Identifying Inventory Excess And Service Risk In Medical Devices:

A Simulation Approach

Maria Rey

Agenda

- Motivation & Background
- Goal Statements
- Methodology
 - Data Analysis
 - Simulation model
- Results
- Insights
- Conclusion

Motivation

• Distribution centers

• High inventory holding costs

Medical devices

- High value
- Non-interchangeable
- Criticality

Background

- MedCo recently collected large amounts of transactional data
 - Inventory
 - Demand
 - Supply
 - Forecast accuracy
 - Location
- Need to reduce inventory without affecting service
- Currently use classical (s, S) inventory model, assuming normality

Goal Statements

 Determine inventory level for a material number, that ensures a LIFR of 98%

 $LIFR = \frac{Number \ of \ lines \ allocated \ to \ inventory}{Total \ number \ of \ order \ lines}$

Gain insights from the data

Understand what drives service performance

Methodology

Demand/Supply Characterization

Use transactional data to find real demand distribution

• Find metrics that affect LIFR performance

	LIFR	Order Qty	Countries	DOS	Supply COV	MAPE	Demand COV	Transactions
N	1486	1486	1464	1424	1031	1440	1424	1486
N Missing	0	0	22	62	455	46	62	0
Mean	0.91	58701	9.7	291	2.17	0.67	0.65	442
Std Dev	0.15	136472	7.6	1579	1.79	2.30	0.68	761
Min	0.00	1	1	0	0.00	0.00	0.12	1
Median	0.96	14274	8	68	1.62	0.36	0.39	190
Max	1.00	1625940	41	31839	8.46	60.63	3.62	9352

Summary statistics

Clustering

- Demand Coefficient of Variation (COV)
- Number of countries the SKU is shipped to (Countries)
- Average order size quantity (Order Qty)
- Days of supply (DOS)
- Order frequency (Transactions)

	LIFR				Order Quantity			Countries			DOS			Demand COV			Transactions		
Cluster	Ν	Mean	Min	Max	Mean	Min	Мах	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max
1	987	0.929	0.00	1.00	23,784	28	180,480	8	1	22	91	1	1269	0.45	0.12	2	255	3	1337
2	13	0.943	0.88	0.97	1,128,427	608,436	1,625,940	30	21	41	34	19	113	0.39	0.18	1	4552	1105	9352
3	168	0.822	0.00	1.00	3,588	3	121,500	3	1	12	824	0	7160	2.10	1.09	4	21	1	222
4	11	0.994	0.94	1.00	656	12	2,700	2	1	5	15648	8660	31839	3.06	1.27	3	10	1	59
5	230	0.939	0.63	1.00	188,832	22,452	600,876	21	8	35	45	14	139	0.33	0.12	1	1433	291	4850

CLUSTERS

CLUSTERS - MEAN COMPARISON

- 1. Commodities
- 2. High Volume
- 3. Service risk
- 4. Sparse demand
- 5. High volume commodities

Order Quantity distribution: ~ Gamma

	Cluster 1	Cluster 2	Cluster 3	Cluster 4	Cluster 5
1st Place	Pareto	Gamma	Gamma	Pareto	Exponential
2nd Place	Gamma	Pareto	Pareto	Triangular	Triangular
3rd Place	Triangular		Triangular		Gamma

Order frequency distribution: ~ **Normal**

Issues with material numbers with few demand points

- Hard to fit a distribution
- They have high DOS levels

1 Distributions

	Orc	der Quantity		Order Fre	equency	Replenishment Lead Time			
	Gamr	na Distributio	n	Normal Dis	tribution	Normal Distribution			
Cluster	Shape	Scale Shift		Mean	StDev	Mean	StDev		
1	0.714	175.83	12	4.7	1.9	7	2		
2	0.331	2,761.20	36	49.4	8.3	3	1		
3	0.569	147.68	36	1.0	-	3	1		
4	0.232	125.00	36	1.2	0.4	12	3		
5	0.421	1,367.10	12	7.5	2.2	3	1		

