

The energetic implications of storing wind and solar generated electricity

Royd Moor, UK

Musonoi Mine, DRC

Virginia, USA

Charles Barnhart

Global Climate and Energy Project, Stanford University

MIT LEAP Webinar, June 7th 2013

Outline

- Energy Systems Analysis
- Motivation for Renewable Energy Generation Paired with Energy Storage
- Energy Storage Options Appropriate for Grid Scale
- Material Requirements for Energy Storage
- Energetic Requirements for Energy Storage
- Pairing Energy Storage with Renewable Resources

Energy Systems Analysis

• We measure the material and energetic requirements of energy technologies to inform research, capital investment and policy.

Climate Change and Energy Transitions

Global Exergy Resources

Wes Hermann and A. J. Simon (2006) Energy

Wind and Solar Resources are Variable

Stable Operation of the Electrical Grid

California ISO control room ©The New York Times, Max Whittaker, October 28, 2011

Grid Flexibility

- What is it?
 - * "The ability of a system to deploy its resources to respond to changes in net load, where net load is defined as the remaining system load not served by variable generation." -- Lannoye et al., 2012
- Options
 - Excess capacity and transmission
 - Natural gas combustion turbines ('peaker plants')
 - Demand-side management (smart grid)
 - Electrical Energy Storage

Why Storage

- Policy
 - ➢ 6 bills in U.S. Congress,
 - ➤ AB 2514 here in CA, first state to mandate storage
- Funding (ARPA-E, GCEP, VC)
- Electricity Storage Association (international trade assoc.)

Energy storage technologies can reduce our nation's dependence on imported fuel and increase our energy security.

Our technologies help make the grid smarter and more flexible for all other resources. Energy storage allows us to use other resources, including existing generators, new natural gas plants, and renewable technologies, more efficiently. Energy storage can provide emission-free energy when it is the most economical and convenient option, saving consumers money and reducing our need to import energy.

Energy storage provides an additional choice for a more reliable, flexible, and efficient electric grid.

Storage Technologies for Renewable Integration

- Electrochemical
 - Lithium-Ion (Li-Ion)
 - Sodium Sulfur (NaS)
 - Lead-Acid (PbA)
- Flow Battery
 - Vandium Redox (VRB)
 - Zinc Bromine (ZnBr)
- Geological
 - Pumped Hydro (PHS)
 - Compressed Air (CAES)

Physical requirements

Spatial
 Material
 Energetic

Energy Demands of Electrical Energy Storage

Embodied Energy

Data assimilated from: Rydh et al., 1999, 2005; Denholm 2004, Argonne, 2010³

Embodied Energy—Dynamic Effects

efficiency		су	cycle life	emb	embodied energy	
	$\eta^{[a]}$		$\lambda^{[a]}$		ϵ_{gate}	
	%	100% DOD	80% DOD	33% DOD	_	
Li-ion	90	4000	6000	8500	454	
NaS	75	2400	4750	7150	488	
PbA	90	550	700	1550	321	
VRB	75	2900	3500	7500	694	
ZnBr	60	2000	2750	4500	504	
CAES	70	>25	000 <i>DOD inc</i>	lep.	73	
PHS	85	>25	000 <i>DOD inc</i>	lep.	101	
Depth of Discharge						

Data obtained from Rydh et al., 1999, 2005; Denholm et al., 2004; ANL, 2011 ¹⁴

ESOI—Energy Stored on Energy Invested

$ESOI = \frac{\text{energy stored over device lifetime}}{\text{embodied energy}}$

 $ESOI = \frac{\lambda \eta D}{\epsilon_{gate}}$

- λ : cycle life
- η : efficiency
- D: depth of discharge
- ϵ_{gate} : embodied energy

ESOI—Energy Stored on Energy Invested

R&D strategy

$$ESOI = \frac{\lambda \eta D}{\epsilon_{gate}}$$

Which energy resource and storage pairings are optimum from a net-energy perspective?

Energy Return on Investment (EROI)

EROI < 1

Solar PV and Wind Turbine EROI values

ESOI—Energy Stored on *Electrical* Energy Invested

How does storage affect the grid-wide EROI?

$$EROI_{c} = EROI(1 - \phi)$$

$$EROI_{g} = \frac{1 - \phi + \eta\phi}{\frac{1}{EROI} + \frac{\eta\phi}{ESOI_{e}}} \begin{bmatrix} \frac{kWh_{e} \text{ generated}}{kWh_{e} \text{ embodied}} \end{bmatrix}$$

$$22$$

How does storage affect the grid-wide EROI?

