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Motivation /| Background

Transportation Trucking Forecasting
e $1.5 trillion * Lifeblood of the US » Transportation
spent in 2015 on economy budget planning
logistics and
transportation
- Earned $726.4 * Economics order
* 8% of US GDP billion revenue in quantity
2015
« Up to 50% of total . t
logistics costs are "V?" 9?" t
transportation cost . Represents 81.5% epptisalistnir s
of US freight
- Emphasize on lean transportation .. .
production and revenue  Facility location
inventory
minimization

Key Question / Hypothesis

The objective of this project is to develop a forecasting model that predicts
both contract and spot rates for dry van on individual lanes for the next seven
days on a rolling-window basis.

Relevant Literature

> Approximated rate functions

— Freight rate defined as a function of distance and weight. By using such
function, a simple market rate for a lane can be calculated for a given
origin and destination (Swenseth and Godfrey, 1996)

> Actual rate forecasting

— Budak et al. (2017) compared artificial neural network (ANN) and
quantile regression methods in predicting TL spot market price.

— Ozkaya et al. (2010) used multiple regressions to model the US Less-
than-Truckload (LTL) market rate. Considered both tangible and
intangible market (not captured in the dataset) factors.

Long haul dry van contract high volume links
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Methodology
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< Backpropagation of errors
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Initial Results
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> Improve short-term forecasting accuracy of TL rate;

> |dentify the spot and contract rate relationship and how past values of
spot can be used to predict contract rate;

> |dentify effects of market variables, such as weather condition on TL rate;
> Aid decision-making processes for truck carriers with respect to

determining future cash flows.

> provides useful guidance for third-party providers and shippers regarding

potential price fluctuations and resulting risks.




