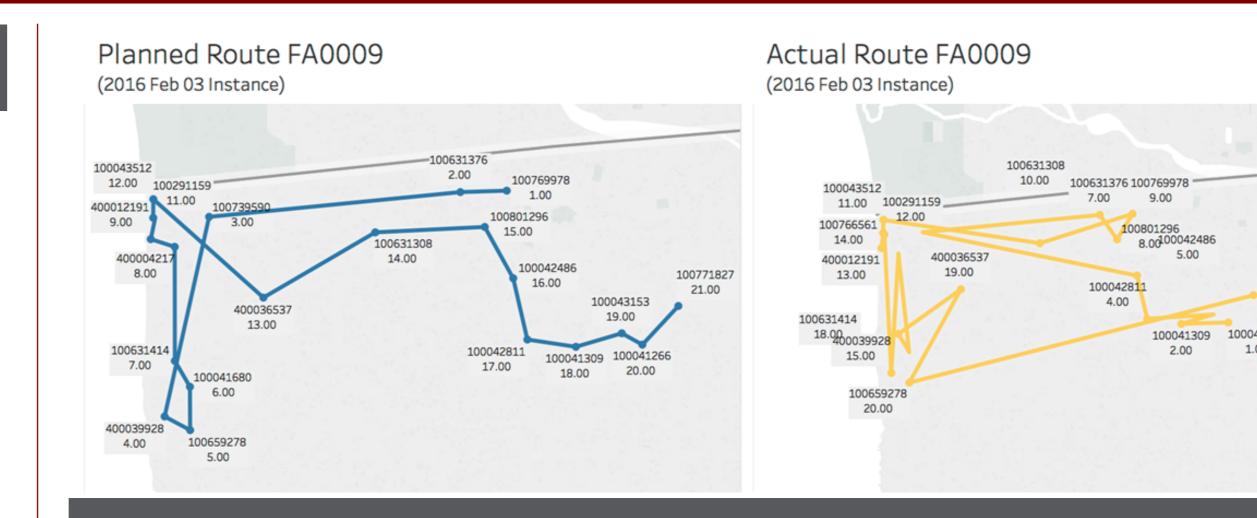


MANAGEMENT

Student: Yiyao Li, SCM 2018 Student: William Phillips, SCM 2018 Advisor: Matthias Winkenbach Sponsor: CTL

# **Route Plan Deviations in Last-Mile Delivery**

#### **Motivation / Background**


- > 1 mile of reduction in average route distance results in \$50,000,000 of annual cost savings for UPS (in the US).
- > Urbanization and new costumers demands are making last-mile delivery optimization increasingly complex and relevant to retail companies.
- > These companies often do not have the tools and/or capabilities to include costumer specific or environmental constrains such us:
  - Time windows (implicit or explicit)
  - Congestion patterns
- > By analyzing systematic deviations of the delivery crews from the planned route sequence we can identify cases in which their local knowledge can add value and improve a route.

#### **Hypothesis & Assumptions**

- > The starting and ending point of each route is the DC
- > There is no real time instructions to drivers. Planned route is released at the start of the route
- > Optimization software that the company uses is minimizing travel distance and travel time

#### **Relevant Literature**

- > Vehicle Route Planning (VRP):
  - Pillac et al. (2013) A review of dynamic vehicle routing problems. Eur J Oper Res, 225:1–11.
  - Vidal et al. (2013) Heuristics for multi- attribute vehicle routing problems: A survey and synthesis. Eur J Oper Res, 231(1), 1–21.
- > Driver Behavior
  - Holscher et al. (2011) Would you follow your own route description? Cognition 121(2):228–247
  - Sun, Y. (2013). Decision making process and factors routing (Thesis). MIT.



#### The Problem

- > Do delivery crews systematically, consistently and substantially deviate from the planned stop sequences of their routes?
- > What drives these deviations and do they add economic value?
- > Can we learn from the delivery crews and systematically improve the route planning process?

