
Inventory Management Live Session 1

Chris Caplice

While waiting for us to start, go to: https://www.sli.do/
Enter event code: #Bayer1
and answer the polling question

Agenda for Live Session

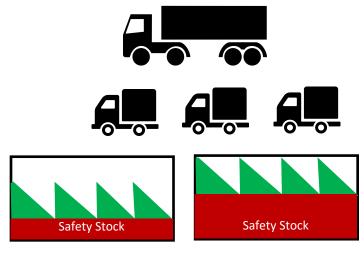
- Quick recap of concepts from video
- Pre-class survey results & discussion
- Building Intuition
 - Multiple stocking locations
 - Impact of lead time
- Homework and plan for Live Session 2

5 Primary Inventory Policies (Demand/Planning Horizon)

- Economic Order Quantity (EOQ) Policy Deterministic/Infinite
 - Lot sizing
 - Order Q* when Inventory Position = Expected Demand over Leadtime
- Single Period Models Stochastic/Single
 - Newsvendor Problem
 - Order Q* at start of period where Q*=f(Cost of shortage, Cost of excess)
- Base Stock Policy Stochastic/Infinite
 - One-for-one replenishment
 - Order for tomorrow what was sold today
- Continuous Review Policy Stochastic/Infinite
 - Order Point, Order Quantity (s,Q) event based
 - Order Q* when Inventory Position is equal to or less than Re-order Point (IP≤s)
- Periodic Review Policy Stochastic/Infinite
 - Order Up To Level Policy (R,S) time based
 - Order up to S units every R time periods.

Replenishment Policies make Trade Offs

1. Fixed Cost vs Variable Costs


Order larger quantities less frequently or smaller quantities more frequently?

2. Cost vs Level of Service

How much safety stock to keep on hand to meet unplanned demand?

3. Shortage Cost vs Excess Cost

What is the cost of having too much vs. having too little?

How do we make these trade-offs?

$$TC = vD + A\left(\frac{D}{Q}\right) + \left(\frac{Q}{2} + k\sigma_L + DL\right)c_e + B_1\left(\frac{D}{Q}\right)p_{u\geq}(k)$$

Total Cost is a function of Q, order quantity.

TC = Total Cost

Q = Replenishment Order Quantity (items/order)

D = Average Demand (items/ time)

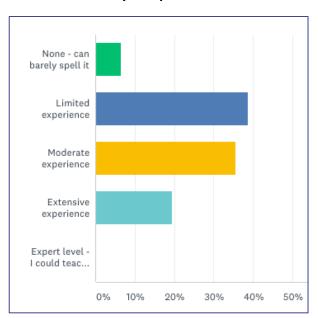
v = Variable (Purchase) Cost (dollars/item)

A = Fixed Ordering Cost (dollar/order)

c_e = Holding or Carrying Charge (dollars/time)

k = Safety factor (unitless)

 σ_L = Standard deviation of demand during leadtime


L = Leadtime (time)

Shortage costs can take many forms – we will discuss this.

