

Forecasting International Flows of Returnable Transport Items

By: Patrick Jacobs and Rajdeep Singh

Advisor: Dr. Eva Ponce

Agenda

Industry Overview

Background

Project Scope

Methodology

Forecasting

Key Takeaways

Future Research Areas

What is a Returnable Transport Item?

RTI Leasing Overview

RTI Leasing Overview

Background

International Movements

Background

International Movements

Background

MANAGEMENT

Project Scope

Key Question

 Determine how Foreign Exchange Rates would alter direction of Product Flows between Canada to the US

Project Objectives

- Develop 1-month ahead forecast to predict International Flows between Canada and USA
 - Utilizing macro economic factors as predictive variables

Forecasting with Macro Variables

Variables Selection Criteria

- Relevant
- Readily Available

Country	Variable	Aggregation Level
USA & CA	#2 Diesel Prices	Monthly
USA & CA	Foreign Exchange Rate	Monthly
USA	Exports to CA	Monthly
USA	Imports from CA	Monthly
USA	Gold Prices	Monthly
USA & CA	GDP	Quarterly

Forecasting with Macro Variables

Methodology

- Monthly variable lags range from 1 to 12 months
- Quarterly variable lags range from 3 to 12 months

Results

Movement	Variable	Lag (Months)	Correlation
	US Quarterly GDP	12	0.7197
CA to USA	Canada Quarterly GDP	12	0.6868
	Average CA to USD FEx	5	-0.6995
USA to CA			
Net International			

Level, Trend, Seasonality

- Level mean value of Y
- **Trend** Local mean, period to period difference
- Seasonality Repeating increase or decrease in a given time period

Trend

A slight linear trend exists in the individual flows

MANAGEMENT

Deseasonalized Flows

Seasonality

Seasonality in Detrended Data Net International

Forecasting Models

- Stepwise Regression
 - Univariate
 - Multivariate
 - Endogenous
 - Exogenous (Macro Economic)
- SARIMA Seasonal Auto Regressive Integrated Moving Average
- Exponential Smoothing Multiplicative
 - Standard
 - State Space

Forecasting Methodologies

Approach 1 – Use same methodology for USA to Canada & Canada to USA

Seasonal Exponential

MANAGEMENT

Approache@ctedUage top performin@individualforecasts_for CAtoUS International flow Canada and Canada to US to select "Best of Breed"

Seasonal Exponentiemple Regression

Predicted value of
International flow
$$\widehat{Y}_{delta} = \widehat{Y}_{UStoCA} - \widehat{Y}_{CAtoUS}^*$$

Seasonal Exponential
 \widehat{MIT} Supply Chain

Performance Evaluation Metrics

Performance Is Measured by Relative Performance on All Three

$$MAPE = \frac{|Et|}{At}$$
 $MASE = \frac{|Et|}{|Et_{Naive}|}$ $MAD = |Et|$ Mean Absolute
Percent ErrorMean Absolute
Scaled ErrorMean Absolute
DeviationError in relation
to actual valueError in relation
to Naive Ft
errorAbsolute Unit
Error

