

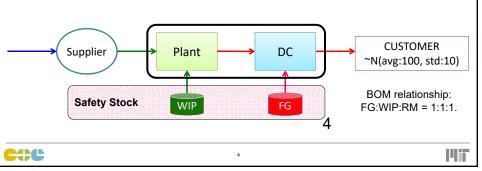
Plan for the Session

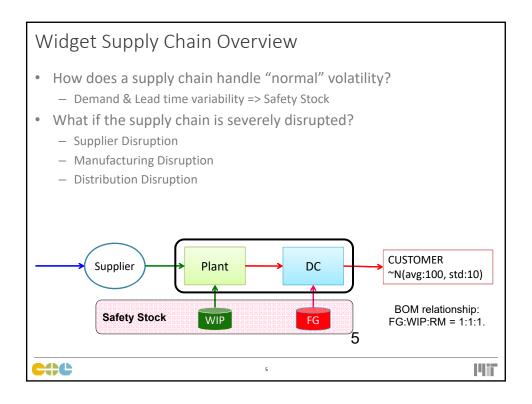
- Background on Resilience
- Overview of the SCREAM Game
- Teams use tool to simulate, test policies
- Teams choose & submit final policy choice
- Submit policy choices via Google Document
 - Link via Gateway Page
 - http://tinyurl.com/ShellScream
- Tomorrow we will start with a results review and debrief

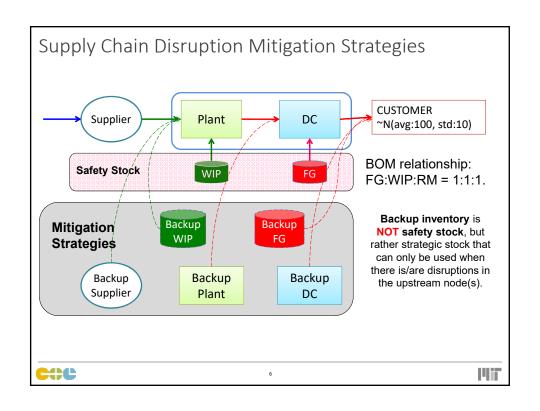
Hir

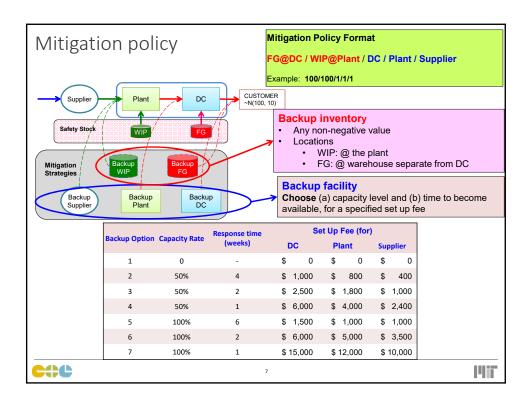
Supply Chain Risk Evaluation and Mitigation Game

- Developed at MIT CTL
- Based on MIT research project in 2009 with a CPG manufacturing company
- Many contributors....

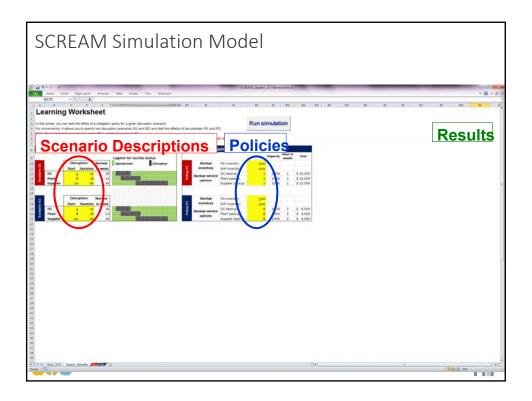

HC


- Dr. Mahender Singh, Dr. Amanda Schmitt, Dr. Yukun Liu, Dr. Shardul Phadnis (2.0), Dr. Josue Velazquez, Andre Snoek (2016)




Widget Supply Chain Overview

- Each team runs its own Widget supply chain which consists of:
 - Supplier: Receives raw material (RM) and converts into work-in-process (WIP)
 - Plant Converts the WIP into finished goods (FG)
 - Distribution Center Stores the FG for delivery to customers
- You have control over the Plant and the DC, but not the supplier
- The demand for finished goods are random and variable \sim 100 units/week +/- 10.
- The inventory policies at each facility are already established at the DC and Plant, and are very conservative.



