Supply Chain Complexity

• There is a general consensus that . . .
 • supply chains are complex,
 • they are only getting more complex, and
 • complexity adds costs to a supply chain,

Therefore, we should look to mitigate or minimize complexity.

However, some believe that some complexity is good and should be embraced.
What is complexity?

“I know it when I see it”
Justice Potter Stewart, in Jacobellis v. Ohio regarding possible obscenity in a movie.

Questions to Be Answered

1. What is complexity?
2. What are the drivers of complexity?
3. How is complexity introduced into a Supply Chain?
4. How can you determine which aspects of complexity to eliminate and which to embrace?
 - How can you eliminate complexity?
 - How can you embrace complexity?
Supply Chain as a System

- Take an Engineering Systems Perspective
 - What is a variable and what is a constraint?
 - Continuous expansion of decision variables
 - Increases potential for improvement but increases both complexity and coordination requirements

Objective: Deliver at lowest transport cost
Variable:
 - Select carrier to tender each load to
Constraints:
 - Ship everything each day
 - Must deliver within specified windows
Supply Chain as a System

- Take an Engineering Systems Perspective
 - What is a variable and what is a constraint?
 - Continuous expansion of decision variables
 - Increases potential for improvement but increases both complexity and coordination requirements

<table>
<thead>
<tr>
<th>Supplier</th>
<th>Product Design</th>
<th>Manufacturing</th>
<th>Warehousing</th>
<th>Inventory Mgmt</th>
<th>Material Handling</th>
<th>Transportation</th>
<th>Order Processing</th>
<th>Customer SVC</th>
<th>Retailer</th>
</tr>
</thead>
</table>

Objective:
- Maximize on-shelf availability

Variables:
- Select carrier to tender each load to
- Select time windows to deliver
- Select when to ship what from where
- Determine where to stock which form of product
- Select contract relationships
- Select who should control replenishment
- Which channel member should perform which function

Constraints:
- Total delivered cost to shelf

What is complexity? . . . from the literature

- Distinction between complicated and complex.

- Two types of complexity (Singe 1990)
 - Detail Complexity – distinct number of processes or parts within the system
 - Dynamic Complexity – unpredictability of response of the system due to interactions

- A system is complex if it “is made up of a large number of parts that interact in a non-simple way.” (Simon 1962)

What are the drivers of SC Complexity?

1. Numerousness
2. Variety/Diversity
3. Interconnections/Interactions
4. Opacity of Interactions
5. Dynamic Effects

Why do we care?

- Complexity is not introduced for complexity’s sake
- Drivers of complexity = Drivers of profitability
- Drivers of profitability
 - Increase revenue per unit
 - Increase the number of customers
 - Increase number of units sold
 - Decrease cost per unit
- Implicit to every strategy or action intended to improve profitability is a hidden cost of complexity
Profitability Drivers = Complexity Drivers

Revenue/Unit

Customers

Units

Cost/Unit

Numerousness

Variety/Diversity

Interactions

Example: Introduce new packaging format

Revenue/Unit

Customers

Units

Cost/Unit

Numerousness

Variety/Diversity

Interactions
Example: Launch new product line

Revenue/Unit	Numerousness
# Customers	Variety/Diversity
# Units	Interactions
Cost/Unit	

Example: Open a joint DC for online and traditional retail replenishment

Revenue/Unit	Numerousness
# Customers	Variety/Diversity
# Units	Interactions
Cost/Unit	
Where does complexity enter the supply chain?

Complexity enters at the ends!

Desire for unique solutions

Desire for a wide and diverse product portfolio.

Identifying where complexity lies

Complexity “fingerprint”

Packaging - 17 of 33 configurations account for 80% of EBIT (52%)
Customers - 214 of 2142 (just 10%) customers account for 80% of EBIT

How to determine good vs. bad?

- **Value Destroying**
 - Does the cost of complexity outweigh the value?
 - Does it introduce greater confusion to the customer?

- **Value Creating**
 - Is the cost of the complexity less than the increase in value to the customer?
 - Does the added complexity provide potentials for flexibility?
 - Does the added complexity create a competitive advantage?

Complexity Example: Novartis

- Complexity Reduction Initiative (2010)
 - 14,000 SKUs sold across 140 countries
 - Multiple dosage forms (film-coated tablets, pre-filled syringes, sugar coated pills, etc.)
 - Multiple pack sizes and formats
 - Regulatory requirements – same product produced at two plants creates two SKUs
 - Difficulty in retiring products – some required by regulation others due to mergers

Complexity Example: Novartis

Which SKUs to focus on?

- Didn’t reduce entire set of SKUs
- Strategic reasons for limiting set of SKUs
- Consensus between stakeholders for initial analysis and focus

Complexity Example: Novartis

- Simultaneous Two Pronged Approach
 - Redundant Product Rationalization
 - Tail-end Pruning

Step #1: Redundant Product Rationalization

- Bottoms up approach
- Identify redundant profits by product
- Match true customer requirements and align to products
 - Example: one month vs. two month dosage packs

Complexity Example: Novartis

Redundant Product Rationalization Results

- Reduced SKUs by 30% with no sales loss
- Reduced SKUs lead to better forecasting
- Very resource intensive initiative
- Required buy-in by heads of finance & marketing

Complexity Example: Novartis

Step #2: Tail-end Pruning
- Top-down approach
- Identify and remove small less profitable products
- Devil is in the details and the tail always regenerates