Pre-class Survey Results

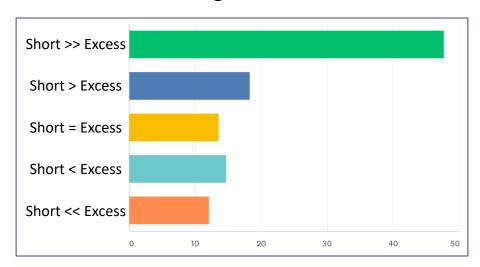
Inventory Experience & Familiarity

Inventory Experience

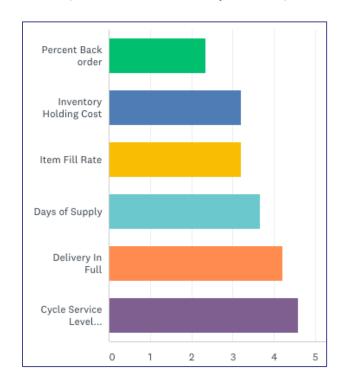
Familiarity with Concepts

*	NEVER HEARD OF IT P TO THE VIDEO	RIOR 🕌	LIMITED ▼	SOMEWHAT ▼	A FAIR AMOUNT	I AM AN EXPERT
▼ Economic Order Quantity	19	9.35% 6	35.48% 11	25.81% 8	19.35% 6	0.00% O
 Newsvendor Models 	19	9.35% 6	35.48% 11	32.26% 10	12.90% 4	0.00%
▼ Base Stock Models	1	6.13% 5	38. 71 % 12	19.35% 6	25.81% 8	0.00%
Continuous Inventory Models	1	6.13% 5	25.81% 8	48.39% 15	9.68% 3	0.00% 0
▼ Periodic Inventory Models	1	6.13% 5	38.71% 12	32.26% 10	12.90% 4	0.00% 0
 Multi- Echelon Models 	4.	5.16% 14	35.48% 11	12.90% 4	6.45% 2	0.00%
▼ Probability	9	9.68% 3	19.35% 6	41.94% 13	29.03% 9	0.00%
▼ Safety Stock	O	0.00%	9.68% 3	32.26% 10	54.84% 17	3.23% 1
▼ Cycle Stock	6	6.45% 2	16.13% 5	38.71% 12	35.48% 11	3.23% 1

Relevance of Policies to Bayer


	*	NOT AT ALL	VERY LIMITED RELEVANCE	SOMEWHAT RELEVANT - ▼ AS IS	SOMEWHAT RELEVANT - IF SLIGHTLY MODIFIED	VERY RELEVANT ▼ - AS IS	VERY RELEVANT - IF SLIGHTLY MODIFIED
•	Economic Order Quantity	3.45% 1	20.69% 6	24.14% 7	27.59% 8	10.34% 3	13.79% 4
-	Base Stock	0.00%	13.79% 4	20.69% 6	27.59% 8	20.69% 6	17.24% 5
•	Continuous Review Policies	3.45% 1	6.90% 2	17.24% 5	44.83% 13	17.24% 5	10.34% 3
•	Periodic Review Policies	0.00%	3.45% 1	20.69% 6	34.48% 10	24.14% 7	17.24% 5
•	Single Period / Newsvendor Policies	10.00% 3	10.00% 3	20.00% 6	36.67% 11	13.33% 4	10.00% 3

Problem Areas for Inventory at Bayer


	*	NOT A PROBLEM ▼	A SLIGHT PROBLEM	A MODERATE ▼ PROBLEM	A LARGE PROBLEM	THE MASSIVE _ PROBLEM	NO TIDEA	TOTAL ▼	WEIGHTED _ AVERAGE
•	Forecast Accuracy for individual SKU sales	0.00% 0	6.90% 2	20.69% 6	34.48% 10	37.93% 11	0.00%	29	4.03
-	Demand Variability	0.00%	3.45% 1	13.79% 4	62.07% 18	20.69% 6	0.00%	29	4.00
•	Forecasting Accuracy for total sales	0.00% 0	3.45% 1	41.38% 12	27.59% 8	27.59% 8	0.00%	29	3.79
-	Supply Uncertainty	3.45% 1	24.14% 7	24.14% 7	37.93% 11	10.34% 3	0.00%	29	3.28
-	Order Lead Time (from customers)	3.45% 1	17.24% 5	55.17% 16	20.69% 6	3.45% 1	0.00%	29	3.03
•	Order Lead Time (to Bayer)	10.34% 3	17.24% 5	48.28% 14	17.24% 5	0.00% O	6.90% 2	29	3.00

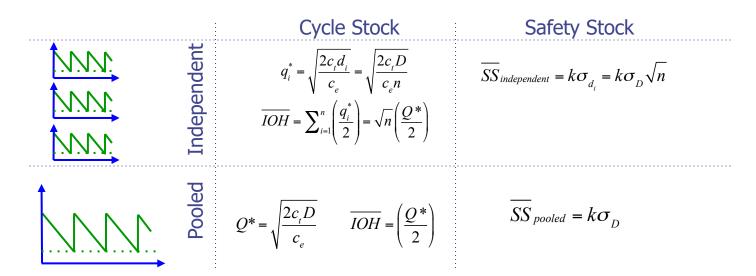
Comparison of Shortage to Excess Costs

Percentage of Bayer SKUs By Cost of Shortage to Cost of Excess

Metric Importance to Bayer (lower is more important)

What are the problems and what actions can we take?

