limit

- Capacity Expansion

- Outsourcing Limit

- Non-Negativity
Acquiring New Assets – PCK

- Objective Function:
- Acquiring assets only after exploiting OT and outsourcing
Acquiring New Assets – PCK

- Objective Function:
 - Acquiring assets only after exploiting OT and outsourcing