Simulation Model Assumptions

- Customer orders are exogenous and independent of inventory level. Orders can come in even if there is no inventory on hand.
- Customer orders are not correlated
- Assuming lot for lot policy.
- Assuming supplier is not out of stock.
- Inventory availability is the only factor affecting service.
- Raw data do not have systematic trend / fluctuation across seasons. The randomness of the variables used in the simulation account for any seasonality present in the raw data.
- Assuming countries' demands are independent.
- Unfilled inventory will be backlogged. Customers will eventually accept inventory regardless of when they receive it.
- Order allocation is sequential, on a first-come-first-serve basis.

² Simulation Process

Results

	min	max	median	mean	90th Percentile	stdev		min	max	median	mean	90th Percentile	stdev
80000	0.708383	0.836393	0.772162	0.773904	0.744294	0.026312	8000	0.659794	0.877660	0.761194	0.763505	0.704492	0.045146
90000	0.753502	0.891860	0.821184	0.820563	0.788424	0.025888	10000	0.735084	0.937838	0.832891	0.833633	0.789855	0.037104
100000	0.769781	0.922062	0.861600	0.857654	0.818075	0.029225	12000	0.786241	0.965147	0.889724	0.886164	0.839793	0.037107
110000	0.824628	0.958469	0.892180	0.889042	0.852187	0.028857	14000	0.830769	0.997416	0.922892	0.921701	0.875895	0.034534
120000	0.845211	0.963250	0.919349	0.916187	0.885120	0.022464	16000	0.838710	1.000000	0.958869	0.955532	0.927711	0.024856
130000	0.865297	0.990449	0.944102	0.942313	0.915248	0.021919	18000	0.919708	1.000000	0.972705	0.970244	0.939547	0.020966
140000	0.902429	1.000000	0.961390	0.959412	0.935283	0.020466	20000	0.928947	1.000000	0.989041	0.982673	0.954667	0.018358
150000	0.928060	0.998006	0.974359	0.970269	0.948137	0.015482	22000	0.938967	1.000000	0.995012	0.990292	0.972840	0.012496
160000	0.925926	1.000000	0.985401	0.983516	0.969201	0.012732	24000	0.936430	1.000000	1.000000	0.991353	0.971154	0.013259
170000	0.946837	1.000000	0.992891	0.989524	0.974440	0.010729	26000	0.945679	1.000000	1.000000	0.997346	0.990453	0.007651
180000	0.952343	1.000000	0.995640	0.992232	0.979821	0.009598	28000	0.973890	1.000000	1.000000	0.998817	0.997481	0.004232

Sample material number per cluster

SKU	ACTUAL LIFR	AVERAGE IOH	WEEKS W/O INV.	CURRENT INV. LEVEL	SIMULATED LEVEL
Α	85.83%	3,160	2	4,100	3,500
В	96.94%	740,928	0	800,000	180,000
С	53.85%	632	1	300	1,000
D	100%	1,142	0	1,500	800
E	90.05%	49,923	0	61,000	26,000

Insights

Insight 1: Demand Pattern Analysis

	COUNTRY A (BLUE)	COUNTRY B (ORANGE)
NO. OF ORDER	620	45
TOTAL UNITS ORDERED	51,696	121,860
LARGEST ORDER SIZE	504	23,040
DEMAND COV	0.21	1.07

Hypothesis: **Erratic ordering patterns** causes strain in the supply chain performance. It leads to higher inventory requirements given the same risk exposure.