$$TC = \text{Purchase Costs} + \text{Order Costs} + \text{Holding Costs} + \text{Stock Out Costs}$$


$$TC = vD + A\left(\frac{D}{Q}\right) + \left(\frac{Q}{2} + k\sigma_L + DL\right)c_e + B_1\left(\frac{D}{Q}\right)p_{u\geq}(k)$$

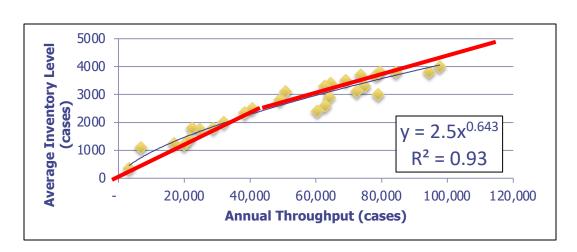
Slido Poll

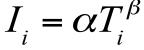
- Forecasting accuracy is lacking
- Promised lead time to customers is unrealistic
- Customer behavior leads to bunched ordering
- Too many stocking locations
- Unclear strategic objectives
 - Highest quality product at limited availability or
 - Fill every order no matter
- Segmentation (chemicals vs. seeds) is not being considered

Building Intuition

Multiple Locations: Pooled vs. Independent Stocking

Square root rule –


Going from 1 to n stocking locations increases inventory by $\forall n$, but this assumes . . .


- Inventory stocking follows the economic order quantity (EOQ),
- The size of locations and inventory levels are identical, and
- Each location has perfect operations.

Slido Poll

Estimating Inventory Costs for NW Design

- Pipeline inventory add in to the per unit transportation costs
- Cycle & Safety stock tends to follow a non-linear function with respect to throughput at a facility:
 - I_i = Average inventory level at facility i
 - T_i = Throughput of inventory at facility i
 - α = Estimated parameter (positive)
 - β = Estimate of inventory concentration (ranges from 0.5 to 0.8)
- Regress on existing facilities to estimate the parameters for your firm

What are the inventory implications of:

- a) 1 DC where T=80,000
- b) 2 DCs where $T_1 = T_2 = 40,000$

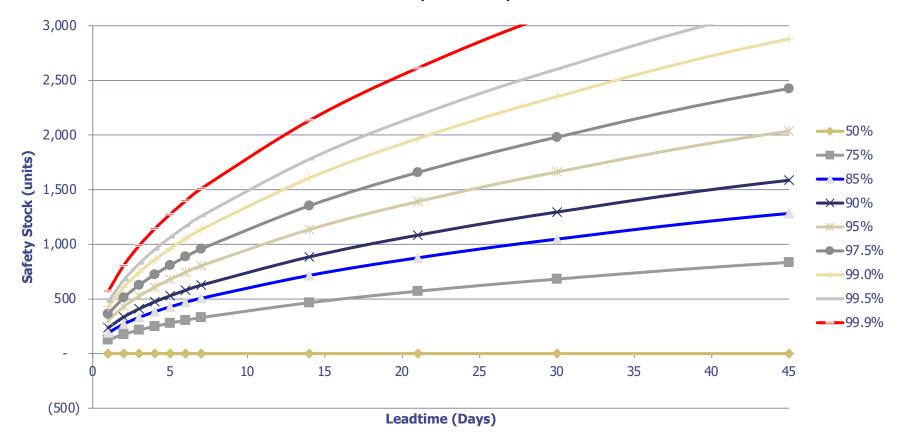
Case a) Inventory
$$I = 2.5(80000)^{0.643}$$

= 3,553 cases

Case b) Inventory =
$$2(2.5)(40000)^{0.643}$$

= 4,551 cases

Look familiar????


- Tempers theoretical √2 relationship with actual behavior

Impact of Leadtime to Customers

- Different leadtimes along the supply chain
 - Grow plant to harvest
 - Replenishment fields to distribution points
 - Customer from distribution points to customers
- Bayer on both sides of the inventory equation

Trade Off between Cost, LOS, and Leadtime

For next time

- Survey to be sent out this week and due NLT 12 Aug
 - Segment out Chemicals and Seeds
 - Ask for 3-5 thoughts on how to improve inventory management at Bayer
- Live Session 2 (17 August)
 - Open discussion on recommendations by segment
 - Converge on 2-3 actions to potentially pursue

Questions, Comments, Suggestions?