Game Details

- · Objective:
 - Design a risk mitigation strategy to minimize the total supply chain cost while maximizing the order fill rate for the future.
- Costs:
 - Holding Costs ~25% annually
 - Landed Product Costs
 - Finished Goods
 WIP
 Raw Materials
 Selling Price
 \$100 /unit
 \$80 /unit
 \$50 /unit
 \$225 per unit
 - No Stockout Costs
- Service Level
 - Order Fill Rate (OFR) at customer location
 - Under normal conditions, order fill rate is ~99%

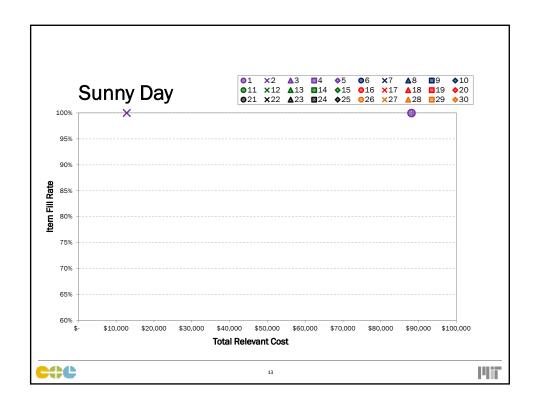
SCREAM Simulation Model Details

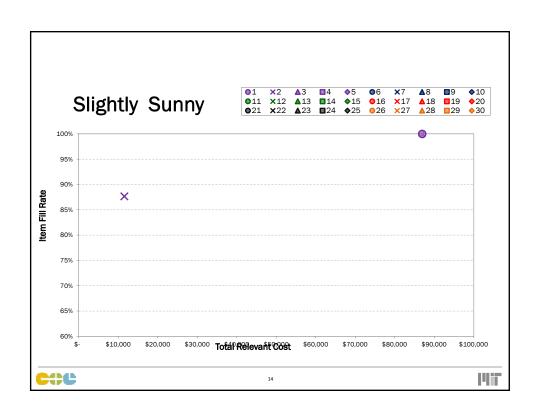
- Users can define up to 2 disruption scenarios
 - Only enter in yellow cells
 - Define a Start and Duration of the disruption for each facility.
- Users can define up to 2 mitigation policies
 - Only enter in yellow cells
 - Enter 5 digit policy code
- Run Scenario
 - Press the "Run simulation" button
 - Run should take under 5 seconds
 - Scenario 1 runs against Policy 1, & Scenario 2 runs against Policy 2
- Review Results
 - Summary results (numeric and charts) on cover sheet
 - Scenario details on other tabs (S1 and S2)
 - Use this to compare policies or how different scenarios impact the same policy

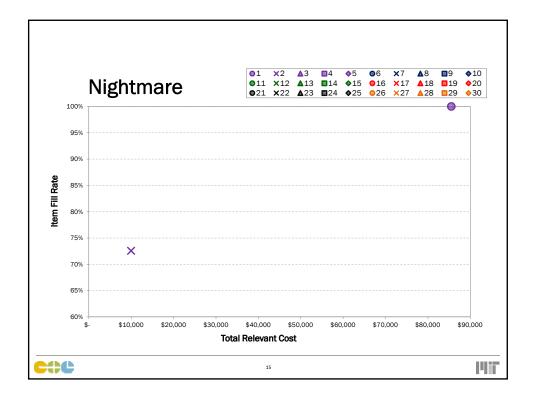
Learn Using the Simulation Tool

- Work in 2-Person Teams
- · Open up your SCREAM spreadsheet
 - Download the file SCREAM2_Student_v6.xlsm
 - Make sure you allow/enable Macros
- Two ways to Use the Simulation
 - Use the same policy and run it against two different scenarios
 - Test two different policies and run it against the same scenario

1


Ш


What the Results Look Like – 2 Policy Choices


	Inventory		Capacity		
Team	FGI	WIP	DC	Plant	Sup
1	1000	1000	7	7	7
2	100	100	2	2	2

12

Some Questions To Consider....

- How much is a stockout worth?
- Is speed of response more important than capacity coverage, or the other way around?
- When is it worth putting a policy in place?
- Is it important to have a uniform policy across the facilities?
- Is it better to place a full strength policy at one facility and partial at others? If so, which?
- Under what conditions is it better to use Strategic Stock versus Facility Backup plans?
- Which strategies seem to work best?

