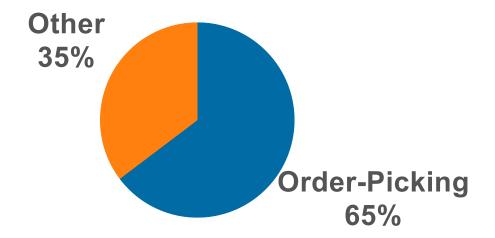
Gaining an Operational Edge: Piece-Picking Process Optimization

Authors: Stephanie H. Chen, Eunji Han

Advisor: Dr. Bruce C. Arntzen


MIT SCM Research FEST

May 19, 2016

Our Thesis Sponsor Company & Their Operational Context

- US retailer: mainly low-cost daily items
- Manual piece-picking, labor-intensive and costly
- % of order-picking in warehouse operating expenses:

- Operational context
 - Weekly replenishment from DC to store based on forecast
 - Weekly shipment of 1 SKU to 1 store = 1 pick (bin visit)
 - Pick multiple for each SKU is DC-wide

The Proposed Improvement Scheme

- Change pick multiple for some SKUs from 1 to 2 (even numbers only)
- Foreseeable impact:
 - Increase units per pick
 - Reduce picks (bin visits)
 - Shift of DC inventory to store (increase in store inventory)

Week (shipment)	1	2	3	4	5	6	7
Qty before change	1	1	3	3	0	2	0
Qty after change	2	0	4	2	0	2	0

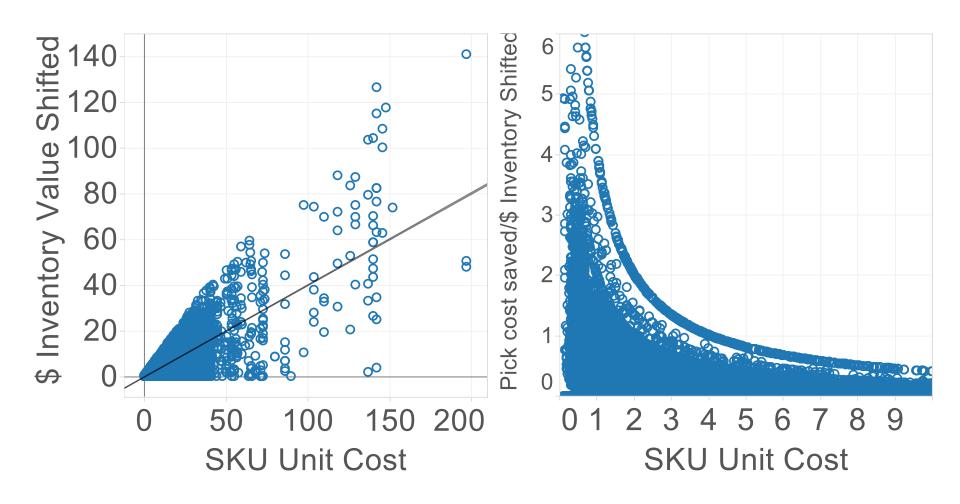
Data & Methodology

- 74 weeks of weekly shipment quantities for each SKU
- Looked at 5 stores, 1 DC, with 10,000+ SKUs per store
- Simulation: MySQL recursive procedures, shipment quantities after change for every SKU
- Calculated pick reduction & unit*weeks of extra inventory in store

Week (shipment)	1	2	3	4	5	6	7
Qty before change	1	1	3	3	0	2	0
Qty after change	2	0	4	2	0	2	0

Week (shipment)	1	2	3	4	5	6	7
Qty before change	1	0	0	0	0	3	4
Qty after change	2	0	0	0	0	2	4

