MANUFACTURING RISK ASSESSMENT FOR EARLY STAGE PHARMACEUTICALS

MIT SUPPLY CHAIN MANAGEMENT

RESEARCH THESIS PRESENTATION MAY 2017

THESIS WRITERS AND CONTRIBUTORS

Emily Chen, Author

MIT Masters of Engineering in Supply Chain Management candidate 2017 Former Program Manager, Supply Chain Optimization Technologies at Amazon BA Economics, University of Chicago

Ozgu Turgut, Thesis Advisor

Postdoctoral Associate, MIT Center for Transportation and Logistics Former Research Scientist at Llamasoft BS, Bosporus University MSc., Yeditepe University PhD, Industrial and Systems Engineering, Wayne State University

THESIS OVERVIEW

Objective

Develop a method to assess potential manufacturing risk for early stage (pre-phase III) pharmaceuticals that can be used for molecules in the drug development pipeline

Motivation

To meet future patient demand for drugs in development now, manufacturing decisions often need to be made during the early stages of the drug development process where a high degree of uncertainty exists

Approach

Using a Discrete Event Simulation model, manufacturing risk was assessed for an individual molecule to assess maxed-capacity, under-utilization, and over-utilization scenarios based on given capacity

Conclusion

Manufacturing capacity risk for early stage molecules can be simulated through a flexible and adaptable model. With accurate inputs provided, results can influence management decisions on future capacity resources

BACKGROUND AND MOTIVATION

The drug development process is long, risky, and expensive

It costs \$1.4B on average to develop a new drug (Tufts CSDD)

BACKGROUND AND MOTIVATION

Drug manufacturing is complicated and highly regulated

- FDA quality control measures CGMP (Current Good Manufacturing Processes)
- Many decision variables involved in capacity expansion or modification
- Long timelines: 7-10 years to open a new site
- Out of stock implications

MOTIVATION AND THE MODEL

Model needs to be adaptable and flexible

THE MODEL

Discrete Event Simulation (DES)

- Many stochastic parameters
- Differentiation and novelty to existing method
- Linearity of decisions and events

THE MODEL

Stochastic parameter inputs

- Patient population
- Market share

- Patient compliance
- Dosage
- Treatment duration

Assessment of manufacturing capacity risk (over, under, or target utilization)

MODEL STRUCTURE IN ARENA SIMULATION SOFTWARE

MODEL STRUCTURE SIMPLIFIED

THE MODEL

Manufacturing risk assessment scenarios

None:

Demand is satisfied by at least target allocation to all available sites

Low:

Demand is satisfied while running some sites at under minimum capacity

Medium:

Demand is satisfied while running some sites at maximum capacity

• High:

Demand is not satisfied while running all sites at maximum capacity

ADDITIONAL ANALYSIS OF OUTPUTS

	Share1	Share2	Share3	
Comp1	177.12	189.60	195.00	187.24
Comp2	182.00	193.80	195.90	190.57
	179.56	189.60	195.00	188.90
	Df	SS	MSS	F
Compliance	Df 1	SS 830.00	MSS 830.00	F 0.98
Compliance Share	Df 1 2	SS 830.00 12495.26	MSS 830.00 6247.63	F 0.98 7.39
Compliance Share Comp*Share	Df 1 2 2	SS 830.00 12495.26 687.86	MSS 830.00 6247.63 343.93	F 0.98 7.39 0.41

- 1. Is there enough capacity to handle anticipated demand?
- 2. Are there parameters that influence risk more than others?

CONCLUSION

Biopharmaceutical companies make big bets with limited information to plan for manufacturing of drugs in early stages of development

- The model serves a **purpose**. Making safer bets to meet patient needs.
- The model is a **framework**. Adaptable, flexible, customizable.
- The model has limitations. There is no "one model fits all".

THANK YOU