# Methodology

- > Create metrics to measure deviations:
  - Sequence Deviation = Arcs not followed by driver / Total Arcs
  - Distance Deviation = Actual Distance / Planned Distance 1
  - Deviation Impact = Actual Sequence SLD\* / Planned Sequence SLD 1
  - \* SLD: Straight Line Distance

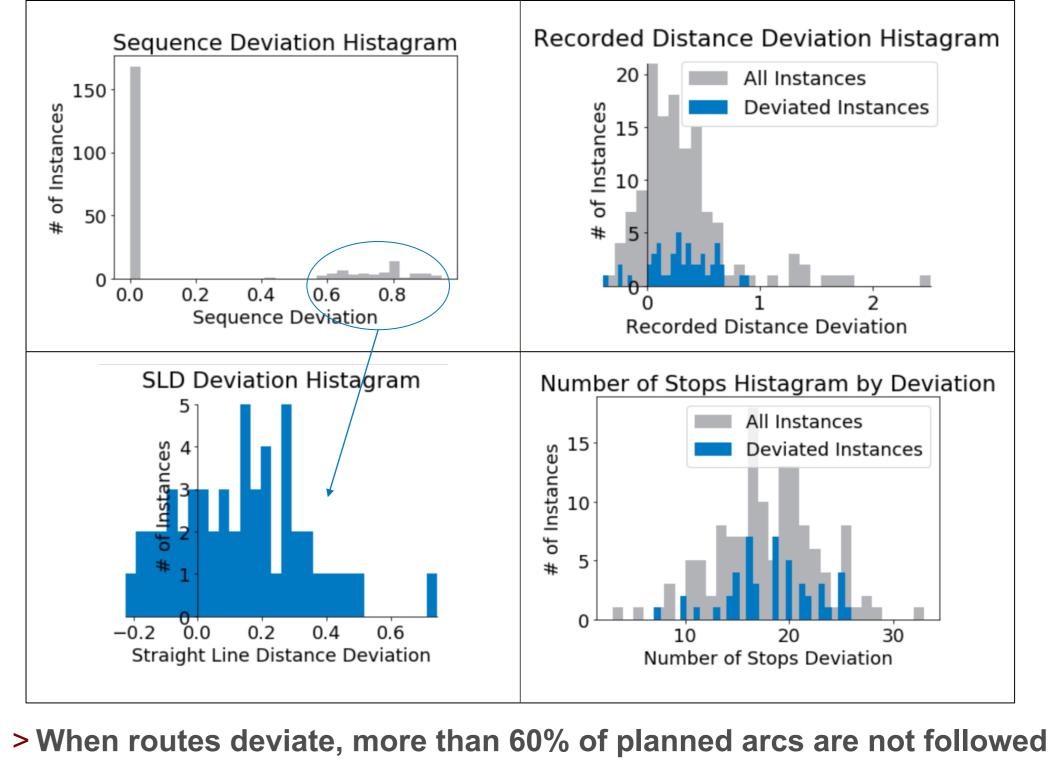
| Planned Route | Planned<br>Sequence | Actual<br>Sequence | Sequence<br>Deviation | Distance Deviation<br>(Actual, Planned) | Deviation Impact<br>(Actual SLD, Planned SLD) |
|---------------|---------------------|--------------------|-----------------------|-----------------------------------------|-----------------------------------------------|
| DC 3          | 1                   | 1                  | 0                     | (2, 1.5)                                | (1,1)                                         |
| 5 4           | 2                   | 3                  | 1                     | (3, 1.8)                                | (2,1)                                         |
| Actual Route  | 3                   | 2                  | 1                     | (2.3, 2)                                | (1,1)                                         |
|               | 4                   | 4                  | 1                     | (2.6,1.5)                               | (1,1)                                         |
|               | 5                   | 5                  | 0                     | (2.6, 2.2)                              | (1,1)                                         |
| DC 3          | DC                  | -                  | -                     | (2.5, 2)                                | (1,1)                                         |
| 5-4           | Total               |                    | 60%                   | 15/11-1 = 36.4%                         | 7/6-1 = 16.7%                                 |

> Extract Insights from drivers behavior based on created metrics





# January 2018 Poster Session


|                    | Su |
|--------------------|----|
|                    | >  |
|                    | >/ |
| 100771827<br>21.00 | >  |
| 1266               |    |

### **Initial Results**

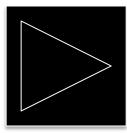
#### immary of the database

- Number of routes: 878 (458 in USA, 421 in Mexico)
- **Average instances per route: 82**
- Average stops per route instance: 15

#### Defined metric analysis on a specific route



- > 1 in every 4 routes deviate, with significant Deviation Impact
- > Number of stops is not a key driver for route deviation


#### **Expected Contribution**

Devise methods of statistical learning to extract the superior information of delivery crews and make it available to improve future route plans.


Yiyao Li



William Phillips