Simulated Order Pattern Changes

 Recommendation: reduce order variability, advanced notices before ordering above threshold

Insight 2: Forecasting

 We increase 1 period of forecasting by assuming we know 80% of the next period's demand

	min	max	median	mean	90th Percentile	stdev		min	max	median	mean	90th Percentile	stdev
1100	0.644231	0.881443	0.790055	0.786789	0.730337	0.047385	1100	0.737113	0.916667	0.825000	0.826008	0.773481	0.039476
1500	0.739910	0.964824	0.883041	0.879968	0.831633	0.041869	1500	0.797980	0.979275	0.903743	0.898659	0.850000	0.037041
1900	0.818182	0.994709	0.934343	0.929632	0.882353	0.036100	1900	0.847619	1.000000	0.945274	0.939100	0.892377	0.033312
2300	0.903846	1.000000	0.970874	0.966514	0.928962	0.022970	2300	0.904348	1.000000	0.967742	0.965771	0.929577	0.025534
2700	0.943590	1.000000	0.990000	0.985368	0.963134	0.015425	2700	0.892019	1.000000	0.993789	0.985719	0.962162	0.018988
3100	0.932692	1.000000	1.000000	0.991322	0.969849	0.014304	3100	0.934132	1.000000	1.000000	0.992952	0.977778	0.013228
3500	0.941489	1.000000	1.000000	0.995896	0.984043	0.009771	3500	0.931193	1.000000	1.000000	0.996288	0.985849	0.009214
3900	0.955882	1.000000	1.000000	0.998558	1.000000	0.006238	3900	0.989130	1.000000	1.000000	0.999392	1.000000	0.002184
4300	0.978947	1.000000	1.000000	0.999697	1.000000	0.002280	4300	0.967568	1.000000	1.000000	0.998955	1.000000	0.004528
4700	0.990000	1.000000	1.000000	0.999900	1.000000	0.000995	4700	0.979381	1.000000	1.000000	0.999794	1.000000	0.002052
5100	0.985782	1.000000	1.000000	0.999858	1.000000	0.001415	5100	1.000000	1.000000	1.000000	1.000000	1.000000	0.000000

 Results show it moderately improves inventory performance under current 1 week lead time

Insight 3: Lead time

 We simulated a 'supply shock' where our replenishment lead-time suddenly inflates from 1 week to 1 month

	min	max	median	mean	90th Percentile	stdev		min	max	median	mean	90th Percentile	stdev
1100	0.644231	0.881443	0.790055	0.786789	0.730337	0.047385	1100	0.378238	0.780749	0.587065	0.581785	0.502890	0.070047
1500	0.739910	0.964824	0.883041	0.879968	0.831633	0.041869	1500	0.481283	0.849673	0.674528	0.673114	0.579487	0.076113
1900	0.818182	0.994709	0.934343	0.929632	0.882353	0.036100	1900	0.577586	0.937107	0.746341	0.743535	0.656085	0.074262
2300	0.903846	1.000000	0.970874	0.966514	0.928962	0.022970	2300	0.594203	0.960000	0.820755	0.818354	0.736842	0.067761
2700	0.943590	1.000000	0.990000	0.985368	0.963134	0.015425	2700	0.691964	0.985222	0.890000	0.872576	0.779570	0.065561
3100	0.932692	1.000000	1.000000	0.991322	0.969849	0.014304	3100	0.687500	1.000000	0.921348	0.909691	0.823864	0.065067
3500	0.941489	1.000000	1.000000	0.995896	0.984043	0.009771	3500	0.822430	1.000000	0.945000	0.936152	0.868182	0.046489
3900	0.955882	1.000000	1.000000	0.998558	1.000000	0.006238	3900	0.861111	1.000000	0.979167	0.967708	0.912281	0.034506
4300	0.978947	1.000000	1.000000	0.999697	1.000000	0.002280	4300	0.882979	1.000000	0.989011	0.975742	0.937824	0.028990
4700	0.990000	1.000000	1.000000	0.999900	1.000000	0.000995	4700	0.894231	1.000000	1.000000	0.984499	0.951456	0.022908
5100	0.985782	1.000000	1.000000	0.999858	1.000000	0.001415	5100	0.906863	1.000000	1.000000	0.990855	0.968421	0.018212

 Inventory performance drops drastically. We need to double the baseline inventory to guarantee service level

Conclusion

Data-driven approach to inventory management

Understanding demand characteristics

- Clustering
- Machine learning
- Applicable to many industries
 - Criticality of product availability
 - Risk Management
 - Manage order patterns