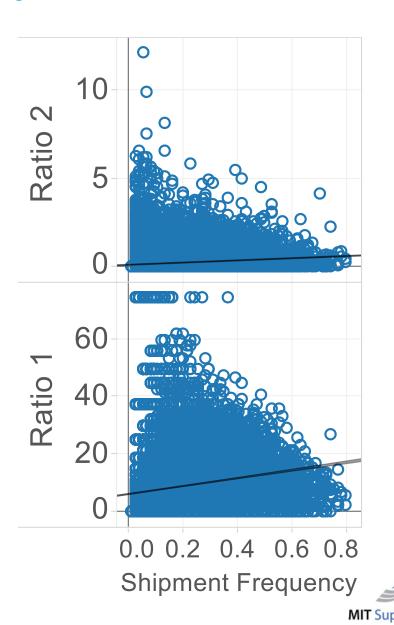
Methodology Continued: SKU Segmentation


- Goal: identify SKUs that provide a large savings in picks and picking cost for as little increase in store inventory as possible (shift from DC)
- 2 ratios of SKU goodness for the scheme
 - Ratio 1 = # Picks saved/Inventory shifted to store
 - Ratio 2 = \$ Picking cost saved/\$ Value of inventory shifted to store
- SKUs with large ratios: large pick savings and small inventory impact
- Segmented SKUs by 3 variables to predict the ratios:
 - Variable 1: Number of 1-unit shipments/year
 - Variable 2: SKU unit cost
 - Variable 3: Shipment frequency

Variable 1: Number of 1-Unit Shipments/Year

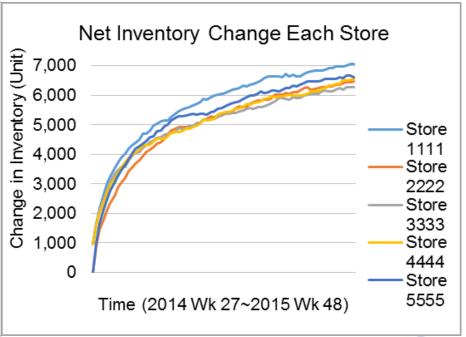
Week	1	2	3	4	5	6	7	8	9
Qty before	1	0	0	1	3	1	0	1	1
Qty after	2	0	0	0	4	0	0	2	0
14				store	70	0000 0 0	0		
09	000	0000	0000000	Ö	60 50 40 30 20	000	0008 O		8 8 8
0	5	10		20	(0 4	8	12	16 20
#	# 1-Unit Shipments/Yr # 1-Unit Shipments/Yr								

Variable 2: SKU Unit Cost



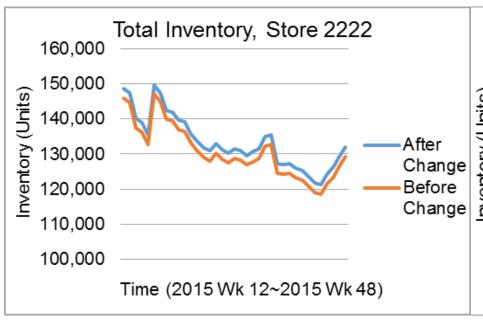
- Negative correlation between SKU cost & ratio 2, "\$ picking cost saved / \$ value of inventory shifted to store"
- As SKU cost increases, the ratio is likely to decrease

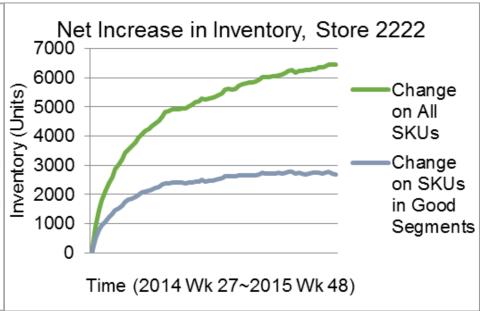

Variable 3: Shipment Frequency


- Shipment frequency used to capture "gap" between shipments
- It is not as correlated with the ratios
- BUT it is highly correlated with the number of 1-unit shipments
- Therefore, we excluded this variable

Results 1: Simulation on ALL SKUs

- Savings: around 20% picks & store shelf visits
- Picking efficiency: +0.65-0.69 units/pick per store
- Inventory impact: scheme prepositioning units to store, store level increases towards plateau outside data range
 - Extrapolated net increase: 7,600-8,600 units each store (6%-7% increase)
 - Need SKU segmentation to find suitable SKUs