MIT Supply Chain

MANAGEMENT

Performance Evaluation

Metrics

Issue: Imperfect Metrics

Solution: Composite Scores

• Weighs each metric evenly & compares models performances across all 3 metrics

Model Selection

Quantitative Selection

Multiplicative Score Rank

	Validation			Rank				
Model	MAPE	MASE	MAD	MAPE	MASE	MAD	Mean Score	Mult Score
SARIMA (0,1,1)(0,1,0) SARIMA (0,1,1)(1,1,0)	15.3%	3.84	37340	1	28	1	10.00	28
Seasonal Exponential Simple Regression	15.8%	3.76	40211	2	26		10.67	208
Holt-Winter Simple Regression	16.8%	3.63	39365	6	21		1.67	252
Seasonal Exponential Seasonal Exponential	16.9%	3.27	40314	7		Different models		350
Seasonal Exponential Endogenous Regression	16.3%	4.09	39895	4	Di			396
Mean Score Rank					using different			
	١	Jalidation				mposn		
Model	MAPE	MASE	MAD	MAPE	N		<u> </u>	Mult Score
Seasonal Exponential Seasonal Exponential	16.9%	3.27	40314	7	1			350
Holt-Winter Simple Regression	16.8%	3.63	39365	6	21	2		252
SARIMA (0,1,1)(0,1,0) SARIMA (0,1,1)(1,1,0)	15.3%	3.84	37340	1	28	1	10.00	28
Seasonal Exponential Simple Regression	15.8%	3.76	40211	2	26	4	10.67	208
Simple Regression M2Y Simple Regression	16.2%	3.69	41462	3	23	6	10.67	414

Model Selection

Qualitative Selection

Model	Mean Score	Mult Score	Update Requirement	Software Dependency
Seasonal Exponential Seasonal Exponential	7.33	350	1	1
Holt-Winter Simple Regression	9.67	252	2	1
SARIMA (0,1,1)(0,1,0) SARIMA (0,1,1)(1,1,0)	10.00	28	1	2
Seasonal Exponential Simple Regression	10.67	208	2	1
Simple Regression M2Y Simple Regression	10.67	414	2	1
Seasonal Exponential Endogenous Regression	13.33	396	3	1
Seasonal Exponential Simple Regression M3Y	13.67	1015	2	1

Seasonal Exponential | Seasonal Exponential was selected due to quantitative and qualitative performance

Key Takeaways

- 1. Macro variables* are not easily tied to micro level data
- 2. Methodical forecasting identification
- 3. Time horizons greatly effect time forecast evaluation and performance

Metric	Seasonal Exponential	SARIMA	SE Performance Difference
MAPE	16.79%	15.3%	-8.87%
MASE	3.62	3.83	5.80%
MAD	40492	37340	-7.78%

Aggregation: Monthly

Aggregation: Yearly

Metric	Seasonal Exponential	SARIMA	SE Performance Difference
MAPE	8.23%	4.68%	-43.07%
MASE	.67	.39	-42.58%
MAD	40492	37340	-43.19%

Benefits for Reverse Logistic Firms

- Incorporating Seasonality in Inventory Planning
- Strategic Planning for Demand Uncertainty in Reverse Logistics
- Minimize RTI Repositioning Flows Transportation Costs
- Improve Balancing of RTI Flows across Network

Next Steps

Origin Californtia Decistination Province US Origin States - Spread

Future Research Areas

- 1. Forecasting of RTI Flows at more Granular Level
- 2. Minimize Transportation Costs by Reducing RTI Repositioning
 - Plan Flows to Service Centers : State wide Mix for Destination Flows
- 3. Tailor Pricing and Leasing Contracts using Historical Cross Border RTI flows

Future Research Areas

- 1. Forecasting of RTI Flows at more Granular Level
- 2. Minimize Transportation Costs by Reducing RTI Repositioning
 - Plan Flows to Service Centers : State wide Mix for Destination Flows
- 3. Tailor Pricing and Leasing Contracts using Historical Cross Border RTI flows

Reference Slides

Forecastability - CV

	Training	Validation	Total	
US to CA	12.27%	10.77%	16.17%	
CA to US	13.17%	12.32%	12.21%	-
Delta	17.13%	24.58%	19.68%	-

CA to US is the easiest flow to predict as the variation is consistent over time Low Variation

 $CV = \frac{\sigma}{\mu}$

Endogenous Variables

- Monthly Network Purchases of Pallets
- Domestic Monthly RTI Issued
- Demand Growth
- RTI Returns to Service Centers

Movement	Variable	Monthly LAG	Correlation
	USA - Domestic Issues	3	0.791
	CA - Domestic Issues	3	0.783
	USA Inflows	3	0.771
	CA Inflows	3	0.766
USA to CA	USA Inflows	6	0.785
	USA - Domestic Issues	6	0.743
	USA - Domestic Issues	3	0.672
	CA Inflows	6	0.659
Net International			