$$\frac{ESOI_e}{EROI} \Rightarrow \begin{cases} \text{store if } > 1 - \phi \\ \text{curtail if } < 1 - \phi. \end{cases}$$

Resource—Storage System EROI

Technological improvements for batteries

Durable High-Cycle Life Battery Research

• Open framework of prussian blue analogues can enable:

• Demonstrated 40,000 charging cycles using copper hexacyanoferrate

C. Wessels, R. Huggins, Y. Cui, *Nature Communication*, 2:550 (2011) M. Pasta, R. Huggins, Y. Cui *Nat. Comm. (2012), In Press.*

Summary and Conclusions

- Curtailing reduces system wide EROI
- So does storage
- Wind requires high ESOI storage (PHS and CAES)
- Batteries can store solar PV generated electricity and still yield EROI ratios that are greater than curtailment ratios
- Battery cycle life can and should be improved (need an ESOI of 86 and 10,000 to 18,000 cycles)
- Other options for otherwise curtailed electricity should be considered
- To be clear, storage holds great value, we only looked at it from one perspective: system energy efficiency...

Acknowledgements

- Advisor: Prof. Sally Benson (ERE)
- Co-Authors: Mik Dale, PhD.; Prof. Adam Brandt (ERE)
- Stanford University's Global Climate and Energy Project
 - Richard Sassoon, Jenny Milne, Emilie Hung
 - Sponsors: GE, Exxon, Schlumberger, DuPont, Toyota
- Conversations with Prof. Bob Huggins, Prof. Yi Cui and Paul Denholm, PhD

Abundance of elements in lithosphere

30

Material Availability

"Civilization exists by geological consent, subject to change without notice."

– Will Durant

Barnhart and Benson, 2013

Data obtained from USGS Mineral Commodity Summary Reports (2006-2011)

Energy Storage Potential

$$ESP = \frac{\rho P}{m_f}$$

 Table 2
 Electrochemical storage technology properties

Technology	Reactants	$m_{ m f}$	$ ho_{ ext{theoretical}} \ \left(ho_{ ext{practical}} ight)$
Li-ion (cylindrical spiral-bound)	Li _r C ₆	Li 0.04	448 W h kg ⁻¹
	$Li_{1-x}CoO_2$	Co 0.35	(200)
NaS (NGK-Tepco)	2Na + xS	Na 0.42	792
	(x = 5 - 3)	S 0.58	(170)
PbA (prismatic)	$Pb + PbO_2$	Pb 0.93	252
	H_2SO_4		(35)
VRB	$V(SO_4)$	V 0.31	167^{a}
	$VO_2(HSO_4)$		(30^{a})
ZnBr	$Zn + Br_2$	Zn 0.29	436
		Br 0.71	(70)

^{*a*} Sources: All information from ref. 23 unless otherwise noted.⁴⁸

Energy Storage Potential of Materials

Promising Technologies: CAES, NaS, ZnBr $ESP = \frac{\rho P}{m_f}$

Barnhart and Benson, 2013 Data from USGS Mineral Commodity Summary Reports (2006-2011) ESP Calculations motivated by Rydh et al., 1999; Wadia et al., 2011

33

Theoretical Framework

$$\varepsilon_c = \frac{\varepsilon_r}{(1-\phi)} \quad \left[\frac{kWh_e \text{ embodied}}{kWh_e \text{ generated}}\right]$$

$$EROI_c = EROI(1 - \phi)$$

$$\varepsilon_g = \frac{\varepsilon_r + \eta \varepsilon_s \phi}{1 - \phi + \phi \eta} \quad \left[\frac{kWh_e \text{ embodied}}{kWh_e \text{ generated}} \right]$$

$$EROI_g = \frac{1 - \phi + \eta \phi}{\frac{1}{EROI} + \frac{\eta \phi}{ESOI_e}} \quad \left[\frac{kWh_e \text{ generated}}{kWh_e \text{ embodied}}\right]$$

To Store or Curtail?

• At breakeven

$$\varepsilon_c = \varepsilon_g$$

$$\frac{\varepsilon_r}{(1-\phi)} = \frac{\varepsilon_r + \phi \eta \varepsilon_s}{1 - \phi + \eta \phi}$$

$$\frac{\varepsilon_r}{\varepsilon_s} = 1 - \phi$$

$$\frac{ESOI_e}{EROI} \Rightarrow \begin{cases} \text{store if } > 1 - \phi \\ \text{curtail if } < 1 - \phi. \end{cases}$$

Embodied Energy for Grid Storage

Data assimilated from: Rydh et al., 1999, 2005; Denholm 2004, Argonne, 20107

EROI

Dale, Krumdieck and Bodger, 2012

EROle of Solar Technologies

Fig. 2. EROI_{el} of PV electricity, compared to the EROI_{el} of oil- and coal-fired thermal electricity (Eq. (2)).