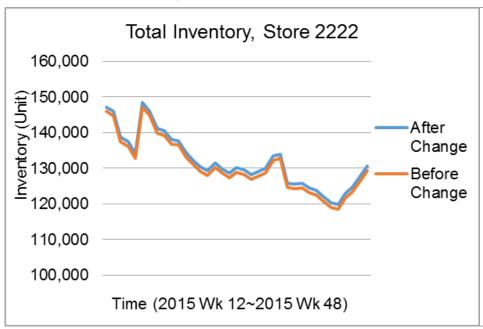


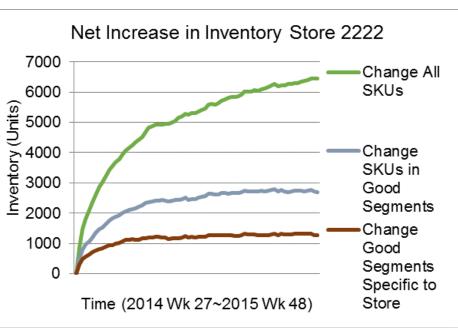

Results 2: Simulation on SKUs in Good Segments across DC

Good segments: high / medium # 1-unit shipments & low SKU cost

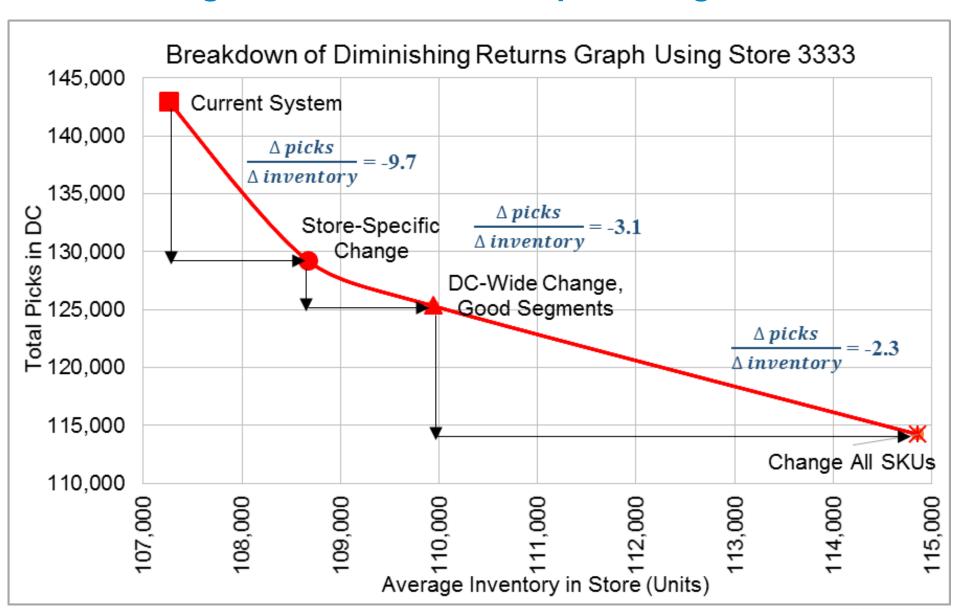
Store #	Store 1	Store 2
SKU in Store	SKU 1234	SKU 1234
Good Segment or Not	Segment good for scheme	Segment not good for scheme

- Savings: 11%-13% picks & store shelf visits and their costs
- Picking efficiency: +0.36-0.38 units/pick per store, +0.61 units/pick for SKUs





Results 3: Simulation on Suitable SKUs Specific to Store


Store #	Store 1	Store 2
SKU in Store	SKU 1234	SKU 1234
Good Segment or Not	Segment good for scheme	Segment not good for scheme

- Savings: 8.9%-10.5% picks & shelf visits
- Picking efficiency: +0.24-0.28 units/pick each store, +0.71 units/pick for SKUs changed

Diminishing Returns on Pick Multiple Change

Conclusion & Discussion

- Change in pick multiple does increase efficiency and reduce cost, but with impact on inventory in the stores
- SKU segmentation helps find SKUs that can reduce the most cost with the least inventory impact
- More specific pick multiple change generates greater savings per inventory impact vs. operational complexity
- Applicability of pick multiple change
 - Perishability
 - SKU size issues
 - Integrated forecast/replenishment system
- Scheme is simple, viable and contingent on the above conditions

Questions & Comments?