![Diagram](image)

Complexity Example: Novartis

- Tail-end Pruning
 - What level of detail makes sense?
 - Measure by SKU by Brand by Drug . . .
 - Two approaches considered:
 - MILP – when high quality data is available
 - Criteria Threshold – when data is imperfect

![Diagram](image)

Complexity Example: Novartis

- Results of Complexity Reduction Initiative (2010)
 - Approximately 1100 SKUs pruned
 - 43 complete brands were pruned!
 - Inventory savings of $22 M

Complexity Example: Hewlett Packard

- Hewlett-Packard circa 2008
 - More than a billion customers in 170 countries
 - Wide variety of product lines and SKUs
 - > 2,000 Laser Printers
 - >15,000 Server SKUs
 - > 8 million Laptop & Desktop configurations
 - Multiple sales channels with variety of order cycle times
 - Shorter overall product lifecycles
 - New products constantly introduced
 - Marketing decision based on marginal revenue improvement
 - Minimal supply chain input on costs

Complexity Example: Hewlett Packard

- Portfolio Rationalization Project
 - Focus on Personal Systems Group (PSG)
 - Configurable PC products
 - Low per SKU costs - but high underlying costs
 - Orders must ship 100% complete - one component short kills entire order
 - Lead to long and unpredictable Order Cycle Time (OCT)

- Two Simultaneous Initiatives
 1. New Product ROI Screening
 - keeping overly complex products out
 2. Revenue Coverage Optimization
 - for pruning existing products

New Product Introduction Process (Stage-Gate)

Open Innovation Stage-Gate®: External Interfaces (In-Bound & Out-Bound)

at Multiple Points in the Process

- Discovery: Ideas Generation
- Stage 1: Scoping
- Stage 2: Build Business Case
- Stage 3: Development
- Stage 4: Testing & Validation
- Stage 5: Full Launch
- PLR

- Externally generated ideas from multiple sources: Scan, handle & screen ideas from inventors, start-ups, small companies, partners, consumers, many other sources
- Determine capabilities gap
 - Seek & vet partners or outsourced-suppliers
 - Co-operative work in VOC, Technical Feasibility, Building Business Case, Legal & IP strategy
- Seek external sources of IP & technology solutions
 - Coop or outsourced development work
- Out-license or sell IP & technology
- Out-license or sell commercial products & IP or in-license products

- New gate criteria required, especially at early gates
Complexity Example: Hewlett Packard

#1: New Product ROI Screening
- **ABC approach with volume and variety as distinct drivers**
- **Used mix of approaches (ABC, regression) for variety drivers**
 - More SKUs lead to higher returns
 - Lower volumes lead to higher variability

Low Volumes of a SKU drive Costs

SKUs drive Costs

Complexity ROI

\[
\text{Complexity ROI} = \frac{\text{Incremental margin} - \text{Variable complexity costs}}{\text{Fixed complexity costs}}
\]
Complexity Example: Hewlett Packard

#2: Revenue Coverage Optimization

- Pruning existing products
- Maximizing value of active portfolio
- Measuring revenue generation by item misses interactions and interdependencies
- RCO answers the question: If I could only have 100 products, which should I choose?
- New metrics:
 - Order Coverage – percent of previous order that could be filled with existing portfolio
 - Revenue Coverage – revenue (margin) of covered orders as a percent of the total revenue

![Image](RCO_compared_to_heuristic_ranking_methods.png)

Complexity Example: Hewlett Packard

- Portfolio Rationalization Project Results
 - Over $500 M saved since 2005
 - Product adoption rate improved from 18% to 85%
 - Shift from revenue focused to margin focused management
 - LaserJet SKU count reduced by 40% in 3 years (2006-9)
 - RCO eliminated 3,300 of 11,000 SKUs from HPs Business Critical Systems division
 - Soft benefits
 - Higher customer satisfaction
 - Less confusion for sales and customers
 - Higher forecasting accuracy
 - Better organizational efficiency – forcing Green, Blue & Red to talk!

What about embracing complexity?

- What industry has:
 - Very small batch sizes
 - Long set up times with very short desired lead times
 - Highly customized products (no two are alike)
 - Unpredictable order frequency
 - Many many very small customers

Printing Business Cards

- Traditional Process
 - Relatively high design costs & time
 - High switch over and set up costs between runs
 - Individual card runs – requires high minimum orders
 - Rough costs are about $10-$20 per MSI
 - Business cards are 2” x 3.5” so 500 cards ≈ 3.5 MSI = $35

- Vistaprint
 - Printing business cards and other marketing for micro-businesses
Embracing Complexity Example

Online Design & Ordering

- Integrated Production Processes
 - Software tied directly from ordering & design to production
 - Gang Run Printing - Batching together different print jobs into a single print run on a single sheet.
 - Automated sorting, aggregating, and organizing of jobs
Embracing Complexity Example

- A "minefield of patents"
- Initial patents filed in France in 2000
- 28 issued in US as of 2013
- Example; VistaBridge - Patent 6,992,794

Vistaprint Results

Revenue ($, million)
Questions to Be Answered

1. What is complexity?
2. What are the drivers of complexity?
3. How is complexity introduced into a Supply Chain?
4. How can you determine which aspects of complexity to eliminate and which to embrace?
 - How can you eliminate complexity?
 - How can you embrace complexity?