To Store or Curtail?

Energy lost with curtailment vs energy lost through building and operating storage technologies

region	2007	2008	2009	2010	2011
Electric Reliability Council	109 GWh	1,417	3,872	2,067	2,622
of Texas (ERCOT)	(1.2%)	(8.4%)	(17.1%)	(7.7%)	(8.5%)
Southwestern Public	n/a	0	0	0.9	0.5
Service Company (SPS)		(0.0%)	(0.0%)	(0.0%)	(0.0%)
Public Service Compancy	n/a	2.5	19.0	81.5	63.9
of Colorado (PSCo)		(0.1%)	(0.6%)	(2.2%)	(1.4%)
Northern States Power	n/a	25.4	42.4	42.6	54.4
Company (NSP)		(0.8%)	(1.2%)	(1.2%)	(1.2%)
Midwest Independent System	n/a	n/a	250	781	657
Operator (MISO), less NSP			(2.2%)	(4.4%)	(3.0%)
Bonneville Power	n/a	n/a	n/a	4.6	128.7
Administration (BPA)				(0.1%)	(1.4%)
Total Across These	109	1,445	4,183	2,978	3,526
Six Areas:	(1.2%)	(5.6%)	(9.6%)	(4.8%)	(4.8%)

Source: Wiser et al., 2011 Wind Technologies Market Report, table 5

Can we build enough storage to supplement variable electricity supply?

• How much storage might society need?

How much storage exists today?

0.2 % of average daily global electricity consumption

Table 1 Average daily electrical energy demand and power demand

	power	energy
World ^[a]	2.1 TW	50.6 TWh
$\mathrm{USA}^{[b]}$	0.43 TW	10.2 TWh
$China^{[c]}$	0.53 TW	12.6 TWh
San Francisco ^[d]	633 MW	15.2 GWh
EE* Hospital ^[e]	568 kW	13.6 MWh
EE Office $Bldg^{[f]}$	131 kW	3.14 MWh
EE household ^[g]	0.33 kW	8 kWh

*Energy Efficient (EE). (Values obtained from: $[a,b,c]^3$, $[d]^4$, $[e]^5$, $[f]^6$, $[g]^7$)

 Table 2 2011 global storage capacity

technology	power (MW)	energy (GWh)
Li-Ion	$\sim 20^{[a]}$	$0.06^{[g]}$
NaS	$365.3^{[b]}$	$2.191^{[h,i]}$
PbA	$\sim 1,800,000^{[c]}$	$400^{[c]}$
Flow	$3^{[a]}$	$0.024^{[j]}$
(VRB, ZnBr)		
CAES	$400^{[d]}(650^{[e,f]})$	$3.73^{[d]}$
PHS	$129,000^{[a]}$	$102^{[k]}$

(*Source*: ^{[a] 15}, ^{[b] 13}, ^[c] assuming total car batteries worldwide (1 billion) each 10 kg with practical power and energy densities of 180 W/kg and 40 Wh/kg yields 1.8T W and 0.4 TWh of capacity, ^{[d] 16}, ^{[e] 17}, ^{[f] 18}, ^[g] assuming 3 hr storage, ^[h] assuming NGK modules ¹⁵ with 6 hr discharge, ^[j] assuming PacifiCorp module ¹⁵ with 8 hr discharge, ^[k] In 2008, USA had 21.5 GW PHS capacity that delivered 6,288 GWh of energy⁸. This yields a capacity factor of 3.33% or ~ 48 min per day. Assuming PHS worldwide operates in kind, 129 GW × 0.033 × 24 hr = 102 GWh.

Backup 6: ESP Calculation Data

Table 2. Electrochemical storage technology properties

technology*	reactants	m_{f}	$ ho_{theoretical}$
			$(ho_{practical})$
Li-Ion	Li_xC_6	Li 0.04	448 Wh/kg
(cylindrical	$Li_{1-x}CoO_2$	Co 0.35	(200)
spiral-bound)			
NaS	2Na + xS	Na 0.42	792
(NGK-Tepco)	(x=5-3)	S 0.58	<mark>(</mark> 170)
PbA	$Pb + PbO_2$	Pb 0.93	252
(prismatic)	H_2SO_4		(35)
VRB	$V(SO_4)$	V 0.31	167^a
	$VO_2(HSO_4)$		(30 ^{<i>a</i>})
ZnBr	$Zn + Br_2$	Zn 0.29	436
		Br 0.71	(70)

scatter plots with embodied energy and price

